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A conjugacy class of regular operators

Emmanuel Andmm’kof(*) ( Univ, Ponis XW)

1- Let X = C%Zz") with coordinates t € C, z = (zy,...,z,) € C*, (t,z;7,§)
the symplectic coordinate of T*X and £x the sheaf of microdifferential operators
on T*X. In Kashiwara and Oshima’s study of regular systems (cf. [K-O]), the
following definition occurs (with a slightly different vocabulary): a matrix of mi-
crodifferential operators A(z, D, ) is essentially of nonpositive order if there exists
v > 0 such that the coefficients of any power of A are microdifferential operators of
order at most v. It is shown in [K-O] that any regular system of microdifferential
equations M with regular singularities along V = {t = ¢ =--- =¢, =0}, 1s a
quotient of a system of the form (tD; — A(z,D,))u =D, =--- =D, =0, with
A essentially of nonpositive order, which enables one to define the monodromy of
M. Actually, it is shown that A may be chosen such that it has the following
slightly more precise form:

[A,D;] =[A,t] =0, and A consists of blocks A;; of N; x N;
(1) matrices of differential operators such that A;; =0 for ¢ > j

and A;; = A;i(z) is a matrix of holomorphic functions.

When investigating e.g. distribution solutions of regular systems from a microlo-
cal point of view, that is, solutions with values in the sheaf C]{{n of tempered
microfunctions on IR", one is led to look for the simplest normal form over some
extension of £x to a ring of operators acting on Cl{{" (see remark 2) below).

In particular one has on CI{W an action of E;I({’f , the ring of tempered microlocal

operators (cf. [An]) and the purpose of this note is to prove the

Theorem 1. Let A = A(z,D,) be a matric of differential operators such that (1)
holds. Then

(1) (D In)A=DP=) s a well defined invertible matriz operator over E;Iz’(’;;dt), with
inverse (D In)~A&De) | and

(ii) one has (DIn)A®P=)(tD Iy — A(z, D,)) (D In)~4®P=) = tD,Iy.

(*) Université Paris-Nord, Département de Mathématiques, Laboratoire C.N.R.S. ” Ana-
lyse, Géométrie et Applications”, URA 742, F93430 Villetaneuse.
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2- Before going into the proof let us recall the following facts about 8;1?”‘ . Let

X be a n-dimensional complex manifold. The sheaf of rings Sjlg"f is the tempered
version defined in [An] of the sheaf of rings €8 on T* X of holomorphic microlocal
operators of [S-K-K], of which it is a subsheaf.

One hasbfy‘lfy*f,';l}’f =Ex. Also Eﬁ’f is faithfully flat over £x.

We are going to make use of a few topics of the theory of symbols of holomor-

phic microlocal operators as developped by Kataoka and Aoki (see [Ao] and the

literature quoted there), which we adapt to the framework of S;l;“’f .

Let z5 = (z0;60) € T* X and U a IRy -conical open neighborhood of zj.

Denote by
S(U) (resp. ST(U),resp. R(U)),

the space of holomorphic functions p(z,{) on U such that for any compactly gen-
erated cone U’ C U one has :

forany €>0 p(z,€) = O(eél) on U’
(resp. there exists m > 0 such that p(z,£) = O(|¢|™) on U'),
(resp. there exists § > 0 such that p(z,€&) = O(e~%l¢l) on U").

The notations S(U), R(U) are borrowed from [Ao].

Proposition 2.
- (i) (cf. [Ao]) There is an isomorphism of vector spaces

lim S(U)/R(U) 5 EX ..

Uszj

(ii) The isomorphism of (i) induces an isomorphism

lim ST(U)/R(U) S €301
Udzj .

In a local coordinate system (zy,:-- ,Z,), the above morphisms take z; to z;,
€ to D¢, and z:€; to z;Dg,. In fact (ii) is easily' deduced from the calculation in
Aol.
| ;]‘\ representative p(z,€) € S(U) of an operator P € 5;1({’1. for a suitable neigh-
borhood U of zj is called a symbol of P, and the lower bound of the m € IR such
that p(z,€) = O(|£|™) in a conical neighborhood of z§ is called the order of P at
zf,eg m<ooiff Pe€ 5};}’{3. As noted by Aoki, (i) of Proposition 2 entails that
if p(z,€) € S(U) satisfies p(z,€) = o(|€]) in a conical neighborhood of z§ then
exp(p(z, €)) is a symbol of an operator of E}l},za. By (ii) we get also :

if p(z, €) € S(U) satisfies p(z,€) = O(log [¢])
(2) in a conical neighborhood of g,

then exp(p(z,€)) is a symbol of an operator of 8;1;:’]{3
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For example, if X = C7} with coordinates * = (zi,...,z,), one has
exp(z; log Dy, ) € SX 7z, Whereas exp(z1/Dy,) € S}éd“ \E}}G{zl

3- Proof of theorem 1. We have to estimate the growth order in 7 of the symbol
of exp(A(z; ¢)log 7). This is done by a straightforward use of norms of matrices of
microdifferential operators. (Of course, if N = 1, the theorem is already implied
by (2).)

For a differential operator P(z,D.) of order < I we denote as usually by
Ni(P,s) = N)(P(z;£), s) the Boutet de Monvel and Krée formal norm of P defined

as the series

k!

Ni(P,s) = Z (zn)k(|a;+k)'(|ﬂl+k)'

10202 Pr_(x; &) |2k Ho+Al,

where Pj_i(z;€) denotes the symbol of the homogenous part of order I — k of P,
and s is an independant variable.

