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A conjugacy class ofregular operators

Emmanuel Andronikof (*) (univ. Paris XIII)

1- Let $X=C_{(t,x)}^{1+n}$ with coordinates $t\in C,$ $x=(x_{1}, \ldots x_{n})\in C^{n},$ $(t, x;\tau, \xi)$

the symplectic coordinate of $T^{*}X$ and $\mathcal{E}x$ the sheaf of microdifferential operators
on $T^{*}X$ . In Kashiwara and Oshima’s study of regular systems (cf. [K-O]), the
following definition occurs (with a slightly different vocabulary): a matrix of mi-
crodifferential Qperators $A(x, D_{x})$ is essentially of nonpositive order if there exists
$\iota/>0$ such that the coefficients of any power of $A$ are microdifferential operators of
order at most $\nu$ . It is shown in [$K- O|$ that any regular system of microdifFerential
equations $\mathcal{M}$ with regular singularities along $V=\{t=\xi_{1}=\cdots=\xi_{r}=0\}$ , is a
quotient of a system of the form $(tD_{t}-A(x, D_{x}))u=D_{x_{1}}=\cdots=D_{x_{r}}=0$ , with
A essentially of nonpositive order, which enables one to define the monodromy of
$\mathcal{M}$ . Actually, it is shown that $A$ may be chosen such that it has the following
slightly more precise form:

(1) $\{\begin{array}{l}[A,D_{t}]=[A,t]=0,andAconsistsofblocksA_{ij}ofN_{i}\cross N_{j}matricesofdiff erentialoperatorssuchthatA_{ij}=0fori>jandA_{ii}=A_{ii}(x)isamatrixofholomorphicfunctions\end{array}$

When investigating e.g. distribution solutions of regular systems from a microlo-
cal point of view, that is, solutions with values in the sheaf $C_{IR^{n}}^{f}$ of tempered
microfunctions on $\mathbb{R}^{n}$ , one is led to look for the simplest normal form over some
extension of $\mathcal{E}_{X}$ to a ring of operators acting on $C_{IR^{n}}^{f}$ (see remark 2) below).

In particular one has on $C_{IR^{n}}^{f}$ an action of $\mathcal{E}_{X}^{IR,f}$ , the ring of tempered microlocal
operators (cf. [An]) and the purpose of this note is to prove the

Theorem 1. Let $A=A(x, D_{x})$ be a matrix of differential operators such that (1)
holds. Then

(i) $(D_{t}I_{N})^{A(x,D_{x})}$ is a well defined invertible matrix operator over $\mathcal{E}_{X,(0;dt)}^{IR,f}$ , with
inverse $(D_{t}I_{N})^{-A(x,D_{x})}$ , and

(ii) one has $(D_{1}I_{N})^{A(xD_{x})})(tD_{t}I_{N}-A(x, D_{x}))(D_{t}I_{N})^{-A(x,D_{x})}=tD_{t}I_{N}$ .

$(^{*})$ Universit\’e Paris-Nord, D\’epartement de Math\’ematiques, Laboratoire C.N.R.S. “Ana-
lyse, G\’eom\’etrie et Applications”, URA 742, F93430 Villetaneuse.
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2- Before going into the proof let us recall the following facts about $\mathcal{E}_{X}^{\mathbb{R},f}$ . Let
$X$ be a n-dimensional complex manifold. The sheaf of rings $\mathcal{E}_{X}^{\mathbb{R},f}$ is the tempered
version defined in [An] of the sheaf of rings $\mathcal{E}_{X}^{IR}$ on $T^{*}X$ of holomorphic microlocal
operators of [S-K-K], of which it is a subsheaf.

One has $\gamma^{-1}\gamma_{*}\mathcal{E}_{X}^{\mathbb{R},f}=\mathcal{E}_{X}$ . Also $\mathcal{E}_{X}^{\mathbb{R},f}$ is faithfully flat over $\mathcal{E}_{X}$ .
We are going to make use ofa few topics of the theory of symbols of holomor-

phic microlocal operators as developped by Kataoka and Aoki (see [Ao] and the
literature quoted there), which we adapt to the framework of $\mathcal{E}_{X}^{\mathbb{R},f}$ .

