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A link between hypoellipticity and solvability in the Cauchy problem

京大理 大鍛冶隆司 (Takashi \={O}kaji)

\S 1 Introduction and Statement of result

Let $t\in R$ be a time variable and $x\in R^{n+1}$ be a space variable. We consider a

system $\{X_{1}, \ldots, X_{2n}\}$ of $2n$ vector fields on $R^{n+1}$ , given by

$X;=D_{i}=(\sqrt{-1})^{-1}\partial/\partial x_{i},$ $1\leq i\leq n$ $X_{1+n}=x_{i}D_{n+1},1\leq i\leq n$ .

The operators with which we are concerned are of the following form

$P(D_{t},X)=D_{t}^{m}+\Sigma_{j=0}^{m1}a_{j}(X)D_{t}^{j}$,
$a_{j}(X)=\Sigma_{|I|=m-j}a_{j,I}X^{I}$ ,

where for $I=(i_{1}, \ldots, i_{p})\in\{1, \ldots,2n\}^{p}\cdot$,

$X^{I}=X;_{1}\cdots X$; and $a_{j,I}\in C$.

There is a relation between the system of these vector fields and the Lie algebra of

Heisenberg group via Schr\"odinger representation. In this note, we do not enter into

this group theoretical aspect for simplicity.

We say that $P$ is strictly hyperbolic of nondegenerate type in generating direc-

tions if for any 三 $\in R^{2n}\backslash \{0\}$ , the roots $\zeta_{j}$ of polynomial in $($

$\zeta^{m}+\sum_{j=0}^{m-1}a_{j}(\Xi)\zeta^{j}=0$ ,
$a_{j}( \Xi)=\sum_{|I|=m-j}\dot{a}_{j_{;}I}\Xi^{I}$

are real distinct and moreover $\zeta_{j}(\Xi)\neq 0$ or $\zeta_{j}(\Xi)\equiv 0$ .
Now, we consider an extra variable $s\in R$ and introduce the following operator

on $R_{s}^{2}\cross R_{x}^{n+1}$ ,
$\tilde{P}=P(D_{t}+iD_{s},X)$ .

Let $\Gamma$ be the subset consisting of the points $\rho=(0,0,0;\sigma,\tau,\xi)$ of the cotangent

space $T^{*}(R_{t}\cross R_{s}\cross R_{x}^{n+1})$ such that

$\sigma<0,$ $(\tau,\xi)\in R^{n+2}$ .
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Then we can state the main result.

Theorem 1 Suppose that $P$ is strictly hyperbolic of nondegenerate type in gen-

emting directions. Then, the Cauchy problem for $P$ $is\uparrow bell$ posed at the origin if and

only if $\tilde{P}$ is micro-hypoelliptic at any point $\rho\in\Gamma$ .

Here, the Cauchy problem for $P$ to be well-posed means that there exist a

neighborhood $U\subset R^{n+1}$ of the origin and a positive number $T$ such that for any

$f\in C_{0}^{\infty}((-T, T)\cross U)$ and $g_{j}\in C_{0^{\infty}}(U)$ , the Cauchy problem

$\{\begin{array}{l}Pu=fin(0T)\cross U\theta\dot{i}u|_{t=O}=g_{j}(x)onU,0\leq j\leq m-l\end{array}$

has a solution $u(x, t)\in C^{m}((-T, T)\cross U)$ .

Corollary Under the same condition as theorem 1, if for any non-real complex

number $z,$ $P(zD_{t}, X)$ is hypoelliptic at the origin, then the Cauchy problem for $P$ is

well-posed at the origin.

In this note, we only consider the sufficient part of our theorem. We note that

it is well-known that

Proposition If $\tilde{P}$ is micro-hypoelliptic at the point $\rho=(0,0,0;\sigma, \tau,\xi)$ of the

cotangent space $T^{*}(R_{t}\cross R_{s}\cross R_{x}^{n+1})$ , the operator $\hat{P}=P(\tau+i\sigma,\hat{X})$ is injective on

the space $S(R^{n})$ for $\lambda=\pm 1$ , where $\hat{x}_{:}=X_{1}$ if $1\leq i\leq n$ $and=x_{i-n}\lambda$ if $1\leq i\leq n$ .

