A conjugacy class of regular operators

Emmanuel Andronikof (*) (Univ. Paris XIII)

1- Let $X = C_{(t,x)}^{1+n}$ with coordinates $t \in C$, $x = (x_1, \ldots, x_n) \in C^n$, $(t, x; \tau, \xi)$ the symplectic coordinate of T^*X and \mathcal{E}_X the sheaf of microdifferential operators on T^*X . In Kashiwara and Oshima's study of regular systems (cf. [K-O]), the following definition occurs (with a slightly different vocabulary): a matrix of microdifferential operators $A(x, D_x)$ is essentially of nonpositive order if there exists $\nu > 0$ such that the coefficients of any power of A are microdifferential operators of order at most ν . It is shown in [K-O] that any regular system of microdifferential equations \mathcal{M} with regular singularities along $V = \{t = \xi_1 = \cdots = \xi_r = 0\}$, is a quotient of a system of the form $(tD_t - A(x, D_x))u = D_{x_1} = \cdots = D_{x_r} = 0$, with A essentially of nonpositive order, which enables one to define the monodromy of \mathcal{M} . Actually, it is shown that A may be chosen such that it has the following slightly more precise form:

(1) $\begin{cases} [A, D_t] = [A, t] = 0, & \text{and } A \text{ consists of blocks } A_{ij} \text{ of } N_i \times N_j \\ \text{matrices of differential operators such that } A_{ij} = 0 \text{ for } i > j \\ \text{and } A_{ii} = A_{ii}(x) \text{ is a matrix of holomorphic functions.} \end{cases}$

When investigating e.g. distribution solutions of regular systems from a microlocal point of view, that is, solutions with values in the sheaf $\mathcal{C}_{\mathbb{R}^n}^f$ of tempered microfunctions on \mathbb{R}^n , one is led to look for the simplest normal form over some extension of \mathcal{E}_X to a ring of operators acting on $\mathcal{C}_{\mathbb{R}^n}^f$ (see remark 2) below).

In particular one has on $\mathcal{C}_{\mathbb{R}^n}^f$ an action of $\mathcal{E}_X^{\mathbb{R},f}$, the ring of tempered microlocal operators (cf. [An]) and the purpose of this note is to prove the

Theorem 1. Let $A = A(x, D_x)$ be a matrix of differential operators such that (1) holds. Then

(i) $(D_t I_N)^{A(x,D_x)}$ is a well defined invertible matrix operator over $\mathcal{E}_{X,(0;dt)}^{\mathbb{R},f}$, with inverse $(D_t I_N)^{-A(x,D_x)}$, and

(ii) one has $(D_t I_N)^{A(x,D_x)} (t D_t I_N - A(x,D_x)) (D_t I_N)^{-A(x,D_x)} = t D_t I_N.$

Typeset by \mathcal{AMS} -TEX

^(*) Université Paris-Nord, Département de Mathématiques, Laboratoire C.N.R.S. "Analyse, Géométrie et Applications", URA 742, F93430 Villetaneuse.

2- Before going into the proof let us recall the following facts about $\mathcal{E}_X^{\mathbb{R},f}$. Let X be a n-dimensional complex manifold. The sheaf of rings $\mathcal{E}_X^{\mathbb{R},f}$ is the tempered version defined in [An] of the sheaf of rings $\mathcal{E}_X^{\mathbb{R}}$ on T^*X of holomorphic microlocal operators of [S-K-K], of which it is a subsheaf. One has $\gamma^{-1}\gamma_*\mathcal{E}_X^{\mathbb{R},f} = \mathcal{E}_X$. Also $\mathcal{E}_X^{\mathbb{R},f}$ is faithfully flat over \mathcal{E}_X .

We are going to make use of a few topics of the theory of symbols of holomorphic microlocal operators as developped by Kataoka and Aoki (see [Ao] and the literature quoted there), which we adapt to the framework of $\mathcal{E}_X^{\mathbb{R},f}$.

