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1. Introduction
In this note we are concerned with strongly hyperbolic systems in an open set

$\Omega$ in $\mathbb{R}^{n+1}$ with involutive characteristics. We introduce, in section 3, localizations
of systems at a multiple characteristic where the dimension of the kernel of the
principal symbol is equal to the order of the characteristic. There we also give the
definition of non degenerate characteristics (Definition 3.3). Then we study how
the localization of syst\’ems inherits strong hyperbolicity of the original system. To
do so, in section 2, we first study two kinds of second order localizations. The
first one is the usual one and obtained by successive localizations but provides less
precise informations on the original symbol. The second one, which provides more
detailed informations than the first one, is rather complicated and the invariant
meaning is less clear. However see Lemma 2.7 below.

In general the localization is not strongly hyperbolic system even if the original
system is strongly hyperbolic and the characteristic is involutive, in contrast with
the scalar case. Our first result is concerned with a strongly hyperbolic system
with an involutive characteristic of order $r$ and hence the localization is a $r\cross r$

system. Then we prove that every $(r-1)$-th minor of the localization vanishes of
order $s-2$ at every characteristic of order $s$ of the localization (Theorem 4.1).
This means that the localization must satisfy a same necessary condition which is
verified by the original strongly hyperbolic system (see Theorem 1.1 in [7]).

If the characteristic is involutive and of order $r$ then every $(m-1)$-th minor
of $m\cross m$ strongly hyperbolic system vanishes of order $r-1$ at the reference
characteristic (see Theorem 1.3 in [7]). Let $z^{0},$ $z^{1}$ be characteristics of the
original system and its localization at $z^{0}$ of order $r$ and $s$ respectively. Then,
assuming that the characteristic set is an involutive $c\infty$ manifold, we show that,
under some restrictions, every $(r-1)$-th minor of the localization vanishes of
order $s-1$ at $z^{1}$ if $(z^{0}, z^{1})$ is involutive (Theorems 5.1 and 5.2). In particular the
localization is diagonalizable at this characteristic. If we further assume that the
characteristic is non degenerate, refering to our previous results in [5], we can show
that the localization is strongly hyperbolic, more precisely the coefficient matrices
of the localization are simultaneously symmetrizable (Proposition 5.4). We also
show that the same result holds for a larger class of strongly hyperbolic systems
which are not coordinate free though (Proposition 5.3). In particular this gives a
generalization of Theorem 1 in [9].
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2. Higher order localizations
Let $h(x)$ be a monic polynomial in $x_{1}$ of degree $m$ :

$h(x)=x_{1}^{m}+ \sum_{j=1}^{m}a_{j}(x’)x_{1}^{m-j}$

where $a_{j}(x’)\in C^{\infty}(U),$ $x’=(x_{2}, \ldots, x_{n})$ and $U$ is an open neighborhood of the
origin of $\mathbb{R}^{n-1}$ . We assume that $h(x)$ is hyperbolic with respect to the $x_{1}$ variable,
that is the equation $h(x)=0$ in $x_{1}$ has only real roots for every $x^{l}\in U$ . Let
$x^{0}\in \mathbb{R}\cross U=\Omega$ be a characteristic of $h$ of order $r_{0}$ :

$d^{j}(x^{0})=0,$ $j<r_{0},$ $d^{r_{0}}h(x^{0})\neq 0$ .

We define $h_{x^{0}}(x)$ as

$h(x^{0}+\mu x)=\mu^{r_{0}}(h_{x^{0}}(x)+O(\mu)),$ $\muarrow 0$

which is a well defined homogeneous polynomial of degree $r_{0}$ on $T_{x^{0}}\Omega$ . Moreover
$h_{x^{0}}(x)$ is hyperbolic with respect to the $x_{1}$ variable (cf. Lemma 1.3.3 in [3]). We
also define the lineality of $h_{x^{0}}(x)$ as

$\Lambda_{x^{0}}(h)=\{x\in T_{x^{0}}\Omega|h_{x^{0}}(y+tx)=h_{x^{0}}(y), \forall t\in \mathbb{R}, \forall y\in T_{x^{0}}\Omega\}$

which is a linear subspace in $T_{x^{0}}\Omega$ (see [1], [2]).
In the following we denote by $\mu 0,$ $\mu_{1}$ two small parameters with $0<\mu_{0}\leq\mu_{1}$

$\ll 1$ .
Lemma 2.1. Let $x^{1}$ be a characteristic of order $r_{1}$ of $h_{x^{0}}$ and let $y\in\Lambda_{x^{0}}(h)$ .
Then we have

$h(x^{0}+\mu o(x^{1}+y)+\mu 0\mu_{1}x)=\mu_{0^{0}}^{r}\mu_{1^{1}}^{r}(h_{1}(y, x, \mu 0/\mu_{1})+\mu_{1}g_{1}(y, x, \mu_{1}, \mu 0/\mu_{1}))$

where $h(y, x, \xi)$ is a polynomial in $(y, x, \xi)_{f}$ homogeneous of degree $r_{1}$ in $(x, \xi)$

which is hyperbolic with respect to the $x_{1}$ valiable and $g_{1}(y, x, \mu_{1}, \xi)$ is $c\infty$ in
$|\mu_{1}|+|\mu 0\mu_{1}x|+|\mu 0y|<\epsilon,$ $|\xi|<2$ with sufEciently small $\epsilon>0$ .
Proof: It is clear that we can write

$h(x^{0}+\mu 0x)=\mu_{0^{0}}^{r}(h_{x^{0}}(x)+\mu 0go(x, \mu_{0}))$

where $g_{0}(x, \mu_{0})$ is $C^{\infty}$ in $|\mu_{0}|+|\mu_{0}x|<\epsilon$ with small $\epsilon$ . By Rouch\’e’s theorem and
hyperbolicity of $h$ it follows that

$h_{x^{0}}(x^{1}+y+x)+\mu_{0}g_{0}(x^{1}+y+x, \mu_{0})=h_{x^{0}}(x^{1}+x)+\mu_{0}g_{0}(x^{1}+y+x, \mu_{0})=0$
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has $r_{1}$ real zeros converging to zero with $(x’, \mu 0)arrow(0,0)$ . Applying Lemma 1.3.3
in [3] we obtain

(2.1) $h(x^{0}+\mu_{0}(x^{1}+y+x))=\mu_{0^{0}}^{r}(h_{1}(y, x, \mu_{0})+\tilde{g}_{0}(y, x, \mu_{0}))$

where $h_{1}(y, x, \mu 0)$ is a polynomial in $(y, x, \mu_{0})$ , homogeneous in $(x, \mu_{0})$ of degree
$r_{1}$ which is hyperbolic with respect to the $x_{1}$ variable and $\tilde{g}_{0}(y, x, \mu_{0})$ is $c\infty$ in
$|\mu 0|+|\mu 0x|+|\mu 0y|<\epsilon$ with small $\epsilon$ of the form

$\tilde{g}_{0}(y, x, \mu_{0})=$ $\sum$ $x^{\alpha}\mu_{0}^{j}G_{\alpha j}(y, x, \mu_{0})$ .
$|\alpha|+j=r_{1}+1$

Here note that

$\tilde{g}o(y, \mu_{1}x, \mu_{0})=\mu_{1}^{r_{1}+1}$ $\sum$ $x^{\alpha}(\mu_{0}/\mu_{1})^{j}G_{\alpha j}(y, \mu_{1}x, \mu_{1}(\mu_{0}/\mu_{1}))$

$|\alpha|+j=r_{1}+1$

$=\mu_{1^{1}}^{r+1}\tilde{g}_{1}(y, x, \mu_{1}, \mu 0/\mu_{1})$ .

