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Maslov classes of Lagrange varieties and Legendre varieties

Goo ISHIKAWA (石川 剛郎)
Department of Mathematics, Hokkaido University, Sapporo 060, JAPAN

(北海道大)
1. Introduction

There are many situations where so called Maslov indices and Maslov classes play im-
portant roles, for instance, in the asymptotic method of P.D.E., in representation theory,
in geometric analysis and in symplectic topology.

In this note we give a global formula on Maslov classes appearing in the process of
symplectic reduction, comparing the geometry of totally real submanifolds of a complex
submanifold, and on the other hand we calculate Maslov indices appearing in projective
geometry of curves in the context of contact geometry. Intimate considerations and proofs
will be given in a forthcoming papers.

First let us review the classical Maslov-Arnol’d class in an easy manner.
Consider a (topological) symplectic vector bundle over a topological space. A subbun-

dle of the symplectic bundle is called isotropic (resp. Lagrange, coisotropic) if its skew-
orthogonal complement (with respect to the symplectic form) contains itself (resp. equals
itself, is contained in itself). Remark that a symplectic bundle has a complex structure
(unique up to homotopy) such that the symmetric form defined by the symplectic form and
the complex structure is positive definite. Further the symplectic bundle has the Hermitian
structure such that the imaginary part of the Hermitian form is equals to the symplectic
form.

Now consider two oriented Lagrange subbunldes of the symplectic bundle. Take local
oriented orthonormal frames of the first (resp. second) Lagrange bundle. Then there
exists a local family of unitary matrices connecting the frame of the first to the frame of
the second. Taking the determinants of the unitary matrices defines a mapping to the
circle, which is glued to a global continuous mapping from the base space. Then, for
each loop in the base space, we define the Maslov index by the mapping degree of the
composition of the loop and the above determinant mapping. Thus we have a class in
the first cohomology group of the base space with integer coefficient, which is called the
(oriented) Maslov class (defined by the symplectic bundle and a pair of oriented Lagrange
subbundles).

The following properties of Maslov classes are fundamental and easy to see:
(1) For three oriented Lagrange subbundles of a fixed symplectic bundle, the sum of the

Maslov class of the first and the second, and the Maslov class of the second and the third,
is equal to that of the first and the third.

(2) If an isomorphism of symplectic bundles maps a pair of Lagrange subbundles to
another pair of Lagrange subbundles, then the corresponding Maslov classes coincide.
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(3) For a continuous mapping, the Maslov class of the pull-back bundles of a symplectic
bundle and a pair of Lagrange subbundles over the target space is equal to the pull-back
of the Maslov cohomology class of that triplet.

We intend in this note to apply this tool to study Lagrange and Legendre variety.
A type of Lagrange variety in the cotangent bundle of a manifold is the graph of a

closed multivalued one form on the manifold in some naive sense. (In general, a subset
in a symplectic manifold should be called Lagrange if the regular points set is open dense
and it is a Lagrange submanifold, that is, the maximal dimensional integral submanifold
where the symplectic form vanishes.)

The graph of a closed one form on a manifold (in the usual sense) is an example of La-
grange submanifold of the cotangent bundle. Another important example is the conormal
bundle of a submanifold: In general the conormal bundles of varieties with singularities
form another class of Lagrange varieties in cotangent bundles.

To make the story more clear, we shall study Lagrange varieties via parametrizations of
them.

Amapping from amanifold into asymplectic manifold is called isotropic if the pull-back
of symplectic form is zero. Isotropic mappings arise particularly in the process of (local)
symplectic reduction due to Marsden, Weinstein and Tulczyjew.

In a symplectic manifold consider a coisotropic submanifold, where the tangent bundle is
a coisotropic subbundle of the restriction of the tangent bundle of the symplectic manifold.
Then the skew-othogonal complement to the tangent bundle of the coisotropic subman-
ifold in the restriction of the tangent bundle of the symplectic manifold with respect to
the symplectic form is an integrable subundle: We call it the characteristic distribution of
the coisotropic submanifold and the induced foliation the characteristic foliation. Locally
at each point of the coisotropic submanifold, we have a submersion (quotient mapping)
to the leaf space. Then the (local) leaf space has the unique symplectic structure up to
symplectic difFeomorphisms such that the pull-back of the symplectic form is equal to the
restriction of the original symplectic form. Furthermore consider an isotropic submanifold
of the symplectic manifold contained in the above coisotropic submanifold. Then we see
the local projection of the isotropic submanifold to the leaf space is an isotropic mapping,
which is not neccesarily an immersion: It is an immersion at a point of the isotropic sub-
manifold if and only if the tangent space to the isotropic submanifold at the point contains
no characteristic directions (lines in the skew-orthogonal complement to the coisotropic
submanifold at that point). Such a germ is called an isotropic map-germ arising from sym-
plectic reduction. Conversely any global isotropic mappings are obtained by symplectic
reduction processes where the projection to the leaf space is globally defined.