Let $x_0^* = (x_0; \xi_0) \in \overset{\circ}{T^*} X$ and U a $\mathbb{R}_{>0}$ -conical open neighborhood of x_0^* . Denote by

S(U) (resp. $S^f(U)$, resp. R(U)),

the space of holomorphic functions $p(x,\xi)$ on U such that for any compactly generated cone $U' \subset U$ one has :

 $\begin{cases} \text{ for any } \varepsilon > 0 \quad p(x,\xi) = O(e^{\varepsilon|\xi|}) \text{ on } U' \\ (\text{resp. there exists } m > 0 \text{ such that } p(x,\xi) = O(|\xi|^m) \text{ on } U'), \\ (\text{resp. there exists } \delta > 0 \text{ such that } p(x,\xi) = O(e^{-\delta|\xi|}) \text{ on } U'). \end{cases}$

The notations S(U), R(U) are borrowed from [Ao].

Proposition 2.

(i) (cf. [Ao]) There is an isomorphism of vector spaces

$$\lim_{U \ni x_0^*} S(U)/R(U) \xrightarrow{\sim} \mathcal{E}_{X,x_0^*}^{\mathbb{R}}.$$

(ii) The isomorphism of (i) induces an isomorphism

$$\varinjlim_{U\ni x_0^*} S^f(U)/R(U) \xrightarrow{\sim} \mathcal{E}_{X,x_0^*}^{\mathbb{R},f}.$$

In a local coordinate system (x_1, \dots, x_n) , the above morphisms take x_i to x_i , ξ_i to D_{ξ_i} and $x_i\xi_i$ to $x_iD_{\xi_i}$. In fact (ii) is easily deduced from the calculation in [Ao].

A representative $p(x,\xi) \in S(U)$ of an operator $P \in \mathcal{E}_{X,x_0}^{\mathbb{R}}$ for a suitable neighborhood U of x_0^* is called a symbol of P, and the lower bound of the $m \in \mathbb{R}$ such that $p(x,\xi) = O(|\xi|^m)$ in a conical neighborhood of x_0^* is called the order of P at x_0^* , e.g. $m < \infty$ iff $P \in \mathcal{E}_{X,x_0^*}^{\mathbb{R},f}$. As noted by Aoki, (i) of Proposition 2 entails that if $p(x,\xi) \in S(U)$ satisfies $p(x,\xi) = o(|\xi|)$ in a conical neighborhood of x_0^* then $\exp(p(x,\xi))$ is a symbol of an operator of $\mathcal{E}_{X,x_0^*}^{\mathbb{R}}$. By (ii) we get also :

 $(2)^{-1}$

 $\left\{ \begin{array}{l} \text{if } p(x,\xi) \in S(U) \text{ satisfies } p(x,\xi) = O(\log |\xi|) \\ \text{in a conical neighborhood of } x_0^*, \\ \text{then } \exp(p(x,\xi)) \text{ is a symbol of an operator of } \mathcal{E}_{X,x_0^*}^{\mathbbm{R},f} \end{array} \right.$

For example, if $X = \mathbb{C}_x^n$ with coordinates $x = (x_1, \ldots, x_n)$, one has $\exp(x_1 \log D_{x_1}) \in \mathcal{E}_{X,dx_1}^{\mathbb{R},f}$ whereas $\exp(x_1 \sqrt{D_{x_1}}) \in \mathcal{E}_{X,dx_1}^{\mathbb{R}} \setminus \mathcal{E}_{X,dx_1}^{\mathbb{R},f}$.

3- Proof of theorem 1. We have to estimate the growth order in τ of the symbol of $\exp(A(x;\xi)\log\tau)$. This is done by a straightforward use of norms of matrices of microdifferential operators. (Of course, if N = 1, the theorem is already implied by (2).)

For a differential operator $P(x, D_x)$ of order $\leq l$ we denote as usually by $N_l(P, s) = N_l(P(x; \xi), s)$ the Boutet de Monvel and Krée formal norm of P defined as the series

$$N_{l}(P,s) = \sum_{\alpha,\beta,k} \frac{2}{(2n)^{k}} \frac{k!}{(|\alpha|+k)!(|\beta|+k)!} |\partial_{x}^{\alpha} \partial_{\xi}^{\beta} P_{l-k}(x;\xi)|s^{2k+|\alpha+\beta|},$$

where $P_{l-k}(x;\xi)$ denotes the symbol of the homogenous part of order l-k of P, and s is an independent variable.