If P = (P;;) is N X N matrix whose entries are (micro-) differential operators of
order at most [/, we denote, as usually by N;(P, s) the matrix whose entries are the
Ni(P;j,s). Recall then, that if @ is another N x N matrix of (micro-) differential
operators of order at most !’ one has :

NH'I’(PQ75) << NI(P’S)NI'(Q73)>

where the symbol << means that each entry of the matrix on the right side is a
majorant series of the corresponding entry of the matrix on the left side.

We will need the following two estimates. Let P(z, D, ) be a matrix of differential
operators of order at most .

Fix (z9;&0) € T*C™. By using Cauchy inequalities, it is easy to see that one may
find:

a conic neighborhood V of (2¢; o), a constant M > 0 and a matrix function ¢(s) =
3" a;s? holomorphic near s = 0, where a; a constant matrix with nonnegative
entries, ‘

such that

(3) Ny(P,s) << M(14 | € |)e(s), uniformly in (z;€) € V.
If a = (a;;) is a N x N matrix of complex numbers we use the notation
llall = Supi,j | aij | -

Then if P is a matrix of differential operators of order at most [ as before, and if
s=r with 0 < r < 1, we get from the definition the obvious estimate

l (2n)l

(4) IP@EOI S Y 1Pz o)l < Ni(P,r),

0<k<l!



where Pj_(z;§) is the matrix of symbols of order [ — k of P and P(z;¢) =
> & Pi—k(z; €) is the total symbol matrix.

Proof of (). The matrix A = A(z, D) being as in (1), we may write A = Ao+ B
where Ag = Ag(2) is the matrix of holomorphic functions consisting of the diagonal
blocks A;; of A, and B := A — Aq consists of the blocks B;; with B;; = A;;if ¢ < j
and zero otherwise. Let v be the least integer 1 < v < N — 1 such that B;; =0
for all 7,7 such that : + v < j.

For multi-indices & = (a1, a,...), B = (b1, 82,...) € NN we set

©*P(Ay,B) = AF'BP A3* B .- € My (Ex).

Now because of the particuliar forms of Ay and B we get that ¢p*#( A4y, B) = 0 for
| B|> v. Hence for any integer m > 0, we have

A™ = (Ag + B)™ = > ©*P( Ay, B).
|o+Bl=m, |B|<v

Let [ be the maximum order of the entries of B, then the above formula implies
that for any integer m > 0, the matrix A™ has entries of order < vl, and we have

Na(A™,s) << Y (i )No(Ag,s)™*Ni(B, 5)*.
0<k<Ly

Fixing (0;&,) € T*C", and making use of (3) and of its notations, one may find
M > 0 and a matrix function ¢(s) holomorphic near s = 0 such that

Ni(B, s)* << M(1+ | € ) ¢(s)

holds for 0 < k < v and (z;€) in a conic neighborhood V of (0;&y).
Thus

e Nui(A™,s) << M(1+ | € ') e(s)(1 + No(4o, 5))™,

for any integer m > 0 and any (0;&,) € V.

Reducing the conic neighborhood V' if necessary, we may choose 0 < r < 1 and

a constant M; > 0 such that ||No(Ao,r)|| < M; uniformly in (0;&) € V. Then,

since ‘ '

(v)! (2n)*!
2 r2vl

by (4), we find by (5) that there is a constant M> > 0 such that

[A™(e; I < Noi(A™,7)

(6) IA™ (@5 Il < Ma(14 | € )" (1 + My)™,

for any m > 0 and (0;&) € V.
Fix the determination of log 7 in Rer > Im7 such that log1 = 0. We have to esti-
mate the growth of the the matrix-valued holomorphic function exp(A(z, £)log )

B
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as | 7 |—= oo, 7 in a conic neighborhood of dtco. Let | 7 |> €7, thus | log7 |<
v2log | 7 |. Using this and (6) we get

IO = || Y (Ale; ©)logm)™ ml| < Y |A™(2;6)]| | log 7 ™ /m!
m2>0 m2>0
< Mp(14 [ €1D7 Y (1 + My)™2m(log | 7 )™ /m!
m>0

< Mp(14 | € )7 | 7 V204,

and this holds for | 7 |> €™, uniformly for (z;¢) in a small enough conic neigh-
borhood of (0;&p). The choice of £ having been made arbitrarily, this proves

that 748 is a well defined symbol of an operator of 8;1({’({)‘ a1) that we denote by

Dfl(x’D”) (we omit the notation In).

Proof of (i1). Since [A,D;] = 0 one has [(D;)",t] = A(D,)*~ . Hence
(D)A(tDy — A) = (D)™ 4 A(Dy)* ~ (Dy)AA = tDy(Dy) 4. u

Remarks.

1- The theorem should be more generally true when the matrix A(z,D,) is
essentially of nonpositive order, but the proof given above breaks down for this
more general case.

2- Distribution solutions of regular operators are investigated in [A-M.F]; the
above theorem provides an alternate proof of proposition 3.1 of that paper.
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ERRATUM to “A conjugacy class of regular operators”
(E.Andronikof, “MICROLOCAL GEOMETRY")

In the last part of the proof of (i) of theorem 1 a confusion between
(A(z;€))™ and A™(z;&) occurs. The proof stands when replacing

exp(A(z; {)log 7)
with the following matrix-valued function

p(@;€) = EmzoA™(x;€)(log 7)™ /m!

~

then. by kdeﬁnin\g (D;)# as the matrix operator with coefficients in S)I}’f

given by the symbol p(z;¢).