In any case we have Maslov classes by taking quotient bundles in stead of quotient
spaces. In \S 2 we give a global formula for Maslov classes in this situation.

Now we turn our attention to Legendre varieties.
From several evidences we should formulate the notion of a “front hypersurface” by the

property that the Nash modification projects to the hypersurface itself finitely to one. The
Nash modification, in this case, is the closure of the lift of the regular points set in the
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projective cotangent bundle of the manifold where the hypersurface lies in: The projective
cotangent bundle is identified with the totality of contact elements (tangent hyperplanes)
of the base space and it has the natural contact structure: A velocity vector from a contact
element is contained in the contact distribution if and only if the projection of the vector
is contained in the contact element.

The tangent hyperplanes to the regular points form a Legendre submanifold, that is,
the maximal dimensional integral submanifold of the contact distribution defined over the
projective cotangent bundle. Though the notion of Legendre variety have not established
yet, the closure of this natural lift might be regarded as a Legendre variety. (In fact a
definition of a Legendre variety is that it contains an open dense Legendre submanifold.)
The Legendre variety thus obtained by the Nash modification has singularities in general.
In the case when the Nash modification is non-singular, then the hypersurface turns out
the projection of a Legendre submanifold. Thus the front hypersurface is, in this case, a
wave front set in the sense of Arnol’d. Remark that, for a generic Legendre submanifold,
the projection is finite to one. In the above definition of front hypersurfaces we allow
singularities for Nash modifications. To make the definition non-trivial, it is necessary the
finite condition as imposed.

Exactly we utilize parametrizations of Legendre varieties to formulate notions above
mentioned as follows: A mapping from an n-dimensional manifold to an n+l-dimensional
manifold (say, of class $C^{\infty}$ ) is called a front mapping if the regular points set is dense and,
for each point of the source, the images of the tangent spaces of regular points converge
to a tangent hyperplane as regular points tend to that point, and the tangent hyperplanes
depend smoothly on the points in source space. If we associate the tangent hyperplane
thus defined to the point of the source, then we have a $c\infty$ lift of the mapping to the
projective cotangent space of the target space. This lift is an integral mapping (or an
isotropic mapping) in the sense that the image of tangent space to each point is contained
in the contact distribution of the projective cotangent bundle. Under this formulation, if
a front mapping is finite to one, then the image of the lift projects finitely to one, so this
formulation, in this case, fits to the naive consideration mentioned before.

Now consider the Nash modification of the Legendre variety itself, which would be
called the Legendre-Nash modification. In many situations we deal with, we observe
the Legendre-Nash modification has at least continuous section outside a submanifold
of codimension two of the source space: We call it “the essential singular locus” of the
(parametrized) Legendre variety. Then the Maslov index of a loop around the essential
singular locus has the meaning as the obstruction to extend the section beyond the essen-
tial singular locus. An important example of front hypersurface is the developable of a
curve in an affine space or in an projective space. We treat this object in \S 3.

We add two related but independent topics in following Appendices.
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2. Maslov classes for symplectic reductions

Let $(M,w)$ be a symplectic manifold of dimension $2(n+k),$ $C\subset M$ be an involutive
submanifold of codimension $k$ . The skew-orthogonal complement $(TC)^{\perp}$ of $TC$ in $TM|C$

with respect to $\omega$ is an integral subbundle of dimension $k$ . This defines the characteristic
foliation on $C$ . Set $\tilde{E}=TC/(TC)^{\perp}$ , the normal bundle of the foliation, which is a
symplectic bundle over $C$ .