If $P = (P_{ij})$ is $N \times N$ matrix whose entries are (micro-) differential operators of order at most l, we denote, as usually by $N_l(P,s)$ the matrix whose entries are the $N_l(P_{ij},s)$. Recall then, that if Q is another $N \times N$ matrix of (micro-) differential operators of order at most l' one has

$$N_{l+l'}(PQ,s) \ll N_l(P,s)N_{l'}(Q,s),$$

where the symbol << means that each entry of the matrix on the right side is a majorant series of the corresponding entry of the matrix on the left side.

We will need the following two estimates. Let $P(x, D_x)$ be a matrix of differential operators of order at most l.

Fix $(x_0; \xi_0) \in T^* \mathbb{C}^n$. By using Cauchy inequalities, it is easy to see that one may find:

a conic neighborhood V of $(x_0; \xi_0)$, a constant M > 0 and a matrix function $c(s) = \sum a_j s^j$ holomorphic near s = 0, where a_j a constant matrix with nonnegative entries,

such that

(3)
$$N_l(P,s) \ll M(1+|\xi|^l)c(s), \text{ uniformly in } (x;\xi) \in V.$$

If $a = (a_{ij})$ is a $N \times N$ matrix of complex numbers we use the notation

$$\|a\| = \operatorname{Sup}_{i,j} |a_{ij}|.$$

Then if P is a matrix of differential operators of order at most l as before, and if s = r with 0 < r < 1, we get from the definition the obvious estimate

(4)
$$\|P(x;\xi)\| \leq \sum_{0 \leq k \leq l} \|P_{l-k}(x;\xi)\| \leq \frac{l!}{2} \frac{(2n)^l}{r^{2l}} N_l(P,r),$$

where $P_{l-k}(x;\xi)$ is the matrix of symbols of order l-k of P and $P(x;\xi) = \sum_k P_{l-k}(x;\xi)$ is the total symbol matrix.

Proof of (i). The matrix $A = A(x, D_x)$ being as in (1), we may write $A = A_0 + B$ where $A_0 = A_0(x)$ is the matrix of holomorphic functions consisting of the diagonal blocks A_{ii} of A, and $B := A - A_0$ consists of the blocks B_{ij} with $B_{ij} = A_{ij}$ if i < jand zero otherwise. Let ν be the least integer $1 \le \nu \le N - 1$ such that $B_{ij} = 0$ for all i, j such that $i + \nu \le j$.

For multi-indices $\alpha = (\alpha_1, \alpha_2, ...), \ \beta = (\beta_1, \beta_2, ...) \in \mathbb{N}^{(\mathbb{N})}$, we set

$$\varphi^{lpha,eta}(A_0,B) = A_0^{lpha_1} B^{eta_1} A_0^{lpha_2} B^{eta_2} \dots \in \mathsf{M}_N(\mathcal{E}_X).$$

Now because of the particuliar forms of A_0 and B we get that $\varphi^{\alpha,\beta}(A_0,B) = 0$ for $|\beta| > \nu$. Hence for any integer $m \ge 0$, we have

$$A^{m} = (A_{0} + B)^{m} = \sum_{|\alpha+\beta|=m, |\beta|\leq \nu} \varphi^{\alpha,\beta}(A_{0}, B).$$

Let l be the maximum order of the entries of B, then the above formula implies that for any integer $m \ge 0$, the matrix A^m has entries of order $\le \nu l$, and we have

$$N_{\nu l}(A^m, s) << \sum_{0 \le k \le \nu} {m \choose k} N_0(A_0, s)^{m-k} N_l(B, s)^k.$$

Fixing $(0; \xi_0) \in T^*\mathbb{C}^n$, and making use of (3) and of its notations, one may find M > 0 and a matrix function c(s) holomorphic near s = 0 such that

$$N_l(B,s)^k << M(1+|\xi|^l)^{\nu}c(s)$$

holds for $0 \le k \le \nu$ and $(x; \xi)$ in a conic neighborhood V of $(0; \xi_0)$. Thus

(5)
$$N_{\nu l}(A^m, s) \ll M(1+|\xi|^l)^{\nu} c(s)(1+N_0(A_0, s))^m,$$

for any integer $m \ge 0$ and any $(0; \xi_0) \in V$.

