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Osaka University, Toyonaka, Osaka 560, Japan

1. Introduction

In this note we are concerned with strongly hyperbolic systems in an open set
Qin R™"! with involutive characteristics. We introduce, in section 3, localizations
of systems at a multiple characteristic where the dimension of the kernel of the
principal symbol is equal to the order of the characteristic. There we also give the
definition of non degenerate characteristics (Definition 3.3). Then we study how
the localization of systéms inherits strong hyperbolicity of the original system. To
do so, in section 2, we first study two kinds of second order localizations. The
first one is the usual one and obtained by successive localizations but provides less
precise informations on the original symbol. The second one, which provides more
detailed informations than the first one, is rather complicated and the invariant
meaning is less clear. However see Lemma 2.7 below.

In general the localization is not strongly hyperbolic system even if the original
system is strongly hyperbolic and the characteristic is involutive, in contrast with
the scalar case. Our first result is concerned with a strongly hyperbolic system
with an involutive characteristic of order r and hence the localization is a r X r
system. Then we prove that every (r — 1)-th minor of the localization vanishes of
order s — 2 at every characteristic of order s of the localization ( Theorem 4.1 ).
This means that the localization must satisfy a same necessary condition which is
verified by the original strongly hyperbolic system (see Theorem 1.1 in [7] ).

If the characteristic is involutive and of order r then every (m — 1)-th minor
of m x m strongly hyperbolic system vanishes of order » — 1 at the reference
characteristic ( see Theorem 1.3 in [7] ). Let 2° 2! be characteristics of the
original system and its localization at 2° of order r and s respectively. Then,
assuming that the characteristic set is an involutive C°*° manifold, we show that,
under some restrictions, every (r — 1)-th minor of the localization vanishes of
order s — 1 at z! if (29, 2') is involutive (Theorems 5.1 and 5.2). In particular the
localization is diagonalizable at this characteristic. If we further assume that the
characteristic is non degenerate, refering to our previous results in [5], we can show
that the localization is strongly hyperbolic, more precisely the coefficient matrices
of the localization are simultaneously symmetrizable ( Proposition 5.4 ). We also
show that the same result holds for a larger class of strongly hyperbolic systems
which are not coordinate free though (Proposition 5.3). In particular this gives a
generalization of Theorem 1 in [9].
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2. Higher order localizations

Let h(z) be a monic polynomial in z; of degree m:
m

W)=+ 3 ai(a)al
i=1

where aj(z') € C>°(U), 2' = (z3,...,2,) and U is an open neighborhood of the
origin of R"™!. We assume that h(z) is hyperbolic with respect to the z; variable,
that is the equation h(z) = 0 in z; has only real roots for every z' € U. Let
z% € R x U = Q be a characteristic of h of order rq:

& (z°) =0, j <ro, d°h(z®) #0.
We define h,o(z) as
h(z® + pz) = p" (hao(z) + O(1)), =0

which is a well defined homogeneous polynomial of degree ro on T,o2. vMoreover'
hyo(z) is hyperbolic with respect to the z; variable ( cf. Lemma 1.3.3 in [3] ). We
also define the lineality of hzo(z) as

Ago(h) = {z € TpoQhyo(y + ta) = hyo(y), Vt € R, Vy € Tpof2}

which is a linear subspace in T2 ( see [1], [2] ).
In the following we denote by ug, 41 two small parameters with 0 < po < 3

<1

Lemma 2.1. Let z' be a characten's'tic of order r1 of hgo and let y € Azo(h).
Then we have

R(z® + po(z! + ) + poprz) = pg° pul* (ha(y, =, po/p1) + p191(y, 2, 1, pro/ 1))

where h(y,z,£) is a polynomial in (y,z,§), homogeneous of degree r1 in (z,§)
which is hyperbolic with respect to the z, variable and g1(y,z, p1,€) is C*® in
|1 + |poprz| + |poy| < €, |€] < 2 with sufficiently small € > 0.