Let $N^{n}\subset C$ be an isotropic submanifold $(TN\subset(TN)^{\perp})$ of $M$ . The singular locus of
$N$ is defined by

$\Sigma=\{x\in N|T_{x}N\cap(T_{x}C)^{\perp}\neq\{0\}\}$ ,

that is, the set of points where $T_{x}N$ contains a characteristic direction in $(T_{x}C)^{\perp}$ .
Our purpose is to investigate the singular behavior of the “Lagrnage distribution” defined

by $N$ and $C:(TN+(TC)^{\perp})/(TC)^{\perp}|N$ in $E=\tilde{E}|N$ .

REMARK: Let $f$ : $Narrow(M’,\omega’)$ be an isotropic mapping. Set $M=T^{*}N\cross M’\supset C=$

$N\cross M’\supset graphf(\cong N).$ . Then $\Sigma$ is equal to the singular locus of $f$ as mapping.

EXAMPLE: A typical isotropic mapping with singularities is the open Whitney umbrella:
Set $f=(\xi_{1}, x_{1}, \xi_{2}, x_{2})=(v^{3}/3, u, uv, v^{2}/2)$ : $R^{2},0arrow T^{*}R^{2}$ . Then $f^{*}\theta=d(uv^{3}/3)$ , where
$\theta=\xi_{1}dx_{1}+\xi_{2}dx_{2}$ is the Liouville form.

EXAMPLE: Let $X$ be an (n+k)-manifold. Set $M=T^{*}X$ . Then a coisotropic submanifold
$C\subset T^{*}X$ of codimension $k$ is regarded as a Hamilton-Jacobi equation. Let $S\subset X$ be an n-
submanifold and $t:Sarrow T^{*}X$ be an isotropic section: $N=t(S)\subset C$ is an initial condition
of the generalized Cauchy problem for the Hamilton-Jacobi equation. Let $x\in N-\Sigma$ , then
locally the union of leaves through $N$ form a Lagrange submanifold which are regarded as
a solution of the equation. The following result can be applied to this situation.

Now we assume $N$ is oriented and compact without boundary and assume that each
component $S$ of $\Sigma$ has an open neighborhood $U_{S}$ in $N$ such that $\overline{U}_{S}$ is a manifold with
boundary $\partial\overline{U}_{S},$ $\overline{U}_{S}$ is a deformation retract of $S$ and $E|\overline{U}_{S}$ has an oriented Lagrange
subbundle $L_{S}’$ .

Then, by Lefshetze duality and Poincar\’e duality we have a class $m_{S}$ in $H^{2}(N;Z)$ from
the Maslov class of the triplet $(E|U_{S}-S, L|U_{S}-S, L_{S}’|U_{S}-S)$ in $H^{1}(U_{S}-S;Z)$ . Then
we havea type of residue formula:

THEOREM. The sum of $m_{S}$ over all componen$ts$ of $\Sigma$ is equal to the first Chern class
$c_{1}(E)$ .

This result generalizes an equatity in [IO] in the symplectic case and is proved similarly
when we use a perturbation of $N$ and observe complex points of thus obtained submanifold.

Recently Professor Tatsuo Suwa has suggested that the formula should be further gen-
eralized in connection with the results of Vaiseman, Lehmann and himself: The author
would like to achieve such generalizations in a forthcoming paper.
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3. Developable of a curve and Maslov index

The ruled surface by the tangent lines to a space curve is called the developable surface
of the curve. In general the developable of a curve in $(n+1)$-dimensional projective space
is defined as the hypersurface “ruled” by osculating $(n-1)$-subspaces to the curve. Let
$\gamma$ : $Marrow RP^{n+1}$ be a $c\infty$ parametrized curve, where $M$ is a one-dimensional manifold
and $n\geqq 1$ . We call the germ $\gamma_{p}$ at a point $p\in M$ of finite osculation-type (or simply, of
finite type) if $\gamma$ is represented by $x_{i}=t^{a:}+o(t^{a}$ “ $)$ , $1\leqq i\leqq n+1$ , for a $c\infty$ coordinate $t$

of $(M,p)$ and an affine coordinate $(x_{1}, \ldots, x_{n+1})$ of $RP^{n+1}$ centered at $\gamma(p)$ , where each
$a_{i}$ is a natural number and $1\leqq a_{1}<\cdots<a_{n+1}$ . Then $A=(a_{1}, a_{2}, \ldots, a_{n+1})$ is a local
projective invariant of the germ $\gamma_{p}$ and we call A the type of $\gamma_{p};type(\gamma_{p})=A$ . A point
$p\in M$ is called an ordinary point if type$(\gamma_{p})=(1,2, \ldots, n, n+1)$ , and, otherwise, it is
called a special point. Special points of finite type are isolated in $M$ .