Reducing the conic neighborhood V if necessary, we may choose 0 < r < 1 and a constant $M_1 > 0$ such that $||N_0(A_0, r)|| \leq M_1$ uniformly in $(0; \xi_0) \in V$. Then, since

$$\|A^{m}(x;\xi)\| \leq \frac{(\nu l)!}{2} \frac{(2n)^{\nu l}}{r^{2\nu l}} N_{\nu l}(A^{m},r)$$

by (4), we find by (5) that there is a constant $M_2 > 0$ such that

(6)
$$||A^{m}(x;\xi)|| \leq M_{2}(1+|\xi|^{l})^{\nu}(1+M_{1})^{m}$$

for any $m \ge 0$ and $(0; \xi_0) \in V$.

Fix the determination of $\log \tau$ in $\operatorname{Re}\tau > \operatorname{Im}\tau$ such that $\log 1 = 0$. We have to estimate the growth of the matrix-valued holomorphic function $\exp(A(x,\xi)\log \tau)$

as $|\tau| \to \infty$, τ in a conic neighborhood of $dt\infty$. Let $|\tau| > e^{\pi}$, thus $|\log \tau| \le \sqrt{2} \log |\tau|$. Using this and (6) we get

$$\begin{aligned} \|\tau^{A(x;\xi)}\| &= \|\sum_{m\geq 0} (A(x;\xi)\log\tau)^m/m!\| \leq \sum_{m\geq 0} \|A^m(x;\xi)\| |\log\tau|^m/m! \\ &\leq M_2(1+|\xi|^l)^\nu \sum_{m\geq 0} (1+M_1)^m 2^{m/2} (\log|\tau|)^m/m! \\ &\leq M_2(1+|\xi|^l)^\nu |\tau|^{\sqrt{2}(1+M_1)}, \end{aligned}$$

and this holds for $|\tau| > e^{\pi}$, uniformly for $(x;\xi)$ in a small enough conic neighborhood of $(0;\xi_0)$. The choice of ξ_0 having been made arbitrarily, this proves that $\tau^{A(x;\xi)}$ is a well defined symbol of an operator of $\mathcal{E}_{X,(0;dt)}^{\mathbb{R},f}$ that we denote by $D_t^{A(x,D_x)}$ (we omit the notation I_N).

Proof of (ii). Since $[A, D_t] = 0$ one has $[(D_t)^A, t] = A(D_t)^{A-I_N}$. Hence $(D_t)^A (tD_t - A) = t(D_t)^{A+I_N} + A(D_t)^A - (D_t)^A A = tD_t(D_t)^A$.

Remarks.

1- The theorem should be more generally true when the matrix $A(x, D_x)$ is essentially of nonpositive order, but the proof given above breaks down for this more general case.

2- Distribution solutions of regular operators are investigated in [A-M.F]; the above theorem provides an alternate proof of proposition 3.1 of that paper.

References

- [An] Andronikof, E. : Microlocalisation tempérée des distributions et des fonctions holomorphes I, II. C. R. Acad. Sci. 303, 347-350 (1986) and 304, 511-514 (1987).
- [Ao] Aoki, T. : Calcul exponentiel des opérateurs microdifférentiels d'ordre infini. Ann. Inst. Fourier, Grenoble, 33, 4, 227-250 (1983).
- [A-M.F.] Andronikof, E., Monteiro Fernandes T.: On the tempered solutions of regular systems. Proc. Intern. Conf. "D-modules and microlocal geometry" Lisbon (1990). de Gruyter, Berlin, New-York (to appear).
 - [K-O] Kashiwara, M., Oshima, T.: Systems of differential equation with regular singularities and their boundary value problems. Ann. of Math., 106, 145-200 (1977).
- [S-K-K] Sato, M., Kawai, T., Kashiwara, M., : Microfunctions and pseudo-differential equations. Proc. Conf. at Katata, 1971, Lect. Notes in Math., 287, Springer 265-529 (1973).

ERRATUM to "A conjugacy class of regular operators" (*E.Andronikof*, "MICROLOCAL GEOMETRY")

In the last part of the proof of (i) of theorem 1 a confusion between $(A(x;\xi))^m$ and $A^m(x;\xi)$ occurs. The proof stands when replacing

 $\exp(A(x;\xi)\log \tau)$

with the following matrix-valued function

$$p(x;\xi) := \sum_{m \ge 0} A^m(x;\xi) (\log \tau)^m / m!,$$

then by defining $(D_t)^A$ as the matrix operator with coefficients in $\mathcal{E}_X^{\mathbf{R},f}$ given by the symbol $p(x;\xi)$.