Hence it suffices to prove that the injectivity of the operator $\hat{P}|_{\lambda=\pm 1}$ at the every

point $(0,0, \tau, \sigma)$ with $\sigma<0$ implies the well-posedness. We conclude this section

with a example.
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Example 1
$P=D_{t}^{2}-(D_{1}^{2}+x_{1}^{2}D_{2}^{2}+\alpha D_{2})$,

where $a\in$ C. Since Hermite operator on $R$

$(-(d/dx)^{2}+x^{2})$

has a eigenvalue 1 with eigenfunction $\exp(-x^{2}/2)$ , a simple calculation can show

that the ordinary differential equation

$\{(\tau+i\sigma)^{2}-(D_{1}^{2}+x_{1}^{2}+\epsilon\alpha)\}u(x_{1})=0$

has no non-trivial solution in $S(R^{n})$ for any $\sigma<0,$ $\epsilon=\pm 1,$ $\tau\in\dot{R}$ if and only if

$\alpha\in R$ and $|\alpha|\leq 1$ .

This is a necessary and sufficient condition for the Cauchy problem for $P$ to be

well-posed. Ivrii-Petkov-H\"ormander have shown the similar result for more general

operators with double characteristics using Melin’s inequality. It seems that their

method can not be applied to the higher order case. One of disadvantages of our

method is that it is difficult to state our condition more expliciltly. In the final

section, we shall give some remarks on this problem.

\S 2 Outline of proof

It suffice to consider the Cauchy problem with zero Cauchy data. Then taking

Laplace transform with respect to the time variable, we have the operator $P_{\zeta}$ given

by

$\zeta^{m}+\sum a_{j}(X)\zeta^{j}$ .

If we can show that for some appropriate space $W_{j}$ , there are some positive constants

$C,$ $p$ and $R$ such that $P_{\zeta}$ is a invertible operator from $W_{1}$ to $W_{2}$ with its norm less

than $C(1+|\zeta|)^{p}$ for $\Im\zeta<-R$ , then the solution is given by the inverse Laplace
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transform $c$

$u=(2 \pi i)^{-1}\int_{\Im\zeta=-R}e^{i\zeta t}P_{C^{-1}}\tilde{f}d\zeta$,

where $\tilde{f}$ is the Laplace transform of the right hand side of the equation in the Cauchy

problem.

The important property of $P$ is its quasi-homogeneity, which means

$P_{\zeta}(\hat{X})=|\lambda|^{m/2}P_{\zeta/|\lambda|^{1/2}}(X^{\pm})$ ,

where $X^{\pm}=\hat{X}|_{\lambda=\pm 1}$ . We may consider the operator

$\mathcal{P}_{(,\pm}=\zeta^{m}+\sum a_{j}(X^{\pm})\zeta^{j}$

in the domain $\{\zeta\in C;\Im\zeta<0\}$ .
We shall use a calculus of a class of $\psi$ d.op. introduced by Shubin ([S]):

$A^{m}=\{a(x,\xi,y)\in C^{\infty}(R^{3n});|D_{x}^{\alpha}D_{\xi}^{\beta}D_{y}^{\gamma}a|\leq C_{\alpha\beta\gamma}\{x,\xi,y\}^{m-|\alpha+\beta+\gamma|}\}$ ,

where ( $z\rangle$ $=(1+|z|^{2})^{1/2}$ . The Hilbert spaces attached to this calculus are the

following.
$B^{s}=\{u\in S’(R^{n});(D_{x}^{2}+|x|^{2})^{s/2}u\in L^{2}(R^{n})\}$

and

$B_{\lambda}^{s}=\{u\in S’(R^{n});(D_{x}^{2}+|x|^{2}\lambda^{2})^{s/2}u\in L^{2}(R^{n}\}$ .