It is clear that $\tilde{g}_{1}$ is $c\infty$ in $|\mu_{1}|+|\mu 0\mu_{1}x|+|\mu 0y|<\epsilon,$ $|\mu 0/\mu_{1}|<2$ with small $\epsilon$ .
Then replacing $x$ by $\mu_{1}x$ in (2.1) we get the desired result.

We are interested in the case either $\mu 0=\mu_{1}$ or $\mu 0=O(\mu_{1}^{m+1})$ . In the former
case we set

$h_{\{x^{0},x^{1}\}}(y, x)=h_{1}(y, x, 1),$ $g_{1}(y, x, \mu)=\mu\tilde{g}_{1}(y, x, \mu, 1)$

so that

(2.2) $h(x^{0}+\mu(x^{1}+y)+\mu^{2}x)=\mu^{r_{0}+r_{1}}(h_{\{x^{0},x^{1}\}}(y, x)+g_{1}(y, x, \mu))$

where $g_{1}$ is $c\infty$ in $|\mu|+|\mu^{2}x|+|\mu y|<\epsilon$ with small $\epsilon$ and $g_{1}(y, x, 0)=0$ . In the
latter case we set

$h_{(x^{0},x^{1})}(y, x)=h_{1}(y, x, 0)$ ,
$g_{1}(y, x, \mu_{1}, \mu_{0}/\mu_{1})=\mu_{1}\tilde{g}_{1}(y, x, \mu_{1}, \mu 0/\mu_{1})+h_{1}(y, x, \mu 0/\mu_{1})-h_{1}(y, x, 0)$

so that

(2.3) $h(x^{0}+\mu_{0}(x^{1}+y)+\mu 0\mu_{1}x)=\mu_{0^{0}}^{r}\mu_{1}^{r_{1}}(h_{(x^{0},x^{1})}(y, x)+g_{1}(y, x, \mu_{1}, \mu 0/\mu_{1}))$

where $g_{1}(y, x, \mu_{1}, \mu 0/\mu_{1})$ is $c\infty$ in $|\mu_{1}+|\mu 0\mu_{1}x|+|\mu 0y|<\epsilon$ with small $\epsilon>0$ and
$g_{1}(y, x, 0,0)=0$ . Note that by definition we have

(2.4) $h_{(x^{0},x^{1})}(y, x+w)=h_{(x^{0},x^{1})}(y, x),$ $h_{\{x^{0},x^{1}\}}(y, x+w)=h_{\{x^{0},x^{1}\}}(y, x)$

for every $w\in\Lambda_{x^{0}}(h)$ .
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Lemma 2.2. $h_{(x^{0},x^{1})}(y, x)$ is independent of $y\in\Lambda_{x^{0}}(h)$ and we $have$

$h_{()}x^{0}x^{1})(x)=(h_{x^{0}})_{x^{1}}(x)$ .

Proof: $Si_{I\}}ceh(x^{0}+\mu_{0}x)=\mu_{0^{0}}^{r}(h_{x^{0}}(x)+O(\mu_{0}))$ it follows that

$h(x^{0}+\mu_{0}(x^{1}+y+\mu_{1}x))=\mu_{0^{0}}^{r}(h_{x^{0}}(x^{1}+\mu_{1}x)+O(\mu_{0}))$

because $y\in\Lambda_{x^{0}}(h)$ . Since $x^{1}$ is a characteristic of $h_{x^{0}}$ of order $r_{1}$ we see that

$h_{x^{0}}(x^{1}+\mu_{1}x)=\mu_{I^{1}}^{r}((h_{x^{0}})_{x^{1}}(x)+O(\mu_{1}))$ .

Noting $\mu 0=O(\mu_{1}^{m+1})$ we get

$h(x^{0}+\mu o(x^{1}+y)+\mu 0\mu_{1}x)=\mu^{r_{0}}\mu_{1}^{r_{1}}((h_{x^{0}})_{x^{1}}(x)+O(\mu_{1}))$

which shows the assertion. $\square$

In particular $h_{(x^{0},x^{1})}(x)$ is well defined independent of the choice of parameters
$\mu j$ provided if $\mu 0=O(\mu_{1}^{m+1})$ . Note that Lemma 2.1 shows that

$h_{\{x^{0},x^{1}\}}(y, \lambda x)=h_{1}(y, \lambda x, 1)=\lambda^{r_{1}}h_{1}(y, x, 1/\lambda)$

which implies that

(2.5) $\lim_{\lambdaarrow\infty}\lambda^{-r_{1}}h_{\{x^{0},x^{1}\}}(y, \lambda x)=h_{1}(y, x, 0)=h_{(x^{0},x^{1})}(x)$

that is, $h_{(x^{0},x^{1})}(x)$ is the principal part of $h_{\{x^{0},x^{1}\}}(y, x)$ with respect to $x$ . Denoting
by $\Lambda_{(x^{0},x^{1})}(h)$ the lineality of $h_{(x^{0},x^{1})}$ :

$\Lambda_{(x^{0},x^{1})}(h)=\{x\in T_{x^{0}}\Omega|h_{(x^{0},x^{1})}(y+tx)=h_{(x^{0},x^{1})}(y),\forall t\in \mathbb{R},\forall y\in T_{x^{0}}\Omega\}$

which is a linear subspace in $T_{x^{0}}\Omega\cong T_{x^{1}}\Omega$ , it follows from (2.4) that

(2.6) $\Lambda_{x^{0}}(h)\subset\Lambda_{(x^{0},x^{1})}(h)$ .

If $x^{1}$ is a characteristic of $h_{x^{0}}$ then $x^{1}+y,$ $y\in\Lambda_{x^{0}}(h)$ is also a characteristic of
$h_{x^{0}}$ of the same order and hence

(2.7) $h_{\{x^{0},x^{1}+y\}}(0, x)=h_{\{x^{0},x^{1}\}}(y, x),$ $y\in\Lambda_{x^{0}}(h)$ .

Lemma 2.3. We have

$h_{\{x^{0},x^{1}\}}(y, x+w)=h_{\{x^{0},x^{1}\}}(y, x),$ $\forall w\in\Lambda_{(x^{0},x^{1})}(h)$ .