Proof: Tt is clear that we can write

h(e® + poz) = pg® (heo(2) + pogo(e, po))

where go(z, po) is C in |uo| + |poz| < € with small e. By Rouché’s theorem and
hyperbolicity of h it follows that

heo(z! 4y + ) + pogo(e' +y + 2, 10) = hgo(z' + 2) + pogo(z’ +y + z,10) =0
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has r; real zeros converging to zero with (z', po) — (0,0). Applying Lemma 1.3.3
in [3] we obtain

(21) h(wo + /~L0('7:1 + Yy + .'L‘)) = “go (hl(y’ z, /‘1’0) + gO(y’ z, /1'0))

where hi(y,z, po) is a polynomial in (y,z, po), homogeneous in (z, uo) of degree
r1 which is hyperbolic with respect to the z; variable and §o(y, z, o) is C* in
|po] + |moz| + |oy| < € with small € of the form

Go(y,z, po) = Z 2%ty Gaj(y, , o)
a|+j=ri+1

Here note that

go(y, paz, pro) = it YT 2%(po/m) Gai(y, iz, pa(po /)
lal+j=r1+1

= tu;l_Hgl(ya T, H1, ﬂO/Hl)-

It is clear that §; is C™ in |p1| + |poprz| + |poyl < € |po/p1| < 2 with small e.
Then replacing z by g1z in (2.1) we get the desired result. O

We are interested in the case either pg = p1 or o = O(u**'). In the former

case we set ‘
hiz0,21}(y,2) = h1(y,2,1), 91(y, 2z, 1) = pg1(y, z, 4, 1)
so that
(2.2) Rz’ + p(e +y) +pP2) = p"F (heo 01y (¥, 2) + 91(y, 2, 1))

where g1 is C* in |u| + |pu?z| + |uy| < € with small € and ¢;(y,z,0) = 0. In the
latter case we set

h(:co,xl)(y’x) = hl(y,wa 0),
91(y, z, p1, po/p1) = paga(y, ¢, pa, po/p1) + ha(y, ¢, po/p1) — ha(y, z,0)

so that
(2.3) A(z° + po(z' +y) + pop1z) = pg° 1t (hzo,21)(y, 2) + 91(y, T, i1, o/ 1))

where g1(y, z, p1, o/ p1) is C in |p1 + |poprz| + [poy| < € with small € > 0 and
91(y,2,0,0) = 0. Note that by definition we have

(2.4) h(:c",zl)(ya T+ w)= h(lo’x1)(y, z), h{zo’ﬂ}(y,.’v +w) = h{zo,zl}(y? z)

for every w € Ago(h).
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Lemma 2.2. h(z0,21)(y, ) is independent of y € Ao(h) and we have
hes,e1(2) = (heo)ar (2).
Proof: Since h(z® + poz) = pug® (heo(x) + O(po)) it follows that
h(2® + po(a! +y + ) = p° (heo(z' + p1z) + O(po))

1

because y € Ayo(h). Since z' is a characteristic of ko of order r; we see that

heo(z' + paz) = pit ((heo)or(z) + O(p1)) -
Noting po = O(u**!) we get
h(z® + po(2' +y) + popaz) = p pi* (ko)1 (2) + O(p1))
which shows the assertion. O

In particular h(zo z1)(z) is well defined independent of the choice of parameters
p; provided if po = O(u**"). Note that Lemma 2.1 shows that

hiz0 213 (¥, Az) = h1(y, Az, 1) = A" hy(y, x, 1/A)
which implies that

(2.5) AILIEO AT h{zo,z1}(y, Az) = hi(y,z,0) = h(zo,x1)($)

that is, h(zo0 o1)() is the principal part of hzo 21}(y, a:) W1th respect to z. Denoting
by A(zo 1)(h) the lineality of h(xo z1)*

A(,,o’za)(h) ={z € Ton|h(Io,z1)(y +tz) = h(zo,z1)(y),Vt € R,Vy € Ton}
which is a linear subspace in T;0) = T,19Q, it follows from (2.4) that
(2.6) Ago(h) C A(zo,zl)(h).

If ! is a characteristic of hyo then ! + y, y € Ago(h) is also a characteristic of
hzo of the same order and hence

(2.7) h{zo’z1+y}(0,$) = h{zo,x1}(y,.’1}), Yy E Azo(h).

Lemma 2.3. We have
h{zo’z1}(y,$ + 'w) = h{zo,z1}(y,$), Yw € A(xo,zl)(h).