We denote the natural norms by $||\cdot\Vert_{s}$ , and $\Vert\cdot\Vert_{s,\lambda}$ , respectively.

Our claim is the following.

Claim: There are positive integer $p$ such that for any $s\in R$ we have

$||u\Vert_{m-1+s}\leq C_{s}(1+|\Im(|^{-p})\Vert \mathcal{P}_{(,\pm}u\Vert_{s}$

for $\Im\zeta<0$ and $u\in S$ , and the same estimate for the opemtor $P_{\zeta^{*},\pm}$ holds.

We may consider the case for $\mathcal{P}_{(,\pm}$ because $\mathcal{P}_{\zeta,\pm}$ is a Fredholm operator with

index $0$ as proved later. The proof of this claim consists of three parts.
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Let $R>0,$ $r>0$ . We divide the domain $\{\Im\zeta<0\}$ into three subdomain:

$D_{1}=\{\Im\zeta<-R\},$ $D_{2}=\{-R\leq\Im(<0, |\Re\zeta|>r\},$ $D_{3}=\{-R\leq\Im\zeta<0, |\Re\zeta|\leq r\}$ .

We can view $P_{\zeta,\pm}$ as a $\psi d.op$ . with parameter $\zeta$ . By the strictly hyperbolicity in

generating directions, we can see that the principal symbol of this $\psi d.op$ . satisfy

$|\sigma_{O}(\mathcal{P}_{\zeta,\pm})|\geq C|\Im\zeta|\{\zeta,\xi\rangle^{m-1}$.

Therefore, in the first domain $D_{1}$ , the existence of the parametrix shows that for

some lar$geR$, the following estimate holds

$\Vert u\Vert_{m-1+s}\leq C\Vert \mathcal{P}_{\zeta,\pm}u||_{s}$

if $\zeta\in D_{1}$ .
In the second domain $D_{2},by$ making use of Fourier integral operator attached to

the class $A^{m}$ (c.f. [H]), we can construct a good quasi-inverse of $\mathcal{P}_{(,\pm}$ to obtain

$\sum_{j=0}^{m-1}\int_{0}^{T’}||D_{t}^{j}u(t)\Vert_{m-1-j}^{2}dt\leq C\{\int_{0}^{T’}(||Lu(t)||_{0}^{2}+||u(t)||_{0}^{2})dt\}$

for any $u\in C_{0^{\infty}}((0, T);S(R^{n}))$ . Let $\rho$ be a non-negative function on $(0, T)$ with

compact support such that
$\int_{0}^{T}\rho(t)dt=1$ .

Putting
$u(t)=\rho(t)e^{i\zeta t}v(x)$

into the above estimate, we can findalarge enoughr such that if $\zeta\in D_{2},$ $then$

$||v\Vert_{m-1+\epsilon}\leq C\Vert \mathcal{P}_{\zeta,\pm}v||_{s}$

for any $v\in S$ .
Finally in the third domain $D_{3}$ , we shall use an elliptic argument. Since the

inverse $\mathcal{P}^{-1}$ of the operator $A=\mathcal{P}_{0,\pm}$ is a compact operator and for each $\zeta$ , we can

write
$\mathcal{P}_{(,\pm}=A$ ($I+a$ compact op.),
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$\mathcal{P}_{\zeta,\pm}$ is a Fredholm operator on $B^{s}$ with index $0$ . Hence, we know that the inverse

of $P_{(,\pm}$ is a meromorphic function with valued in the space of bounded operator on
$B^{s}$ in $\zeta\in C$ . Then our injectivity assumption imply that its poles are only in the

upper half space $\{\Im\zeta\geq 0\}$ . Since the number of poles fn the $\overline{D_{3}}\cap R$ is finite, for

$\zeta\in D_{3}$ , we have

$||u||_{m-1+s}\leq C|\Im\zeta|^{-p}\Vert \mathcal{P}_{\zeta,\pm}u\Vert_{s}$ .