Proof: Since $h_{(x^{0},x^{1})}(x)$ is the principal part of $h_{\{x^{0},x^{1}\}}(y, x)$ with respect to $x$

and $h_{\{x^{0},x^{1}\}}(y, x)$ is hyperbolic with respect to the $x_{1}$ variable the assertion follows
from Corollary 12.4.8 in [2]. $\square$
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Lemma 2.4. Let $x=^{l}(x_{a}, x_{b})$ be a partition of the variable $x$ and assume that
$x^{0}=(x_{a}^{0}, 0)\in\Lambda_{x^{0}}(h)$ is a characteristi$c$ of $h$ and

$h(\lambda x_{a}, x_{b})=\lambda^{m}h(x_{a}, x_{b}),$ $\forall\lambda\in \mathbb{R}$ .

Then we have

$h_{\{x^{0},x^{1}\}}(tx^{0}, x)=h_{\{x^{0},x^{1}\}}(0, x-t(x_{a}^{1},0)),$ $\forall t\in \mathbb{R}$ .

Proof: Set $y=x^{0}+\mu(x^{1}+tx^{0})+\mu^{2}x$ . Then we have

$y_{a}=(1+\mu t)(x_{a}^{0}+\mu x_{a}^{1}+\mu^{2}((x_{a}-tx_{a}^{1})+O(\mu))),$ $y_{b}=\mu x_{b}^{1}+\mu^{2}x_{b}$ .

From the assumption it follows that

$h(x^{0}+\mu(x^{1}+tx^{0})+\mu^{2}x)=(1+\mu t)^{m}h(x^{0}+\mu x^{1}+\mu^{2}(x-t(x_{a}^{1},0)+O(\mu)))$

which proves the assertion. $\square$

Set
$H_{1}(x^{0}; x)= \sum h^{(\beta)}(x^{0})x^{\beta}/\beta!$

$|\beta|=l$

where $h^{(\beta)}(x^{0})=\partial^{(\beta)}h(x^{0})/\partial x^{\beta}$. Then

Lemma 2.5. Let $x^{0},$ $x^{1}$ be characteristics of $h,$ $h_{x^{0}}$ of order $r$ and $s$ respectively.
Assume that $\Lambda_{(x^{0},x^{1})}(h)$ is given by $x_{a}=0$ where $x=(x_{a}, x_{b})$ is a partition of the
variable $x$ . Then we have

$H_{l}^{(\alpha)}(x^{0}; x+y)=0,$ $\forall y\in\Lambda_{x^{0}}(h),$ $l+|\alpha|=r+s$

$u$nless $\alpha=(\alpha_{a}, 0)$ .

Proof: By definition we see easily that

$h_{\{x^{0},x^{1}\}}(y, x)=$ $\sum$ $H_{l}^{(\beta)}(x^{0};x^{1}+y)x^{\beta}/\beta!$ .
$l+|\beta|=r+s$

Since Lemma 2.3 shows that $h_{\{x^{0},x^{1}\}}(y, x)$ is a polynomial in $(y, x_{a})$ we obtain the
desired result. $\square$
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We now study how $h_{\{x^{0},x^{1}\}}(y, x)$ depends on $y\in\Lambda_{x^{0}}(h)$ assuming that

$\Sigma=\{x\in\Omega|d^{j}h(x)=0,j<r, d^{r}h(x)\neq 0\}$

is a $0\infty$ manifold through $x^{0}$ . For $y\in\Sigma$ and $x\in N_{y}\Sigma$ , a normal of $\Sigma$ at $y$ , we
define $h_{\Sigma}(y, x)$ as

$h_{\Sigma}(y, x)= \lim_{\muarrow 0}\mu^{-r}h(y+\mu x)$

which is well defined on the normal bundle $N\Sigma$ of $\Sigma$ . Let $\Omega_{\Sigma}$ be the blow up of $\Omega$

along $\Sigma$ , that is
$\Omega_{\Sigma}=(\Omega\backslash \Sigma)uSN\Sigma$

where $SN\Sigma$ is the sphere normal bundle of $\Sigma$ . We have the canonical projection
$\pi$ : $\Omega_{\Sigma}arrow\Omega$ and remark that $\pi^{-1}\Sigma$ is a submanifold in $\Omega_{\Sigma}$ of codimention 1.
Take the local coordinates $x=(x_{a}, x_{b})$ such that $\Sigma$ is defined by $x_{a}=0$ . Recall
that for $\overline{p}\in SN\Sigma$ we can choose as a chart near $\overline{p}$ , for example,

$\phi(p)=(x_{b}, x_{a}, \rho),$ $\rho=|x_{a}|,\omega_{a}=x_{a}/\rho\in S^{k-1}\subset \mathbb{R}^{k}$ if $p\not\in SN\Sigma$ ,
$\phi(p)=(x_{b}, dx_{a}(p)/|dx_{a}(p)|,$ $0$ ) if $p\in SN\Sigma$ .

Let $\pi^{*}h$ be the pull back of $h$ by $\pi$ . In our coordinates $h$ and $h_{\Sigma}$ are given by

$h(x_{a}, x_{b})= \sum C_{\alpha}(x_{b}, x_{a})x_{a}^{\alpha},$ $h_{\Sigma}(x_{a}, x_{b})= \sum C_{\alpha}(x_{b},0)x_{a}^{\alpha}$ ,
$|\alpha|=r$ $|\alpha|=r$

$\pi^{*}h(x_{b},\omega_{a}, \rho)=\sum\rho^{r}C_{\alpha}(x_{b}, \mu v_{a})\omega_{a}^{\alpha}$

$|\alpha|=r$

where $C_{\alpha}(x_{b}, x_{a})$ are $c\infty$ . This shows that $\pi^{*}h$ vanishes of order $r$ on $\pi^{-1}\Sigma$ . Let
$\tilde{\rho}\in C^{\infty}(\Omega\Sigma)$ be a defining function of $\pi^{-1}\Sigma$ , that is $\pi^{-1}=\{\tilde{\rho}=0\}$ . Then it is
clear that $h^{*}=\tilde{\rho}^{-r}\pi^{*}h$ is in $C^{\infty}(\Omega\Sigma)$ . Let $x^{0}\in\Sigma,$ $x^{1}\in N_{x^{0}}\Sigma\backslash 0$ be characteristics
of $h,$ $h_{x^{0}}$ of order $r$ and $s$ respectively. In our coordinates $x^{0}=(x_{b}^{0}, 0),$ $x^{1}=(0, x_{a}^{1})$

and $(x_{b}^{0}, x_{a}^{1})\in N\Sigma\backslash \Sigma$ . Remark that $(x_{b}^{0}, x_{a}^{1})$ is a characteristic of order $s$ of $h_{\Sigma}$

because
$h_{x^{0}}(x_{a})= \sum C_{\alpha}(x_{b}^{0}, 0)x_{a}^{\alpha}=h_{\Sigma}(x_{b}^{0}, x_{a})$

$|\alpha|=r$

and hence $h_{\Sigma}(x_{b}^{0}, x_{a})=0$ has the zero $x_{1}=0$ of order $s$ when $x_{a’}=0$ with
$x_{a}=(x_{1}, x_{a’})$ and $h_{\Sigma}(x_{b}, x_{a})$ is hyperbolic with respect to $x_{1}$ variable. Note
that $(x_{b}^{0}, \lambda x_{a}^{1}),$ $\lambda\in IR\backslash O$ is also a characteristic of $h_{\Sigma}$ of order $s$ because of the
homogeneity with respect to $x_{a}$ . Since $N\Sigma\backslash \Sigma$ is canonically identified with a
subset of $\Omega_{\Sigma}$ we may consider $X=(x_{b}^{0},\overline{\omega}_{a}, 0),$ $\overline{\omega}_{a}=x_{a}^{1}/|x_{a}^{1}|$ as a point of $\Omega_{\Sigma}$ .
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Lemma 2.6. Set
$\tilde{h}^{*}(x_{b}, x_{a}, \rho)=\sum_{|\alpha|=r}C_{\alpha}(x_{b}, \rho x_{a})x_{a}^{\alpha}$

.