Proof: Since h(go;1)(z) is the principal part of Ao ;1}(y,z) with respect to z
and hyzo ;1}(y, =) is hyperbolic with respect to the z; variable the assertion follows
from Corollary 12.4.8 in [2]. , O
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Lemma 2.4. Let x =:(ma,zb) be a partition of the variable  and assume that
2% = (22,0) € Ayo(h) is a characteristic of h and

h(Aza, 25) = A™h(2a, ), VA€ R.
Then we have
h{xo,z1}(tw0,x) = hyz0,21}(0,z — t(z1,0)), Vt € R.
Proof: Set y = 20 + p(z! +t2%) + yzw. Then we havé
Yo = (14 pt)(z) + pzg + p’((za — t25) + O(1))), y» = pay + p’zs.
From the assumption it follows that~
h(a® + p(a’ +12°) + p’z) = (1 + At)"'h(w" + pz' + p*(z — t(z;,0) + O()))
which proves the assertion. ]

Set

Hy(2%2) = Z R (2%)zP /B!
18l=t

where A% (2°%) = 9P p(2°)/82P. Then

Lemma 2.5. Let z°, 2' be characteristics of h, hyo of order r and s respectively.
Assume that Ao ;1y(h) is given by z, = 0 where © = (x4, x3) is a partition of the
variable z. Then we have

Hz(a)(mo;m +y) =0, Vy € Apo(h), I +]a| = rts

unless a = (a,,0).

Proof: By definition we see easily that

hioay(yo0) = Y. HP (%! +y)2f /8.
I+|B]=r+s

Since Lemma 2.3 shows that hze ;13(y, z) is a polynomial in (y, z,) we obtain the
desired result. O
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We now study how hyzo ;1}(y,z) depends on y € Ago(h) assuming'.that
Y ={z € Q|dr(z) =0,j < r,d"h(z) # 0}

is a C° manifold through z°. For y € ¥ and z € N,%, a normal of ¥ at y, we
define hs(y, z) as

he(y,z) = lim p™"h(y + pz)

which is well defined on the normal bundle NX of ¥. Let Q5 be the blow up of Q2
along ¥, that is

Qr = (Q\Z)U SNT

where SN is the sphere normal bundle of ¥. We have the canonical projection
7 : Qs — Q and remark that #—!% is a submanifold in Q5 of codimention 1.
Take the local coordinates = (4, z3) such that ¥ is defined by z, = 0. Recall
that for p € SNX we can choose as a chart near p, for example,

¢(p) = (xb7$a,P),P = |$alawa = wa/P € Sk_l C ]Rk ifp ¢ SNE,
¢(p) = (zp,dza(p)/|dza(p)],0) if p € SNZ.

Let 7*h be the pull back of A by 7. In our coordinates h and hy, are given by

h(zq,28) = Z Co(zp,24)zs, hx(za,zp) = Z Co(zp,0)28,

" al=r |a|=r

T*W(zh,wa,p) = Y p"ColTb, pwa )l

|laj=r

where Co (3, ,) are C*®. This shows that 7*h vanishes of order r on 771X. Let
p € C(fz) be a defining function of 7~'%, that is 7=! = {p = 0}. Then it is
clear that h* = j~"n*hisin C°(Qx). Let 2° € T, 2! € N,0Z\0 be characteristics
of h, hzo of order r and s respectively. In our coordinates z° = (z9,0), z* = (0,z))
and (z9,zl) € N¥ \ Z. Remark that (z),z}) is a characteristic of order s of hy
because

hzo(wa) = Z Ca(.'l;g,()).’ljg = hE(xg, xa)

lee|=r

and hence hg(z,z,) = 0 has the zero z; = 0 of order s when z,, = 0 with
z, = (z1,z4) and hx(zp,z,) is hyperbolic with respect to z; variable. Note
that (z),Azl), A € R\ 0 is also a characteristic of hs of order s because of the
homogeneity with respect to z,. Since NX \ ¥ is canonically identified with a
subset of Qg we may consider X = (23,7,,0), B, = z./|z}| as a point of Qx.
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Lemma 2.6. Set B '
R*(zb,2a,0) = D Calab, pra)eg.

la|=r

Then we have
h*X(xbawa’P) = Cil;((xbawa:‘p% (zb,wa, p) € TxQs

where ¢ = (p71p)(X)" # 0.