Let $x_{0}^{*}=(x_{0}; \xi_{0})\in\mathring{T}^{*}X$ and $U$ a $\mathbb{R}>0$-conical open neighborhood of $x_{0}^{*}$ .
Denote by

$S(U)$ (resp. $S^{f}(U)$ , resp. $R(U)$ ),

the space of holomorphic functions $p(x, \xi)$ on $U$ such that for any compactly gen-
erated cone $U’\subset U$ one has :

$\{\begin{array}{l}forany\epsilon>0p(x,\xi)=O(e^{e|\xi|})onU’(resp.thereexistsm>0suchthatp(x,\xi)=O(|\xi|^{m})onU’)(resp.thereexists\delta>0suchthatp(x,\xi)=O(e^{-\delta|\xi|})onU’)\end{array}$

The notations $S(U),$ $R(U)$ are borrowed from [Ao].

Proposition 2.
(i) (cf. [Ao]) There is an isomorphism of vector spaces

$U^{arrow_{*}}h_{\ni}m_{x_{0}}S(U)/R(U)arrow^{\sim}\mathcal{E}_{X,x_{0}^{*}}^{\mathbb{R}}$
.

(ii) The isomorphism of (i) induces an isomorphism

$U \ni x_{0}\lim_{arrow_{*}}S^{f}(U)/R(U)arrow^{\sim}\mathcal{E}_{X,x_{0}^{f_{*}}}^{1R}$
.

In a local coordinate system $(x_{1}, \cdots x_{n})$ , the above morphisms take $x_{i}$ to $x_{i}$ ,
$\xi_{i}$ to $D_{\xi:}$ and $x_{i}\xi_{i}$ to $x_{i}D_{\xi_{1}}.$ . In fact (ii) is easily deduced from the calculation in
[Ao].

A representative $p(x, \xi)\in S(U)$ of an operator $P\in \mathcal{E}_{X,x_{0}^{*}}^{\mathbb{R}}$ for a suitable neigh-
borhood $U$ of $x_{0}^{*}$ is called a symbol of $P$ , and the lower bound of the $m\in \mathbb{R}$ such
that $p(x, \xi)=O(|\xi|")$ in a conical neighborhood of $x_{0}^{*}$ is called the order of $P$ at
$x_{0}^{*}$ , e.g. $m<\infty$ iff $P\in \mathcal{E}_{X,x^{*}}^{IR,f_{0}}$ . As noted by Aoki, (i) of Proposition 2 entails that
if $p(x, \xi)\in S(U)$ satisfies $p(x, \xi)=o(|\xi|)$ in a conical neighborhood of $x_{0}^{*}$ then
$\exp(p(x, \xi))$ is a symbol of an operator of $\mathcal{E}_{X,x_{0}^{*}}^{IR}$ . By (ii) we get also:

(2) $\{\begin{array}{l}ifp(x,\xi)\in S(U)satisfi esp(x,\xi)=O(log|\xi|)inaconicalneighborhoodofx_{0}^{*}thenexp(p(x,\xi))isasymbolofanoperatorof\mathcal{E}_{X^{R},x_{0}^{f_{*}}}^{]}\end{array}$
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For example, if $X=C_{x}^{n}$ with coordinates $x=(x_{1}, \ldots x.)$ , one has
$\exp(x_{1}\log D_{x_{1}})\in \mathcal{E}_{X,d^{f}x_{1}}^{IR}$ whereas $\exp(x_{1}\sqrt{D_{x_{1}}})\in \mathcal{E}_{X,dx_{1}}^{IR}\backslash \mathcal{E}_{X,d^{f}x_{1}}^{\mathbb{R}}$ .

3- Proof of theorem 1. We have to estimate the growth order in $\tau$ of the symbol
of $\exp(A(x;\xi)\log\tau)$ . This is done by a straightforward use of norms of matrices of
microdifferential operators. (Of course, if $N=1$ , the theorem is already implied
by (2).)