Then we have

$h_{X}^{*}(x_{b},\omega_{a}, \rho)=c\tilde{h}_{X}^{*}(x_{b},\omega_{a}, \rho),$ $(x_{b},\omega_{a}, \rho)\in T_{X}\Omega\Sigma$

where $c=(\tilde{\rho}^{-1}\rho)(X)^{r}\neq 0$ .

Proof: Recall that $\tilde{h}^{*}(x_{b}^{0}+x_{b},\overline{\omega}_{a}+x_{a}, \rho)=0$ has the zero $x_{1}=0$ of order $s$

precisely when $(x_{a}, x_{a’}, \rho)=(0,0,0)$ . Since $\tilde{h}^{*}(x_{b}^{0}+x_{b},\overline{\omega}_{a}+x_{a}, \rho)$ is hyperbolic
with respect to the $x_{1}$ variable we can write

$\tilde{h}^{*}(x_{b}^{0}+x_{b},\overline{\omega}_{a}+x_{a}, \rho)=\tilde{h}_{X}^{*}(x_{b}, x_{a}, \rho)+O(|x_{a}|+|x_{b}|+|\rho|)^{s+1}$

where $\tilde{h}_{X}^{*}(x_{b}, x_{a}, \rho)$ is a homogeneous polynomial in $(x_{b}, x_{a}, \rho)$ which is hyperbolic

with respect to the $x_{1}$ variable. Let $\omega_{a}(\mu)=\overline{\omega}_{a}+\mu\omega_{a}+O(\mu^{2})\in S^{k-1}\subset \mathbb{R}^{k}$ ,
$\omega_{a}\in T_{\overline{\omega}_{a}}S^{k-1}\subset \mathbb{R}^{k}$ and observe

$h^{*}(x_{b}^{0}+\mu x_{b},\omega_{a}(\mu),$ $\mu\rho$) $=(\tilde{\rho}^{-1}\rho)^{r}\tilde{h}^{*}(x_{b}^{0}+\mu x_{b},\omega_{a}(\mu),$
$\mu\rho$)

which is equal to $c\mu^{s}(\tilde{h}_{X}^{*}(x_{b},\omega_{a}, \rho)+O(\mu))$ and hence the conclusion. $\square$

Let $\Lambda_{X}(h^{*})$ be the lineality of $h_{X}^{*}$ which is a linear subspace in $T_{X}\Omega\Sigma$ . Here
note that $\Lambda_{X}(h^{*})$ is independent of the choice of $\tilde{\rho}$ , a defining function of $\pi^{-1}\Sigma$ ,
and hence we may write $\Lambda_{X}(\pi^{*}h)$ for $\Lambda_{X}(h^{*})$ without ambiguity.

Lemma 2.7. Assume that $\Lambda_{X}(\pi^{*}h)$ is transversal to $T_{X}(\pi^{-1}\Sigma)$ , that is $\Lambda_{X}(\pi^{*}h)$

$+T_{X}(\pi^{-1}\Sigma)=T_{X}\Omega\Sigma$ . Then we have

$h_{\{x^{0},x^{1}\}}(x_{b}, x_{a})=h_{\Sigma(x_{b}^{0},x_{a}^{1})}(x_{b}+|x_{a}^{1}|\tilde{x}_{b}, x_{a}+|x_{a}^{1}|^{2}\tilde{x}_{a})$

with some fixed $\tilde{x}_{b},\tilde{x}_{a}$ where $h_{\Sigma(x_{b}^{0},x_{a}^{1})}=h_{\Sigma X}$ is the localization of $h_{\Sigma}$ at $(x_{b}^{0}, x_{a}^{1})$ .

Proof: We first recall that

$h(x^{0}+\mu(x^{1}+x_{b})+\mu^{2}x_{a})=\mu^{f}\tilde{h}^{*}(x_{b}^{0}+\mu x_{b}, x_{a}^{1}+\mu x_{a}, \mu)$

which gives that
$\tilde{h}_{X}^{*}(x_{b},\omega_{a}, 1)=h_{\{x_{b}^{0},\overline{\omega}_{a}\}}(x_{b}, x_{a})$ .

Noting the following

$h_{\{x^{0},x^{1}\}}(x_{b}, x_{a}+\lambda x_{a}^{1})=h_{\{x^{0},x^{1}\}}(x_{b}, x_{a}),$
$\forall\lambda\in El$,

$h_{\{x^{0},x^{1}\}}(x_{b}, x_{a})=\lambda^{r+s}h_{\{x^{0},x^{1}/\lambda\}}(x_{b}/\lambda, x_{a}/\lambda^{2}),$ $\forall\lambda\in \mathbb{R}\backslash 0$
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we easily see that

$h_{\{x^{0},x^{1}\}}(x_{b}, x_{a})=|x_{a}^{1}|^{r+s}h_{\{x_{b}^{0},\overline{t}_{a}\}}(x_{b}/|x_{a}^{1} , \hat{x}_{a}^{1}/|x_{a}^{1}|^{2})$

where $x_{a}=cx_{a}^{1}+\hat{x}_{a},\hat{x}_{a}\in T_{\overline{d}a}S^{k-1}\subset \mathbb{R}^{k}$ and $c\in \mathbb{R}$ . Thus we obtain

(2.8) $h_{\{x^{0},x^{1}\}}(x_{b}, x_{a})=|x_{a}^{1}|^{r+s}\tilde{h}_{X}^{*}(x_{b}/|x_{a}^{1} , \hat{x}_{a}^{1}/|x_{a}^{1}|^{2},1)$ .

The same argument with $\rho=0$ shows that

(2.9) $h_{\Sigma(x_{b}^{0},x_{a}^{1})}(x_{b}, x_{a})=|x_{a}^{1}|^{r+s}\tilde{h}_{X}^{*}(x_{b}/|x_{a}^{1} , \hat{x}_{a}^{1}/|x_{a}^{1}|^{2},0)$ .