Proof: Recall that 71*(:1:2 + Tb,0a + Za,p) = 0 has the zero z; = 0 of order s
precisely when (z4,z4,p) = (0,0,0). Since h*(z) + 24,0, + Zq,p) is hyperbolic
with respect to the z; variable we can write

72*(:1:(; + Zp,Wa + Ta, p) = i";((xbaxa’ p) + O(|za| + |s] + |P|)3+1

“where h% (24, 4, p) is a homogeneous polynomial in (23, Za, p) which is hyperbolic

with respect to the z; variable. Let wa(u) = @Wa + pwa + O(u?) € S¥1 C RF,
we € T, S*1 C R¥ and observe

h* (9 + pay,wa(p), pp) = (51 p) h* (2} + pav, wa(p), 4p)
which is equal to cu® (E*X(xb,wa, p) + O(,u)) and hence the conclusion. O

Let Ax(h*) be the lineality of h% which is a linear subspace in Txs. Here
note that Ax(h*) is independent of the choice of 5, a defining function of 7713,
and hence we may write Ax(7*h) for Ax(h*) without ambiguity.

Lemma 2.7. Assume that Ax(7*h) is transversal to Tx (7~ 'Z), that is Ax(7*h)
+ Tx (7~ 1E) = TxQz. Then we have

h{zo,zl}(wbvma) = hE(zg,zg)(mb + lmtlll'%b’ zq+ lwilzféa)
with some fixed &3, £, where hg(z0 ;1) = hzXx Is the localization of hy at (z),z%).

Proof: We first recall that
h(z® + p(a’ + 23) + w’za) = pTh*(Th + p2b, o + pTay 1)

which gives that 3
hx(zh,wa, 1) = hiz05,(2b, Ta)-
Noting the following
h{zo,z1}(:rb,xa + /\m}.) = h{zo,ml}(mb,xa), VIeR,
h{zo,zl}(z‘b,wa) = )\r+8h{zo’z1/)‘}($b/A, sca//\2), VA€ IR\O
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we easily see that

hizo w1} (b, Ta) = |5 | hie m,y (/|25 , £1 /|5 *)
where £, = czl + 24, &4 € T5,5%! € R and ¢ € R. Thus we obtain
(2.8) hiz0,51) (28, @a) = |25 | Wk (28/I2al, 8o/ |25l 1).
The same argument with p = 0 shows that
(2.9) by e (s, 3a) = [2g| R (2a/ |25, #2 /l2g 2, 0).
From hypotheses there is (z},w), p') € TxQz with p’ # 0 such that

 Rx((@h,wa, p) + Hzh,wh, p) = By (25, wa, p)

for V(zp,wq,p) € TxQs and ¢t € R. Taking p=1,t = —1/p' we get
(2.10) hx (2b,wa,0) = Rx(zs + 23/p',wa +wa/p', 1)
Now it is clear that

hiz0 21} (25, Ta) = Pp(z9,01) (T + €5 |2, 2o + |22 Fa)
with &, = —z}/p', £, = —w/p'. This is the desired assertion. | O]

Let 8 be the canonical projection S : N¥ — ¥ and denote by df the
differential of 3,
d,BX : TxNE —_ TIOZ.

Lemma 2.8. Assume that Ax(n*h), Tx(n~1¥) are transversal to Ax(hs),
Ker dBx respectively. Then there is a polynomial @ on N, 0% such that

hiz0,z1}(T5; Ta) = Q(Za + &a)

with a fixed ,. In particular h{zo z1}(2b,%,) is independent of Tp.

Proof: In our coordinates J is given by f : (zs,z,) — (2s,0) and hence Ker dfx
= {(0,z4)|za € NzoX}. From hypotheses it follows that Ax(hs) contains the set
{(xs,0)|zs € TzoL}. Then we see that

hs(e,e1) (@6 + 24|80, Za + |25]7Fa) = hn(ep,21)(0, 2a + |24 |*Za)

which proves the assertion noting that hz(zg,z; y(0,z,) is a well defined polynomial
on NyoX. A O
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3. Localizations of system
Let  be an open set in R™' with local coordinates # = (zo,z') where

¢’ = (z1,...,z,) and let T*Q be the cotangent bundle over Q with corresponding
coordinates (z,£). Let L be a first order differential operator on C*°(f2, C") with

- symbol L(z,£) € C°(T*Q, Hom (C™,C™)). We denote by h(z,£{) the determi-

nant of L(z,{). Following Vaillant [9] (see also [1]) we define the localization of
L(z,¢£) at a characteristic 2° = (2%,£%) € T*Q \ 0 of order r of h with

dim KerL(z%) = r.