For each $p\in M$ where $\gamma_{p}$ is of finite type and for each $i,$ $(0\leqq i\leqq n+1)$ , we set
$O_{i}(\gamma,p)=\{x_{i+1}=\cdots=x_{n+1}=0\}\subset T_{\gamma(p)}RP^{n+1}$ under the above affine representation
of $\gamma_{p}$ . The corresponding projective subspace of $RP^{n+1}$ through $\gamma(p)$ of dimension $i$ is also
denoted by $O_{i}(\gamma,p)$ . Further we define the osculating i-bundle $O_{i}( \gamma)=\bigcup_{p\in M}O_{i}(\gamma,p)$

in the pullback bundle $\gamma^{-1}TRP^{n+1}$ . The natural parametrization dev(7) : $O_{n-1}(\gamma)arrow$

$RP^{n+1}$ defined by $(p, q)\mapsto q$ , where $q\in O_{n-1}(\gamma,p)(\subset RP^{n+1})$ , is called a developable of
$\gamma$ . The germ $dev(\gamma)_{p}$ of $dev(\gamma)$ at $(p, 0)$ is determined up to the projective equivalence by
the projective class of $\gamma_{p}$ .

Denote the dual projective space of $RP^{n+1}$ by $RP^{n+1*}$ , which is the space of all hy-
perplanes in $RP^{n+1}$ . Then we naturally identify $\mathbb{R}P^{n+1**}$ with $RP^{n+1}$ . For a curve
$\gamma$ : $Marrow RP^{n+1},$ $\gamma_{p}$ being of finite type at each point $p\in M$ , we define the dual
$\gamma^{*}$ : $Marrow RP^{n+1*}$ of $\gamma$ by $p\mapsto O_{n}(\gamma,p)$ . We describe the developable of $\gamma$ by the dual
curve $\gamma^{*}$ in $RP^{n+1*}:$

LEMMA ([S1]).
(0) $\gamma^{*}$ is a $c\infty map$ .
(1) If $\gamma_{p}$ is of type A $=(a_{1}, \ldots, a_{n+1})$ , then $\gamma_{p}^{*}$ is also of finite type $R^{*}=(a_{n+1}-$

$a_{n},$ $a_{n+1}-a_{n-1},$ $\ldots,$ $a_{n+1}-a_{1},$ $a_{n+1}$ ).

(2)
$O_{i}(\gamma^{*}, p)**=O_{n-i}(\gamma,p)^{*}$

, the dual of $O_{n-i}(\gamma,p),$ $0\leqq i\leqq n$ .
(3) $\gamma$ $=\gamma$ .
(4) $dev(\gamma)$ is identified with front $(\gamma^{*})$ : $O_{n-1}(\gamma)=O_{1}(\gamma^{*})^{*}arrow RP^{n+1}$ defined by

$(p, q)-\rangle q$ , where $q\in O_{1}(\gamma^{*},p)^{*}\subset RP^{n+1**}=RP^{n+1}$ .

Set $”=B=(b_{1}, \ldots, b_{n+1})$ and $a_{0}=0$ . Then $b_{i}=a_{n+1}-a_{n+1-j},$ $1\leqq i\leqq n+1$ .
Set $Q=\{(p, q)|p\in q^{*}\}\subset \mathbb{R}P^{n+1}\cross RP^{n+1^{*}}$ The both natural identifications $Q\cong$

$PT^{*}RP^{n+1}$ and $Q\cong PT^{*}RP^{n+1*}$ induce the same contact structure on $Q$ , [S1]. Then
front $(\gamma^{*})$ lifts to an isotropic mapping $O_{1}(\gamma^{*})^{*}arrow Q$ naturally. Therefore the developable
is regarded to be a wave front set of a Legendre variety, which in general has singular points.