From hypotheses there is $(x_{b}’,\omega_{a}’, \rho’)\in Tx\Omega\Sigma$ with $\rho’\neq 0$ such that

$h_{X}^{*}((x_{b},\omega_{a}, p)+t(x_{b}’,\omega_{a}’, \rho’))=h_{X}^{*}(x_{b},\omega_{a}, \rho)$

for $\forall(x_{b},\omega_{a}, \rho)\in T_{X}\Omega_{\Sigma}$ and $t\in \mathbb{R}$ . Taking $\rho=1,$ $t=-1/\rho’$ we get

(2.10) $h_{X}^{*}(x_{b},\omega_{a}, 0)=h_{X}^{*}(x_{b}+x_{b}’/\rho’,\omega_{a}+\omega_{a}’/p’, 1)$ .

Now it is clear that

$h_{\{x^{0},x^{1}\}}(x_{b}, x_{a})=h_{\Sigma(x_{b}^{0},x_{a}^{1})}(x_{b}+|x_{a}^{1}|\tilde{x}_{b}, x_{a}+|x_{a}^{1}|^{2}\tilde{x}_{a})$

with $\tilde{x}_{b}=-x_{b}’/\rho’,\tilde{x}_{a}=-\omega_{a}’/\rho’$ . This is the desired assertion. $\square$

Let $\beta$ be the canonical projection $\beta$ : $N\Sigmaarrow\Sigma$ and denote by $d\beta$ the
differential of $\beta$ ;

$d\beta_{X}$ : $T_{X}N\Sigmaarrow T_{x^{0}}\Sigma$ .

Lemma 2.8. Assume that $\Lambda_{X}(\pi^{*}h),$ $T_{X}(\pi^{-1}\Sigma)$ are transversal to $\Lambda_{X}(h_{\Sigma})$ ,
$Kerd\beta_{X}$ respectively. Then there is a polynomi$aIQ$ on $N_{x^{0}}\Sigma s\iota xdz$ that

$h_{\{x^{0},x^{1}\}}(x_{b}, x_{a})=Q(x_{a}+\tilde{x}_{a})$

with a fixed $\tilde{x}_{a}$ . In particular $h_{\{x^{0},x^{1}\}}(x_{b}, x_{a})$ is independent of $x_{b}$ .
Proof: In our coordinates $\beta$ is given by $\beta$ : $(x_{b}, x_{a})arrow(x_{b}, 0)$ and hence $Kerd\beta_{X}$

$=\{(0, x_{a})|x_{a}\in N_{x^{0}}\Sigma\}$ . From hypotheses it follows that $\Lambda_{X}(h\Sigma)$ contains the set
$\{(x_{b}, 0)|x_{b}\in T_{x^{0}}\Sigma\}$ . Then we see that

$h_{\Sigma(x_{b}^{0},x_{a}^{1})}(x_{b}+|x_{a}^{1}|\tilde{x}_{b}, x_{a}+|x_{a}^{1}|^{2}\tilde{x}_{a})=h_{\Sigma(x_{b}^{0},x_{a}^{1})}(0, x_{a}+|x_{a}^{1}|^{2}\tilde{x}_{a})$

which proves the assertion noting that $h_{\Sigma(x_{b}^{0},x_{a}^{1})}(0, x_{a})$ is a well defined polynomial
on $N_{x^{0}}\Sigma$ . $\square$
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3. Localizations of system
Let $\Omega$ be an open set in $\mathbb{R}^{n+1}$ with local coordinates $x=(x_{0}, x’)$ where

$x’=(x_{1}, \ldots, x_{n})$ and let $T^{*}\Omega$ be the cotangent bundle over $\Omega$ with corresponding
coordinates $(x, \xi)$ . Let $L$ be a first order differential operator on $C^{\infty}(\Omega, \mathbb{C}^{n})$ with
symbol $L(x, \xi)\in C^{\infty}(T^{*}\Omega, Hom(\mathbb{C}^{m}, \mathbb{C}^{m}))$ . We denote by $h(x, \xi)$ the determi-
nant of $L(x, \xi)$ . Following Vaillant [9] (see also [1]) we define the localization of
$L(x, \xi)$ at a characteristic $z^{0}=(x^{0}, \xi^{0})\in T^{*}\Omega\backslash 0$ of order $r$ of $h$ with

$\dim KerL(z^{0})=r$ .

Let $\pi$ be the natural projection $\pi$ : $\mathbb{C}^{m}\vdasharrow \mathbb{C}^{m}/{\rm Im} L(z^{0})$ and $\iota$ be the inclusion
$\iota$ : $KerL(z^{0})\mapsto \mathbb{C}^{m}$ .
DEFINITION 3.1. We define $L_{z^{0}}(z)$ by

$L_{z^{0}}(z)= \lim_{\muarrow 0}\mu^{-1}\pi L(z^{0}+\mu z)\iota,$ $z\in T_{z^{0}}(T^{*}\Omega)$ .

Taking bases for $\mathbb{C}^{m}$ and then for $KerL(z^{0}),$ $Ker^{t}L(z^{0})$ , where ${}^{t}L(z^{0})$ denotes the
transposed matrix of $L(z^{0})$ , we examine the definition. We choose $u_{j},$ $v_{j}\in C^{m}$ so
that

$KerL(z^{0})=span-\{u_{1}, \ldots, u_{r}\},$ $Ker^{t}L(z^{0})=span-\{v_{1}, \ldots, v_{r}\}$ .
With $U=(u_{1}, \ldots, u_{r}),$ $V=(v_{1}, \ldots, v_{r})$ , which are $m\cross r$ matrices, we set

$U_{(U,V)}(z)=^{t}VL(z)U$.

Then in theses bases $L.0(z)$ is expressed by $L_{(U,V)z^{0}}(z)$ :

$L_{(U,V)z^{0}}(z)= \lim_{\muarrow 0}\mu^{-1}L_{(U,V)}(z^{0}+\mu z)$ .

For another pair of bases $\tilde{U},\tilde{V}$ for $KerL(z^{0}),$ $Ker^{t}L(z^{0})$ respectively it is clear that

$L_{(\tilde{U},\tilde{V})}(z)=M_{1}L_{(U,V)}(z)M_{2}$

with some non singular $M_{i}\in M(r, \mathbb{C})$ and hence

(3.1) $L_{(\tilde{U},\overline{V})z^{0}}(z)=M_{1}L_{(U,V)z^{0}}(z)M_{2}$ .

We next examine the effects of a change of basis for $C^{m}$ . Let $L^{T}(z)=T^{-1}L(z)T$

with a non singular $T\in M(m, \mathbb{C})$ and let $U_{1},$ $V_{1}$ be a pair of bases for $KerL^{T}(z^{0})$ ,
$Ker^{t}L^{T}(z)$ . Then it is also clear that

(3.2) $L_{(U_{1},V_{1})z^{0}}^{T}(z)=N_{1}L_{(U,V)z^{0}}(z)N_{2}$

with non singular $N_{i}\in M(r, \mathbb{C})$ . From (3.1) the determinant of $L_{z^{0}}(z)$ is well
defined up to non zero multiple constant.
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Lemma 3.1. We $have$

$(\det h)_{z^{0}}(z)=\det L_{z^{0}}(z)$

up to non zero multiple constant.