Let 7 be the natural projection m : €™ + €™ /ImL(2°) and ¢ be the inclusion
t: KerL(2%) — €™.

DEFINITION 3.1. We define L,o(z) by

"Lo(z) = };IE%) p i L(2° + p2)e, z € Typo(T*RQ).

Taking bases for €™ and then for KerL(2°), Ker’ L(2°), where *L(2°) denotes the
transposed matrix of L(2°), we examine the definition. We choose u;,v; € C™ so
that

KerL(2°) = span — {u1,...,u,}, Ker'L(2°) = span — {vq, ..., v, }.

With U = (u1,...,ur), V = (v1, ..., vr), which are m X r matrices, we set
Uw,v)(2) =" VL(2)U.
Then in theses bases L,o(2) is expressed by Ly, v),0(2):
Lwyyeo(2) = lim p™ Lw,v)(2" + pa).
For another pair of bases U, V for KerL(zOl), Ker’ L(2°) respectively it is clear that

Lig,vy(2) = MiL(w,v)(2) Mz

~ with some non singular M; € M(r,C) and hence

(3.1) Lg,vy.0(2) = MiL(u,vyz0(2)Ms.

We next examine the effects of a change of basis for C™. Let LT(2) = T L(2)T
with a non singular T € M(m, €) and let Uy, V; be a pair of bases for KerLT(2°),
Ker’L7(z). Then it is also clear that

(3.2) L{y, viyz0(2) = N1Ly,v)»0(2) N2

with non singular N; € M(r,C). From (3.1) the determinant of L,¢(2) is well
defined up to non zero multiple constant.



Lemma 3.1. We have :
(deth),o(z) = detL,o(z)

up to non zero multiple constant.

Proof: As noted above it is enough to show the assertion with suitably chosen
bases U,V for KerL(z%), Kert!(2°) and a basis for €™. After a change of basis
- for €™ we may assume that

L) =Ga0

where G € M(m —r, €) is non singular and O denotes the zero matrix of order r.

Write I
Lix Ly
L=
(L21 L22)
where Li;j(2°) = O unless (z,5) = (1,1) and L11(2°) = G. Thus choosing U,V
suitably we have
Lw,v)(2) = La2(2).

Since L11(2° + pz) = G + O(p), Lij(2° + pz) = pLi;(2) + O(u?) as p — 0 we see
that
detL(2° + pz) = p"{(detG)detLh,(2) + O(p)}

and hence

(detL),o(2) = (detG)detLi,(2).
On the other hand, by definition, we have |
Liy,vy»0(2) = Lgg(2)
and hence the assertion. ’ O
From (3.1) it is clear that every s-th minor of Ly ¢y,0(2) is a linear combi-

nation of s-th minors of Ly vy,0(2) and vice versa.

Lemma 3.2. Every (r — 1)-th minor of L,0(z) is a linear combination of m,o(z)’s
where m(z) are (m — 1)-th minor of L(z).

Proof: It is enough to show the assertion for L(y v),0(2) with suitably chosen U, V'
and a basis for €™. As observed in the proof of Lemma 3.1 we may assume that

. _ (G40 O(k)
L(z" +pz) = ( O(u) pLh,(2) + 0(#2)) '

Let m(z) be the (m — 1)-th minor of L(z) obtained removing i-th row and j-th
colomn of L(z). Similarly we denote by I(2) the thus obtained (r — 1)-th minor of
92(2). Then it is clear that

mso(2) = " {(detG)i(2) + O(u)}
as p — 0 and hence [(z) = (det G)~'m0(z) which proves the assertion. O

109
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Recall that L,o(z) is Hom(KerL(2°), €™ /ImL(2°)) valued linear function in
z.

DEFINITION 3.2. Let L,o(2) = (¢%(2)). We call
d(L,0) = dim span — {qS;}

the reduced dimension of L.

DEFINITION 3.3. Assume that L(z) is real. Let 2% be a characteristic of order r
of h with dim KerL(z°) = r. We say that z° is non degenerate if

d(Lyo) 2 r(r+1)/2.