For a differential operator $P(x, D_{x})$ of order $\leq l$ we denote as usually by
$N_{1}(P, s)=N_{l}(P(x;\xi), s)$ the Boutet de Monvel and Kr\’ee formal norm of $P$ defined
as the series

$N_{l}(P, s)= \sum_{\alpha,\beta,k}\frac{2}{(2n)^{k}}\frac{k!}{(|\alpha|+k)!(|\beta|+k)!}|\partial_{x}^{\alpha}\partial_{\xi}^{\beta}P_{l-k}(x;\xi)|s^{2k+|\alpha+\beta|}$,

where $P_{l-k}(x;\xi)$ denotes the symbol of the homogenous part of order $l-k$ of $P$ ,
and $s$ is an independant variable.
If $P=(P_{ij})$ is $N\cross N$ matrix whose entries are (micro-) differential operators of
order at most $l$ , we denote, as usually by $N_{1}(P, s)$ the matrix whose entries are the
$N_{l}(P_{ij}, s)$ . Recall then, that if $Q$ is another $N\cross N$ matrix of (micro-) differential
operators of order at most $l$‘ one has

$N_{l+l’}(PQ, s)<<N_{l}(P, s)N_{l’}(Q, s)$ ,

where the symbol $<<means$ that each entry of the matrix on the right side is a
majorant series of the corresponding entry of the matrix on the left side.
We will need the following two estimates. Let $P(x, D_{x})$ be a matrix of differential
operators of order at most $l$ .
Fix $(x_{0} ; \xi_{0})\in T^{*}C^{n}$ . By using Cauchy inequalities, it is easy to see that one may
find:
a conic neighborhood $V$ of $(x_{0} ; \xi_{0})$ , a constant $M>0$ and a matrix function $c(s)=$
$\sum a_{j}s^{j}$ holomorphic near $s=0$ , where $a_{j}$ a constant matrix with nonnegative
entries,
such that

(3) $N_{l}(P, s)<<M(1+|\xi|^{l})c(s)$ , uniformly in $(x;\xi)\in V$.

If $a=(a_{ij})$ is a $N\cross N$ matrix of complex numbers we use the notation

$\Vert a\Vert=Sup_{i,j}|a_{ij}|$ .

Then if $P$ is a matrix of differential operators of order at most $l$ as before, and if
$s=r$ with $0<r<1$ , we get from the definition the obvious estimate

(4) $\Vert P(x;\xi)\Vert\leq\sum_{0\leq k\leq l}\Vert P_{l-k}(x;\xi)\Vert\leq\frac{l!}{2}\frac{(2n)^{l}}{r^{2l}}N_{l}(P, r)$ ,
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where $P_{l-k}(x;\xi)$ is the matrix of symbols of order $l-k$ of $P$ and $P(x;\xi)=$
$\sum_{k}P_{l-k}(x;\xi)$ is the total symbol matrix.

Proof of (i). The matrix $A=A(x, D_{x})$ being as in (1), we may write $A=A_{0}+B$

where $A_{0}=A_{0}(x)$ is the matrix of holomorphic functions consisting of the diagonal
blocks $A_{ii}$ of $A$ , and $B$ $:=A-A_{0}$ consists of the blocks $B_{ij}$ with $B_{ij}=A_{ij}$ if $i<j$
and zero otherwise. Let $\nu$ be the least integer $1\leq v\leq N-1$ such that $B_{ij}=0$

for all $i,j$ such that $i+v\leq j$ .
For multi-indices $\alpha=(\alpha_{1}, \alpha_{2}, \ldots),$ $\beta=(\beta_{1}, \beta_{2}, \ldots)\in \mathbb{N}^{(N)}$ , we set

$\varphi^{\alpha,\beta}(A_{0}, B)=A_{0}^{\alpha_{1}}B^{\beta_{1}}A_{0}^{\alpha_{2}}B^{\beta_{2}}\cdots\in M_{N}(\mathcal{E}_{X})$ .

Now because of the particuliar forms of $A_{0}$ and $B$ we get that $\varphi^{\alpha,\beta}(A_{0}, B)=0$ for
$|\beta|>l/$ . Hence for any integer $m\geq 0$ , we have

$A^{m}=(A_{0}+B)^{m}= \sum_{|\alpha+\beta|=m,|\beta|\leq\nu}\varphi^{\alpha,\beta}(A_{0}, B)$
.