We take an affine representaive of $\gamma_{p}^{*}$ : $y_{i}=y_{i}(t)$ with the order of $y_{i}(t)=b_{i}$ . We define
the affine coordinate $x=(x_{1}, \ldots, x_{n+1})$ of $RP^{n+1}$ correspondingly such that the projective
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duality is described by $\sum_{j=}^{n+_{0^{1}}}x_{j}y_{n+1-j}=0$ , with $x_{0}=y_{0}=1$ . Set

$F(x, t)=y_{n+1}(t)+x_{1}y_{n}(t)+ \cdots+x_{n}y_{1}(t)+x_{n+1}=\sum^{n+1}x_{j}y_{n+1-j}(t)$.
$j=0$

The one-parameter fanlily of osculating hyperplanes of $\gamma$ near $p$ is defined by $F=0$ .
Then $O_{1}(\gamma^{*})^{*}$ is obtained when we solve the system of equations $F=\partial F/\partial t=0$ first for
$t\neq 0$ , and then extend to $t=0$ . Thus we have

$x_{n}(x’, t)=-(1/\dot{y}_{1})(\dot{y}_{n+1}+x_{1}\dot{y}_{n}+\cdots+x_{n-1}\dot{y}_{2})$ ,

where $x’=(x_{1}, \ldots, x_{n-1})$ , and $x_{n+1}(x’, t)$ is determined by

$\partial x_{n+1}/\partial t=-y_{1}\partial x_{n}/\partial t$, $x_{n+1}\in t^{r}E_{x’,t}$ ,

where $r=b_{1}=a_{n+1}-a_{n}$ . The developable is then parametrized by the germ $f$ : $R^{n-1}\cross$

R, O $arrow RP^{n+1},\gamma(p)$ defined by $(x’, t)\mapsto(x’, x_{n}(x’, t), x_{n+1}(x’, t))$ . Remark that the
singular locus $\Sigma(f)\subset R^{n-1}\cross R,$ $(0,0)$ of $f$ is equal to $\{\partial x_{n}/\partial t=0\}$ . Therefore $\Sigma(f)$

contains the component $\{t=0\}$ if and only if $s=a_{n}-a_{n-1}>1$ .
Let $\gamma$ : $Marrow RP^{n+1}$ be a curve of finite type with special points $t^{(1)},$

$\ldots,$
$t^{(I)}$ of type

$a^{(1)},$
$\ldots,$

$a^{(l)}$ , and $f$ : $M\cross RP^{n-1}arrow RP^{n+1}$ be the natural parametrization of the devel-
opable of $\gamma$ . Then $f$ lifts to an isotropic map $\tilde{f}$ : $M\cross RP^{n-1}arrow Q=PT^{*}RP^{n+1}$ . Let
$\Lambda(Q)$ denotes the space of Legendre planes of $Q$ . Then we have

PROPOSITION. The isotropic map $f$ is $sm$oothly lifts to $M\cross RP^{n-1}-\Sigmaarrow\Lambda(Q)$ where
$\Sigma=\bigcup_{j}\Sigma^{(j)}=\bigcup_{j}\{t^{(j)}\}\cross O_{n-2}(t^{(j)})$ , where $j$ run$s$ over with $r^{(j)}>s^{(j)}$ . Further the Maslo$1^{\gamma}$

index around $\Sigma^{(j)}$ is equal $to\pm 1$ if $r^{(j)}-s^{(j)}$ is odd, and $0$ otherwise.

EXAMPLE: For a curve of type (1, 2, 4), we have $r=2,$ $s=1$ . Thus the Maslov index of
the developable of type (1, 2, 4) is equal $to\pm 1$ . (In this case the developable is called the
composed umbrella).
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Appendix. Universal spaces for non-oriented Maslov classes

Let $M$ be a colsed $c\infty$ manifold of dimension $m$ , and $\pi$ : $Earrow M$ a Hermitian bundle of
real rank $2n$ with the complex structure $J$ and the Hermitian form H. then the real part
$g$ of $H$ is a metric on $E$ and the imaginary part $\Omega$ of $H$ is a symplectic structure on $E$ .

Now let $L$ be a Lagrangian subbundle of the symplectic bundle $(E, \Omega)$ . Denote by $\Lambda(E)$

the totality of Lagrange planes of $E$ , and by $\pi’$ : $\Lambda(E)arrow N$ the canonical projection from
$\Lambda(E)$ to $N$ .

For the standard symplectic vector space $C^{n}$ , we denote by $\Lambda(n)\cong U(n)/O(n)$ the set
of Lagrangian planes of $C^{n}$ .

Consider the classifying space $BO(n)$ ; the set of n-planes in $R^{N+1}$ for a sufficiently large
$N$ . Further consider the space $EO(n)$ ; the set of frames of n-planes in $R^{N+1}$ . Then we
have the principal $O(n)$-bundle $\Pi$ : $EO(n)arrow BO(n)$ : For $f=(f_{1}, \ldots, f_{n})\in EO(n)$ and
$A\in O(n)$ , denote by $fA=(f_{1}, \ldots, f_{n})A$ the frame transformed by $A$ .