4. Necessary conditions (I)
Let

L(z,D) = Y 4;(x)D;

be a differential operator of order 1 on C®°(£2, C™). We assume that h(z,¢) is
hyperbolic with respect to t(z) € C*(Q2), dt(z) # 0, that is

h(z, € + Adt(z)) = 0

has only real roots for every z € Q, £ € T;Q. Let 0 = Z?:o d€; A dz; be the
canonical symplectic two form on T*? and for S C T,,(T*Q2) we denote by S” the
anihilator of S with respect to o:

S% = {2 € Tu(T*Q)|o(2,u) = 0,Vu € S}.

In what follows we assume that ¢(z) = z¢ and Ao = I, the identity matrix of
order m without restrictions. Recall that we say that L is strongly hyperbolic near
the origin if the Cauchy problem for L(z, D) + B(z) is correctly posed for every
B(z) € C®°(2, M(m, €)) in both Q!, Q; with small ¢ where Q° = {z € Q|zo < t}
and Q; = {:I} € Qixo > t}.

In this section we show the following result.

Theorem 4.1. Assume that Aj(z) are real analytic in Q0 contaning the origin.
Let 2° € T¢Q\ 0, 2! € T,o(T*Q) be characteristics of order r and s of h and
h,o = detL,o respectively with A,o(h)? C A,o(h). If L is strongly hyperbolic near
the origin then every (r — 1)-th minor of Lo vanishes of order s — 2 at z'.

This result is optimal in a sense. We give an example.



EXAMPLE 5.1: Let

b & 0
L(z) = (m%ﬁl €o 0 ) , 2 =(0,ey), n > 2.
‘ 0 0 & —2z0&a

For this L(z) it is not difficult to examine the followings.

1) L is strongly hyperbolic near the otigin ( see Example 1.2. in [6]) and 2° is a
characteristic of order 3 of h with A,o(h)? C A,0(h).

2)
b & O
Lzo(z) - 0 fo 0
( 0 0 & )

and z' = (0,e;) is a characteristic of detL,o(z) of order 3.

3) the 2-minor
I
10 &

vanishes of order 1 = 3 — 2 at 21,

To show the result we first derive an a priori estimate for well posed Cauchy
problem which will be needed in the following sections also. Let o = (oq,...,0n)
€ Qn+1 and set

(4.1) y N =y"+ ) AT, (V) ="+ Y A
Jj=1 j=1

where y/,n7 € R"*! and € € Q4,0 < e < e <+ < €. Fora differential
operator P on C*°(Q, €™) with C*°(§) coefficients we set with x € Q.

(4.2) Py(y(A),n(A); z,€) = P(y(X) + A7z, A"n(A) + X7¢)

where A77 = (A7 %°z,, ...,/\“’"xn) etc. Assuming that the Cauchy problem for
P(z,D) is correctly posed in both Q! and Q; for every small ¢ we derive an a
priori estimate for Py(z, D).

Proposition 4.2. Let o € Q4t! and k,¢; € Q. Assume that 0 € Q, y° = 0 and
the Cauchy problem for P(z,D) is correctly posed in both Q! and Q; for every

small t. Then for every compact set Y, H C IR("'H)S W c R"*! and for every
positive T > 0 we can find C >0, X > 0 and p € IN such that

IUICO(Wt) _<_ C)\(?-i—n)plp,\ulop(wz),
fulcoqwy < CATHIP | Prulon(w)
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for A\ > X, u € (CEW))™, |t| <T,Y =(,..v°) €Y, H=(n',..,n°) € H

where G = max;o;.

Proof: Set
f’(:z: D)= e“i'\‘<n(>\),$>P($ D)e»‘"<n(>\),z>

so that P(z,£) = P(z, \*n()\) + §) Let K C Q be a compact set and recall
Proposition 2.1 in [7]:
lvlcoxty < ClPvler(kty, [t <7, v € (CF°(K))™
with an integer p € IN and a 7> 0. Since
|’u,|CO(Kt) < ClA’?p|6‘ikk<n(k)’z>U|CP(Kt)
it follows that | 3
l’ulco(Kt) S Cz)\nplp(z,D)ulcp(Kt).
Repeating the proof of Proposition 2.2 in [7] we get the desired assertion. O

5. Necessary conditions (II)

Let
Y ={z e T*Qd’h(z) =0,j <r,d"h(z) # 0}

be the set of characteristics of order r of h. We assuzhe that ¥ is an involutive
C manifold through z°. Denote by p the canonical projection from T*{2 onto €:
T*Q — Q and assume that

(5.1) dpo : To(T*Q) — Tp(,0)8 is surjective on T,o X.