Let $l$ be the maximum order of the entries of $B$ , then the above formula implies
that for any integer $m\geq 0$ , the matrix $A^{m}$ has entries of order $\leq\iota/l$ , and we have

$N_{\nu l}(A^{m}, s)<< \sum_{0\leq k\leq\nu}(km)N_{0}(A_{0}, s)^{m-k}N_{l}(B, s)^{k}$
.

Fixing $(0;\xi_{0})\in T^{*}C^{n}$ , and making use of (3) and of its notations, one may find
$M>0$ and a matrix function $c(s)$ holomorphic near $s=0$ such that

$N_{l}(B, s)^{k}<<M(1+|\xi|^{\iota})^{\nu}c(s)$

holds for $0\leq k\leq v$ and $(x;\xi)$ in a conic neighborhood $V$ of $(0;\xi_{0})$ .
Thus

(5) $N_{\nu l}(A^{m}, s)<<M(1+|\xi|^{l})^{\nu}c(s)(1+N_{0}(A_{0}, s))^{m}$ ,

for any integer $m\geq 0$ and any $(0;\xi_{0})\in V$ .
Reducing the conic neighborhood $V$ if necessary, we may choose $0<r<1$ and
a constant $M_{1}>0$ such that $\Vert N_{0}(A_{0}, r)\Vert\leq M_{1}$ uniformly in $(0;\xi_{0})\in V$ . Then,
since

$\Vert A^{m}(x;\xi)\Vert\leq\frac{(\nu l)!}{2}\frac{(2n)^{\nu l}}{r^{2\nu l}}N_{\nu l}(A^{m}, r)$

by (4), we find by (5) that there is a constant $M_{2}>0$ such that

(6) $\Vert A^{m}(x;\xi)\Vert\leq M_{2}(1+|\xi|^{l})^{\nu}(1+M_{1})^{m}$ ,

for any $m\geq 0$ and $(0;\xi_{0})\in V$ .
Fix the determination of $\log\tau$ in ${\rm Re}\tau>{\rm Im}\tau$ such that $\log 1=0$ . We have to esti-
mate the growth of the the matrix-valued holomorphic function $\exp(A(x, \xi)\log\tau)$
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as $|\tau|arrow\infty,$ $\tau$ in a conic neighborhood of $dt\infty$ . Let $|\tau|>e^{\pi}$ , thus $|\log\tau|\leq$

$\sqrt{2}\log|\tau$ . Using this and (6) we get

$\Vert\tau^{A(x;\xi)}\Vert=\Vert\sum_{m\geq 0}(A(x;\xi)\log\tau)^{m}/m!\Vert\leq\sum_{m\geq 0}\Vert A^{m}(x;\xi)\Vert|\log\tau|^{m}/m!$

$\leq M_{2}(1+|\xi|^{l})^{\nu}\sum_{m\geq 0}(1+M_{1})^{m}2^{m/2}(\log|\tau|)^{m}/m!$

$\leq M_{2}(1+|\xi|^{l})^{\nu}|\tau|^{\sqrt{2}(1+M_{1})}$ ,

and this holds for $|\tau|>e^{\pi}$ , uniformly for $(x;\xi)$ in a small enough conic neigh-
borhood of $(0;\xi_{0})$ . The choice of $\xi_{0}$ having been made arbitrarily, this proves
that $\tau^{A(x;\xi)}$ is a well defined symbol of an operator of $\mathcal{E}^{1R,f}$ that we denote by$X,(0;dt)$

$D_{t}^{A(x,D_{x})}$ (we omit the notation $I_{N}$ ).

Proof of (ii). Since $[A, D_{t}]=0$ one has $[(D_{t})^{A}, t]=A(D_{t})^{A-I_{N}}$ . Hence
$(D_{t})^{A}(tD_{t}-A)=t(D_{t})^{A+I_{N}}+A(D_{t})^{A}-(D_{t})^{A}A=tD_{t}(D_{t})^{A}$ . $\square$

Remarks.
1- The theorem should be more generally true when the matrix $A(x, D_{x})$ is

essentially of nonpositive order, but the proof given above breaks down for this
more general case.

2- Distribution solutions of regular operators are investigated in [A-M. $F$]; the
above theorem provides an alternate proof of proposition 3.1 of that paper.
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