Set $X_{n}=EO(n)X_{O(n)}\Lambda(n)$ , which is obtained by identifying $(f, \lambda)\sim(fA, A^{-1}\lambda),$ $f\in$

$EO(n),$ $\lambda\in\Lambda(n),$ $A\in O(n)$ . Then we set $\Pi’$ : $X_{n}arrow BO(n),$ $\Pi’[f, \lambda]=\Pi[f]$ .
Let $\psi_{L}$ : $Marrow BO(n)$ the classifying map of $L$ . Then there exist an isomorphism $p$

between the frame bundle of $L$ and $\psi_{L}^{*}EO(n)$ . Define $\phi_{L}$ : $\Lambda(E)arrow X_{n}$ as follows: For
$\lambda\in\Lambda(E),$ $\pi(\lambda)=x\in M$ and for an orthonormal frame $f$ of $L_{x}$ , there exists $A\in U(n)$

such that $fA$ is a frame of $\lambda$ . By $\rho,$
$f$ can be regarded as $f\in\Pi^{-1}(\psi_{L}(x))$ . Then we define

$\phi_{L}(\lambda)$ by the class of $(f, A)$ in $X_{n}$ . We have then $\Pi’0\phi_{L}=\psi_{L}0\pi’$ .
Let $L’$ be another Lagrangian subbundle of $(E, \Omega)$ . Then there associated a section

$S_{L’}$ : $Marrow\Lambda(E)$ and thus $\phi_{L^{OS}L’}$ : $Marrow X_{n}$ .
Let $h\in H^{*}(X_{n}, Z)$ . Then we set $m_{h}(E;L, L’)=(\phi_{L}os_{L’})^{*}h$ and call it the Maslov

class of triple $(E;L, L’)$ relatively to $h$ .
For the canonical map $Det^{2}$ : $X_{n}arrow O(n)\backslash U(n)/O(n)arrow S^{1}$ defined by taking the

square of determinant, define $e\in H^{1}(X_{n};Z)$ by $e=(Det^{2})^{*}1$ , where $1\in H^{1}$ ( $S^{1}$ ; Z) is
the canonical generator. Then the usual (non-oriented) Maslov-Arnol’d class is equal to
$m_{e}(E;L, L’)$ .

On the classifying space $BO(n)$ , we consider the tautological n-bundle $\mathcal{L}\subset BO(n)\cross$

$R^{N+1}$ . Set $\mathcal{E}’=\mathcal{L}\otimes C\subset BO(n)\cross C^{N+1}$ . Set $\mathcal{E}=\Pi^{\prime*}\mathcal{E}’,$ $\mathcal{L}_{1}=\Pi^{\prime*}\mathcal{L}$ . Define $\mathcal{L}_{2}$ , for
$[f, A]\in X_{n},$ $\mathcal{L}_{2,[f,A]}=\langle fA$} $\subset \mathcal{E}_{[f,A]}$ .

Then $\mathcal{L}_{1},$ $\mathcal{L}_{2}$ are Lagrange subbundle of $\mathcal{E}$ and we easily see that $m_{h}(\mathcal{E};\mathcal{L}_{1}, \mathcal{L}_{2})=h$ for
any $h\in H^{*}$ ( $X_{n}$ ; Z).
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Appendix. Lagrange-Nash modification and Maslov-Arnol’d-Fuks homology

Let $N\subset C^{n}$ be a singular Lagrange variety and $\Sigma\subset N$ the singular locus of $N$ . Consider
the Gauss map $\phi$ : $N-\Sigmaarrow\Lambda(n)$ defined by $\phi(x)=T_{x}(N-\Sigma)$ , for $x\in N-\Sigma$ . In the
Lagrange Grassmannian $\Lambda(n)$ , we set, for $k=1,2,$ $\ldots$ ,

$\sigma_{k}=\{\lambda\in\Lambda(n)|\dim\lambda\cap\sqrt{-1}R^{n}\geqq k\}$ .

Then $\sigma_{2k-1}$ defines $m_{k}\in H^{k(2k-1)}(\Lambda(n);Z)$ , the Maslov-Arnol’d-Fuks cohomology class,
via the Poincare duality. Then we set

$m_{k}(N)=\delta\phi^{*}m_{k}\in H^{k(2k+1)+1}(N, N-\Sigma;Z)$ .