Proof: As noted above it is enough to show the assertion with suitably chosen
bases $U,$ $V$ for $KerL(z^{0}),$ $Kert^{L}(z^{0})$ and a basis for $\mathbb{C}^{m}$ . After a change of basis
for $\mathbb{C}^{m}$ we may assume that

$L(z^{0})=G\oplus O$

where $G\in M(m-r, \oplus)$ is non singular and $O$ denotes the zero matrix of order $r$ .
Write

$L=(\begin{array}{ll}L_{11} L_{12}L_{21} L_{22}\end{array})$

where $L_{ij}(z^{0})=O$ unless $(i,j)=(1,1)$ and $L_{1}i(z^{0})=G$ . Thus choosing $U,$ $V$

suitably we have
$L_{(U,V)}(z)=L_{22}(z)$ .

Since $L_{11}(z^{0}+\mu z)=G+O(\mu),$ $L_{ij}(z^{0}+\mu z)=\mu L_{ij}’(z)+O(\mu^{2})$ as $\muarrow 0$ we see
that

$\det L(z^{0}+\mu z)=\mu^{r}\{(\det G)\det L_{22}’(z)+O(\mu)\}$

and hence
$(\det L)_{z^{0}}(z)=(\det G)\det L_{22}’(z)$ .

On the other hand, by definition, we have

$L_{(U,V)z^{0}}(z)=L_{22}’(z)$

and hence the assertion. $\square$

From (3.1) it is clear that every s-th minor of $L_{(\tilde{U},\tilde{V})z^{0}}(z)$ is a linear combi-
nation of s-th minors of $L_{(U,V)z^{0}}(z)$ and vice versa.

Lemma 3.2. Every $(r-1)$-th minor of $L_{z^{0}}(z)$ is a $lin$ear combination of $m_{z^{0}}(z)s$

where $m(z)$ are $(m-1)$-th $m$inor of $L(z)$ .
Proof: It is enough to show the assertion for $L_{(U,V)z^{0}}(z)$ with suitably chosen $U,$ $V$

and a basis for $\mathbb{C}^{m}$ . As observed in the proof of Lenma 3.1 we may assume that

$L(z^{0}+\mu z)=(^{G+O(\mu)}o(\mu)$ $\mu L_{22}’(z)+O(\mu^{2})O(\mu))$ .

Let $m(z)$ be the $(m-1)$-th minor of $L(z)$ obtained removing i-th row and j-th
colomn of $L(z)$ . Similarly we denote by $l(z)$ the thus obtained $(r-1)$-th minor of
$L_{22}’(z)$ . Then it is clear that

$m_{z^{0}}(z)=\mu^{r-1}\{(\det G)l(z)+O(\mu)\}$

as $\muarrow 0$ and hence $l(z)=(\det G)^{-1}m_{z^{0}}(z)$ which proves the assertion. $\square$
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Recall that $L_{z^{0}}(z)$ is $Hom(KerL(z^{0}), \mathbb{C}^{m}/{\rm Im} L(z^{0}))$ valued linear function in
$z$ .

DEFINITION 3.2. Let $L_{z^{0}}(z)=(\phi_{j}^{i}(z))$ . We call

$d(L_{z^{0}})=\dim span-\{\phi_{j}^{i}\}$

the reduced dimension of $L_{z^{0}}$ .

DEFINITION 3.3. Assume that $L(z)$ is real. Let $z^{0}$ be a characteristic of order $r$

of $h$ with $\dim KerL(z^{0})=r$ . We say that $z^{0}$ is non degenerate if

$d(L_{z^{0}})\geq r(r+1)/2$ .

4. Necessary conditions (I)
Let

$L(x, D)= \sum_{j=0}^{n}A_{j}(x)D_{j}$

be a differential operator of order 1 on $C^{\infty}(\Omega, \mathbb{C}^{m})$ . We assume that $h(x, \xi)$ is
hyperbolic with respect to $t(x)\in C^{\infty}(\Omega),$ $dt(x)\neq 0$ , that is

$h(x, \xi+\lambda dt(x))=0$

has only real roots for every $x\in\Omega,$ $\xi\in T_{x^{*}}\Omega$ . Let $\sigma=\sum_{j=0}^{n}d\xi_{j}\wedge dx_{j}$ be the
canonical symplectic two form on $T^{*}\Omega$ and for $S\subset T_{w}(T^{*}\Omega)$ we denote by $S^{\sigma}$ the
anihilator of $S$ with respect to $\sigma$ :

$S^{\sigma}=\{z\in T_{w}(T^{*}\Omega)|\sigma(z, u)=0,\forall u\in S\}$ .

In what follows we assume that $t(x)=x_{0}$ and $A_{0}=I_{m}$ , the identity matrix of
order $m$ without restrictions. RecaU that we say that $L$ is strongly hyperbolic near
the origin if the Cauchy problem for $L(x, D)+B(x)$ is correctly posed for every
$B(x)\in C^{\infty}(\Omega, M(m, \mathbb{C}))$ in both $\Omega^{t},$ $\Omega_{t}$ with small $t$ where $\Omega^{t}=\{x\in\Omega|x_{0}<t\}$

and $\Omega_{t}=\{x\in\Omega|x_{0}>t\}$ .
In this section we show the following result.

Theorem 4.1. Assume that $A_{j}(x)$ are real analytic in $\Omega$ contaning the origin.
Let $z^{0}\in T_{0^{*}}\Omega\backslash 0,$ $z^{1}\in T_{z^{0}}(T^{*}\Omega)$ be characteristics of order $r$ and $s$ of $h$ and
$h_{z^{0}}=\det L_{z^{0}}$ respectively with $\Lambda_{z^{0}}(h)^{\sigma}\subset\Lambda_{z^{0}}(h)$ . If $L$ is strongly hyperbolic $n$ear
the origin then every $(r-1)$ -th minor of $L_{z^{0}}$ vanishes of order $s-2$ at $z^{1}$ .

This result is optimal in a sense. We give an example.
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EXAMPLE 5.1: Let

$L(z)=(\begin{array}{llll}\xi_{0} \xi_{1} 0x_{0}^{2}\xi_{1} \xi_{0} 00 0 \xi_{0} -2x_{0}\xi_{1}\end{array}),$ $z^{0}=(0, e_{n}),$ $n\geq 2$ .