Let z! € N,oZ \ 0 be a multiple characteristic of h,0. As in section 2 we denote
by (T*Q)x the blow up of T*Q along ¥ and by 7 the canonical projection from
(T*Q)x onto T*S). We assume that

(5.2) Ax(7*h) is transversal to Tx (7' X)

where X = (2%,2!) € N\ T is considered canonically as a point in (7*Q)s. We
also denote by B the projection from NX onto X off the fibers. Then we have

Theorem 5.1. Assume that A;(z) are real analytic in Q which contains the origin
and L is strongly hyperbolic near the origin. Let ¥ be the characteristic set of order
r which is assumed to be an involutive C* manifold containing 2° € T¢Q\ 0. Let
z! € N,03\ 0 be a characteristic of order s of h,o = detL,o and with X = (2°, 21)
we assume (5.1) , (5.2) and that

(5.3) o Ax(hy) is transversal to Kerdfx.
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Then every (r — 1)-th minor of the localization Lo vanishes of order (s ~1) at 2. |
In partjcular we have

dim KerL,o(z') = s. v

Recall that on N we have an invariant two form, denoted by & and called
the relative symplectic two form (see [4], [8]) which is given by
' k
&= dz}Adzj=de; Ndz,

j=0
where we have assumed that ¥ is defined by £, = 0 and NX is parametrized by
(za, b, Ep; %). We now assume that

(5.4) A Ax(hg)a C Ax(hx)

where Ax(hs)® denotes the anihilator of Ax(hs) with respect to the relative
symplectic two form &. Then

Theorem 5.2. Replacing (5.3) by (5.4) in Theorem 5.1 we get the same con-
clusion as in Theorem 5.1.

We denote by p the radial vector field on T*Q and recall that A‘(,o, (k) is
the lineality of k(0 ,1)(h) and A o(h) C A0 ,1)(h) hence

A(Zo,zl)(h)a C Azo(h)a.

Proposition 5.3. Assume that Aj(z) are real analytic in 2 which contains the
origin and L is strongly hyperbolic near the origin. Let z° € TyQ\0, 2! € T,o(T*Q)
be characteristics of order r and s of h and h,o = detL,o respectively with

(5.5) : ) p(zo) ¢ Azo(h)a C Azo(h).

Assume that we can find local coordinates & near the origin with t(z) = zo such
that '

(5.6) h{zo,z1}(v,z) = h{zo,z1}(0,z), Vv € A(zo’z1)(h)o.

Then every (r — 1)-th minor of Lo vanishes of order s — 1 at 2'. In particular we
have
dim KerL ,o(2') = s.

Proposition 5.4. Assume that Aj(z) are real analytic in § which contains the
origin and L is strongly hyperbolic near the origin. Let z° € Ty¢Q \ 0 be a non
degenerate characteristic of h of order r with (5.5). Assume that for every multiple
characteristic z* € T,o(T*Q) of h,0 = detL .o we can find local coordinates - with
t(z) = zo verifying (5.6). Then L,o(z) is symmetrizable by a non singular constant
matrix T,

_ T~ L,o(2)T
is symmetic for every z. In particular L,o(z) is strongly hyperbolic.

This result clearly generalizes Theorem 1 in [9].
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Corollary 5.5. Assume that Aj(z) are real analytic in Q which contains the origin
and L is strongly hyperbolic near the origin. Let 2° € TgQ \ 0, 2! € T,o(T*Q) be
a characteristic of order r of h with (5.5). Assume that for every z* € A,o(h) we
can find local coordinates x near the origin with t(x) = zo verifying (5.6). Then
we have

‘ A(detL,o0) C A(m)
for every (r — 1)-th minor of L,o(z).

Proof: We first note that A(detL,o) = A,o(h) by Lemma 3.1. Let m bea (r—1)-th
minor of L,o and let z* € A(detL,0). Since 2* € A,o(k) and hence is a character-
istic of order r of h,o it follows from Proposition 5.3 that

d'm(z*) =0, j<r—1.
On the other hand since m(z) is homogeneous of degree r — 1 in z it is clear that
m(2' + 2) = m(z2)
which proves 2! € A(m). O
Corollary 5.6». Under the same assumptions as in Corollary 5.5 we have

the reduced dimension of L,o = the reduced dimension of detL .
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