We denote by $\tilde{N}$ the closure of the graph of $\phi$ : $N-\Sigmaarrow\Lambda(n)$ in $N\cross\Lambda(n)$ . Denote
by $\pi$ : $\tilde{N}arrow N$ and $\tilde{\phi}$ : $\tilde{N}arrow\Lambda(n)$ the first and second projection respectively. Then
$\pi|\tilde{N}-\pi^{-1}(\Sigma)$ : $\tilde{N}-\pi^{-1}(\Sigma)arrow N-\Sigma$ is a diffeomorphism. Consider the decomposition

$H^{*}(N-\Sigma)arrow H^{*}(\tilde{N})arrow H^{*}(\Lambda(n))$ .

Let $M_{n}(C)$ denote the set of R-linear maps $h$ : $R^{n}arrow C^{n}$ , and $I_{n}\subset M_{n}(C)$ denote
the set of isotropic linear maps. Then $I_{n}$ is a real algebraic set in $M_{n}(C)$ of codimension
$(1/2)n(n-1)$ . Set $\Sigma_{k}=\{h\in I_{n}|\dim(kerh)\geqq k\}$ .

Define $\Phi$ : $I_{n}-\Sigma_{1}arrow\Lambda(n)$ by $\Phi(h)=h(R^{n})$ . Denote by $\mathcal{N}(I_{n})$ the closure of the graph
of $\Phi$ in $I_{n}\cross\Lambda(n)$ . Then $\mathcal{N}(I_{n})$ is non-singular and the second projectin $\tilde{\Phi}$ : $\mathcal{N}(I_{n})arrow\Lambda(n)$

is a homotopy equivalence. Then we have a further decomposition:

$H^{*+1}(N, N-\Sigma)arrow H^{*}(N-\Sigma)arrow H^{*}(\tilde{N})arrow H^{*}(\mathcal{N}(I_{n}))\cong H^{*}(\Lambda(n))$ .

Remark that, for the first projection $\pi$ : $N(I_{n})arrow I_{n},$ $\pi^{-1}(\Sigma_{k}-\Sigma_{k+1})arrow\Sigma_{k}-\Sigma_{k+1}$ is
a fibration with fiber $F_{k}\cong\Lambda(k),$ $(k=0,1,2, \ldots)$ . In fact,

$F_{k}=\cdot\{\lambda\in\Lambda(n)|\lambda\supset\rho\}\cong\Lambda(p^{\perp}/\rho)\cong\Lambda(k)$,

where $\rho\subset R^{n}\subset C^{n}$ is an (n–k)-dimensional subspace.
Set $m_{k}^{*}=[F_{2k-1}]\in H_{k(2k-1)}(\mathcal{N}(I_{n}))$ , then

$\{m_{k}^{*},\tilde{\Phi}^{*}m_{k}\}=\{\tilde{\Phi}_{*}m_{k}^{*}, m_{k}\}=\pm 1$ .

Consider the parametrized version of the construction above: Let $Narrow T^{*}R^{n}$ be an
isotropic mapping. Then $Tf$ : $Narrow I_{n}$ is defined by $xrightarrow T_{x}f$ : $T_{x}Narrow T_{x}T^{*}R^{n}\cong C^{n}$ .
(Here $I_{n}$ is regarded as the natural bundle over N. ) $Tf$ naturally lifts to $\tilde{T}f$ : $N_{f}arrow$

$\mathcal{N}(I_{n})$ , where $N_{f}$ is the Lagrange-Nash modification of $N$ with respect to $f$ . Then we have
(cf. [I3])

PROPOSITION. If $f$ is generic with at $most$ kernel rank one, then
(1) $Tf$ is transverse to $\Sigma_{1}-\Sigma_{2}$ .

(2) $\tilde{T}f_{*}$ : $H_{*}(N_{f})arrow H_{*}(\mathcal{N}(I_{n}))$ maps $[\pi^{-1}x]$ to $m_{1}^{*}$ , where $x\in\Sigma$ .
(3) The $nat$ural mapping $H_{*}(N-\Sigma)arrow H_{*}(N_{f})maps[\partial D^{2}]to\pm 2[\pi^{-1}x]$ , where $D^{2}$ is

a small transversal disk with center $x$ to $\Sigma_{1}-\Sigma_{2}$ .
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