For this $L(z)$ it is not difficult to examine the followings.
1) $L$ is strongly hyperbolic near the otigin (see Example 1.2. in [6]) and $z^{0}$ is a
characteristic of order 3 of $h$ with $\Lambda_{z^{0}}(h)^{\sigma}\subset\Lambda_{z^{0}}(h)$ .
2)

$L_{z^{0}}(z)=(\begin{array}{lll}\xi_{0} \xi_{1} 00 \xi_{0} 00 0 \xi_{0}\end{array})$

and $z^{1}=(0, e_{1})$ is a characteristic of $\det L_{z^{0}}(z)$ of order 3.
3) the 2-minor

$|\begin{array}{ll}\xi_{1} 00 \xi_{0}\end{array}|$

vanishes of order $1=3-2$ at $z^{1}$ .
To show the result we first derive an a priori estimate for well posed Cauchy

problem which will be needed in the following sections also. Let $\sigma=(\sigma_{0}, \ldots, \sigma_{n})$

$\in \mathbb{Q}_{+^{+1}}^{n}$ and set

(4.1) $y( \lambda)=y^{0}+\sum_{j=1}^{s}y^{j}\lambda^{-\epsilon_{j}},$ $\eta(\lambda)=\eta^{0}+\sum_{j=1}^{s}\eta^{j}\lambda^{\epsilon_{j}}$

where $y^{j},$ $\eta^{j}\in \mathbb{R}^{n+1}$ and $\epsilon_{j}\in Q_{+},$ $0<\epsilon_{1}<\epsilon_{2}<--$ $<\epsilon_{s}$ . For a differential
operator $P$ on $C^{\infty}(\Omega, \mathbb{C}^{m})$ with $C^{\infty}(\Omega)$ coefiicients we set with $\kappa\in \mathbb{Q}_{+}$

(4.2) $P_{\lambda}(y(\lambda), \eta(\lambda);x,$ $\xi$ ) $=P(y(\lambda)+\lambda^{-\sigma}x, \lambda^{\kappa}\eta(\lambda)+\lambda^{\sigma}\xi)$

where $\lambda^{-\sigma}=(\lambda^{-\sigma_{0}}x_{0}, \ldots, \lambda^{-\sigma_{n}}x_{n})$ etc. Assuming that the Cauchy problem for
$P(x, D)$ is correctly posed in both $\Omega^{t}$ and $\Omega_{t}$ for every small $t$ we derive an a
priori estimate for $P_{\lambda}(x, D)$ .
Proposition 4.2. Let $\sigma\in \mathbb{Q}_{+^{+1}}^{n}$ and $\kappa,$ $\epsilon_{j}\in Q_{+}$ . Assume that $0\in\Omega,$ $y^{0}=0$ and
the Cauchy problem for $P(x, D)$ is correctly posed in both $\Omega^{t}$ and $\Omega_{t}$ for $e$very
small $t$ . Then for every compact set $\tilde{Y},\tilde{H}\subset \mathbb{R}^{(n+1)s},$ $W\subset \mathbb{R}^{n+1}$ and for every
positive $T>0$ we can find $C>0,$ $\overline{\lambda}>0$ and $p\in \mathbb{N}$ such that

$|u|_{C^{0}(W^{t})}\leq C\lambda^{(\overline{\sigma}+\kappa)p}|P_{\lambda}u|_{C^{p}(W^{t})}$ ,
$|u|_{C^{0}(W_{t})}\leq C\lambda^{(\overline{\sigma}+\kappa)p}|P_{\lambda}u|_{C^{p}(W_{t})}$
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for $\lambda\geq\overline{\lambda},$ $u\in(C_{0^{\infty}}(W))^{m},$ $|t|<T,$ $Y=(y^{1}, \ldots, y^{s})\in\tilde{Y},$ $H=(\eta^{1}, \ldots, \eta^{s})\in\tilde{H}$

where $\overline{\sigma}=\max_{j}\sigma_{j}$ .

Proof: Set
$\tilde{P}(x, D)=e^{-i\lambda^{\kappa}<\eta(\lambda),x>}P(x, D)e^{i\lambda^{\kappa}<\eta(\lambda),x>}$

so that $\tilde{P}(x, \xi)=P(x, \lambda^{\kappa}\eta(\lambda)+\xi)$. Let $K\subset\Omega$ be a compact set and recall
Proposition 2.1 in [7]:

$|v|_{C^{0}(K^{t})}\leq C|Pv|_{C^{p}(K^{t})},$ $|t|<\tau,$ $v\in(C_{0}^{\infty}(K))^{m}$

with an integer $p\in \mathbb{N}$ and a $\tau>0$ . Since

$|u|_{C^{0}(K^{t})}\leq C_{1}\lambda^{\kappa p}|e^{-i\lambda^{\kappa}<\eta(\lambda),x>}v|_{C^{p}(K^{t})}$

it follows that
$|u|_{C^{0}(K^{t})}\leq C_{2}\lambda^{\kappa p}|\tilde{P}(x, D)u|_{C^{p}(K^{t})}$ .

Repeating the proof of Proposition 2.2 in [7] we get the desired assertion. $\square$

5. Necessary conditions (II)
Let

$\Sigma=\{z\in T^{*}\Omega|d^{j}h(z)=0,j<r, d^{r}h(z)\neq 0\}$

be the set of characteristics of order $r$ of $h$ . We assume that $\Sigma$ is an involutive
$c\infty$ manifold through $z^{0}$ . Denote by $p$ the canonical projection from $T^{*}\Omega$ onto $\Omega$ :
$T^{*}\Omega\mapsto\Omega$ and assume that

(5.1) $dp_{z^{0}}$ : $T_{z^{0}}(T^{*}\Omega)\vdash*T_{p(z^{0})}\Omega$ is surjective on $T_{z^{0}}\Sigma$ .

Let $z^{1}\in N_{z^{0}}\Sigma\backslash 0$ be a multiple characteristic of $h_{z^{0}}$ . As in section 2 we denote
by $(T^{*}\Omega)\Sigma$ the blow up of $T^{*}\Omega$ along $\Sigma$ and by $\pi$ the canonical projection from
$(T^{*}\Omega)\Sigma$ onto $T^{*}\Omega$ . We assume that

(5.2) $\Lambda_{X}(\pi^{*}h)$ is transversal to $T_{X}(\pi^{-1}\Sigma)$

where $X=(z^{0}, z^{1})\in N\Sigma\backslash \Sigma$ is considered canonically as a point in $(T^{*}\Omega)\Sigma$ . We
also denote by $\beta$ the projection from $N\Sigma$ onto $\Sigma$ off the fibers. Then we have

Theorem 5.1. Assume that $A_{j}(x)$ are real analytic in $\Omega$ which contains the origin
and $L$ is strongly hyperbolic near the origin. Let $\Sigma$ be th$e$ characteristic set oforder
$r$ which is assumed to be an involutive $c\infty$ manifold contain$ingz^{0}\in T_{0}^{*}\Omega\backslash 0$ . Let
$z^{1}\in N_{z^{0}}\Sigma\backslash 0$ be a characteristic of order $s$ of $h_{z^{0}}=\det L_{z^{0}}$ and vvith $X=(z^{0}, z^{1})$

we assume (5.1), (5.2) and that

(5.3) $\Lambda_{X}(h\Sigma)$ is transversal to $Kerd\beta_{X}$ .
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Then every $(r-1)- t\Lambda$ minor of the localization $L_{z^{0}}$ vanishes of order $(s-1)$ at $z^{1}$ .
In particular we have

$\dim KerL_{z^{0}}(z^{1})=s$ .
Recall that on $N\Sigma$ we have an invariant two form, denoted by $\tilde{\sigma}$ and called

the relative symplectic two form (see [4], [8]) which is given by

$\tilde{\sigma}=\sum_{j=0}^{k}dx_{j}^{*}\wedge dx_{j}=dx_{a}^{*}\wedge dx_{a}$

where we have assumed that $\Sigma$ is defined by $\xi_{a}=0$ and $N\Sigma$ is parametrized by
$(x_{a}, x_{b}, \xi_{b};x_{a}^{*})$ . We now assume that

(5.4) $\Lambda_{X}(h\Sigma)^{\tilde{\sigma}}\subset\Lambda_{X}(h\Sigma)$

where $\Lambda_{X}(h\Sigma)^{\tilde{\sigma}}$ denotes the anihilator of $\Lambda_{X}(h\Sigma)$ with respect to the relative
symplectic two form $\tilde{\sigma}$ . Then

Theorem 5.2. Replacing (5.3) by (5.4) in Theorem 5.1 we get the $s$am$e$ con-
clusion as in Theorem 5.1.

We denote by $\rho$ the radial vector field on $T^{*}\Omega$ and recall that $\Lambda_{(z^{0},z^{1})}(h)$ is
the lineality of $h_{(z^{0},z^{1})}(h)$ and $\Lambda_{z^{0}}(h)\subset\Lambda_{(z^{0},z^{1})}(h)$ hence

$\Lambda_{(z^{0},z^{1})}(h)^{\sigma}\subset\Lambda_{z^{0}}(h)^{\sigma}$ .
Proposition 5.3. Assume that $A_{j}(x)$ are real analytic in $\Omega$ which contains the
origin and $L$ is strongly hyperbolic near the origin. Let $z^{0}\in T_{0^{*}}\Omega\backslash 0,$ $z^{1}\in T_{z^{0}}(T^{*}\Omega)$

be characteristics of order $r$ and $s$ of $h$ and $h_{z^{0}}=\det L_{z^{0}}$ respectively With

(5.5) $\rho(z^{0})\not\in\Lambda_{z^{0}}(h)^{\sigma}\subset\Lambda_{z^{0}}(h)$ .
Assume that we can find $locaI$ coordinates $x$ near the origin with $t(x)=x_{0}$ such
that

(5.6) $h_{\{z^{0},z^{1}\}}(v, z)=h_{\{z^{0},z^{1}\}}(0, z),$ $\forall v\in\Lambda_{(z^{0},z^{1})}(h)^{\sigma}$ .
Then every $(r-1)$-th minor of $L_{z^{0}}$ vanishes of order $s-1$ at $z^{1}$ . In particular we
have

$\dim KerL_{z^{0}}(z^{1})=s$ .
Proposition 5.4. Assume that $A_{j}(x)$ are real analytic in $\Omega$ which contains the
origin and $L$ is strongly hyperbolic near the origin. Let $z^{0}\in T_{0^{*}}\Omega\backslash 0$ be a non
degenerate characteristic of $h$ of order $r$ with (5.5). $Assume$ that for every multiple
characteristic $z^{1}\in T_{z^{0}}(T^{*}\Omega)$ of $h_{z^{0}}=\det L_{z^{0}}$ we can ffid local coordinates $x$ with
$t(x)=x_{0}$ verifying (5.6). Then $L_{z^{0}}(z)$ is symmetriza$ble$ by a non singular constant
matrix $T$;

$T^{arrow 1}L_{z^{0}}(z)T$

is symmetic for every $z$ . In particu1ar $L_{z^{0}}(z)$ is strongly hyperboli$c$ .
This result clearly generalizes Theorem 1 in [9].
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Corollary 5.5. Assume that $A_{j}(x)$ are real analytic in $\Omega$ which contains the ongin
and $L$ is strongly hyperbolic near the origin. Let $z^{0}\in T_{0^{*}}\Omega\backslash 0,$ $z^{1}\in T_{z^{0}}(T^{*}\Omega)$ be
a chaxacteristic of order $r$ of $h$ with (5.5). Assume that for every $z^{1}\in\Lambda_{z^{0}}(h)$ we
$c$an find local coordinates $x$ near the origin with $t(x)=x_{0}$ verifying (5.6). Then
we have

$\Lambda(\det L_{z^{0}})\subset\Lambda(m)$

for every $(r-1)$-th minor of $L_{z^{0}}(z)$ .
Proof: We first note that $\Lambda(\det L_{z^{0}})=\Lambda_{z^{0}}(h)$ by Lemma 3.1. Let $m$ be a $(r-1)$-th
minor of $L_{z^{0}}$ and let $z^{1}\in\Lambda(\det L_{z^{0}})$ . Since $z^{1}\in\Lambda_{z^{0}}(h)$ and hence is a character-
istic of order $r$ of $h_{z^{0}}$ it follows from Proposition 5.3 that

$d^{j}m(z^{1})=0,$ $j<r-1$ .

On the other hand since $m(z)$ is homogeneous of degree $r-1$ in $z$ it is clear that

$m(z^{1}+z)=m(z)$

which proves $z^{1}\in\Lambda(m)$ . 口

Corollary 5.6. Under the sam$e$ assumptions as in Corollary 5.5 we have

the reduced dimension of $L_{z^{0}}=t\Lambda e$ reduced dimension of $\det L_{z^{0}}$ .

References
[1] M.F.Atiyah, R.Bott, L.Garding: Lacunas for hyperbolic differential operators

with constant coeflicients, I. Acta Math. 124 (1970), 109-189.
[2] L.H\"ormander: The Analysis of Linear Partial Differential Operators,

II. Springer, Berlin-Heidergerg-New York-Tokyo, 1985.
[3] L.H\"ormander: The Cauchy problem for differential equations with double

cbaracteristics. J.Analyse Math. 32 (1977), 118-196.
[4] Y.Laurent: Th\’eorie de la deuxi\‘eme microlocalisation dans le domaine

complexe, Progress in Math. Birkh\"auser 531985.
[5] T.Nishitani: Symmetrization of a dass of hyperbolic systems with real con-

stant coefficients. preprint 1992.
[6] T.Nishitani: Syst\‘emes effectivement hyperboliques. In Calcul d’op\’erateurs

et fronts d’ondes J.Vaillant ed., Hermann Paris 1988, pp108-132.
[7] T.Nishitani: Necessary conditions for strong hyperbolicity of first order sys-

tems. to appear in J. Analyse Math.
[8] N.Tose: On a dass of 2-microhyperbolic systems. J. Math. pure et appl.

67 (1988), 23-37.
[9] J.Vaillant: Sym\’etrisabili t\’e des matrices localis\’ees d’une matrice fortement

hyperbolique. Ann. Scuo. Sup. Pisa 5 (1978), 405-427.