Here $p$ represents the maximum of the order of the finitely many poles. Since if
$u\in L^{2}$ and $\mathcal{P}_{\zeta,\pm}u=0$ , then $u\in S$ for any $\zeta$ , we can coclude that $p$ can be chosen

independently of $s$ . This completes the proof of our claim.

Returning t6 the operator $\mathcal{P}_{\zeta}(\hat{X})$ , we see that for some $q>0$ ,

$\Vert u||_{m-1+s,\lambda}\leq C\{\lambda)^{q}\Vert \mathcal{P}_{\zeta}(\hat{X})u\Vert_{s}$,

$\Vert u||_{m-1+s,\lambda}\leq C\{\lambda\}^{q}||P_{(}^{*}(\wedge)u\Vert_{s}$.

It is not difficult to see that these estimate and a standard argument with slightly

modified imply our assertion.

\S 3 Remarks

Our injectivity condition is satisfied for what operator ?. This is a interesting

but difficult problem. Little operator which satified it are known. One of them is

the following operator

$P=\{D_{t}^{2}-a(D_{1}^{2}+D_{2}^{2})\}\{D_{t}^{2}-b(D_{1}^{2}+D_{2}^{2})\}+cD_{3}^{2}$ ,

where $a$ and $b$ are positive constants and $c$ is a real constant. The Cauchy problem

for $P$ is well-posed if and only if

$- ab \leq c\leq\frac{1}{4}(a-b)^{2}$ .

For general operators, we can show the following negative result.
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Theorem 2 Let $P$ be $a$ opemtor in \S 1. Suppose that $m$ is $ev\dot{e}n$ and

$a_{0}(\Xi)\neq 0$

for any $\Xi\in^{-}R^{2n}\backslash 0$ . Then, there exists a non-empty $ope’n$ set $U$ of $C$ such that the

Cauchy problem for the operator

$P+zD_{n+1}^{m/2}$

is not well-posed at the origin if $z\in U$ .

Proof: $Wesupposethatforanyz\in C,$ $theCauchyproblemforQ(z)=P+zD_{n+1}^{m/2}$

is well-posed at the origin. Then, it is easy to see that for any $z$ and $\zeta,$ $\Im\zeta<0$ ,

$kerQ_{\zeta,+}(z)=\{0\}$ .

Let $\zeta$ be fixed. From the argument as in the previous section, it follows that the

inverse of $\mathcal{Q}_{C+}(z)$ is a entire function with valued in $\mathcal{L}(L^{2})$ . Moreover, from the

known result on the spectral analysis, we can obtain the asymptotic behavior of the

eigenvalues of the operator $\mathcal{Q}_{0,+}$ and we can conclude that the operator $Q_{\zeta,+}^{-1}$ belongs

to, so called, $C_{p}$ class. (c.f.[DS]) This fact implies that for any $\epsilon>0$ and a constant
$C$ ,

$\Vert \mathcal{Q}_{\zeta,+}^{-1}(z)\Vert\leq Ce^{|z|^{p+}}$ $z\in C$ .

Since the principal symbol of $a_{0}(X)$ satisfies

$\sigma_{0}(x,\xi)\geq\delta\{x,\xi)^{m}$

with $\delta>0,$ $Q_{C+}$ has a minimal growth on any ray contained in $C\backslash R_{+}$ . Therefore we

can apply the princilple of Phragmen-Lindel\"of to our operator, we see that $||\mathcal{Q}_{(,+}^{-1}(z)||$

is bounded on C. This is a contradiction. Let $((0,z_{0})$ be a point such that

$kerQ_{\zeta_{0\prime}+}(z_{0})\neq 0$.
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Then for some positive integer $p$ , we have

$\int_{\Sigma}Q_{C,+}^{-1}(z)(\zeta-\zeta_{0})^{p}d\zeta\neq 0$

at $z=z_{0}$ ; where $\Sigma=\{|\zeta-\zeta_{0}|=\epsilon\}$ is a contour sufficient $1y$ near $\zeta_{0}$ and contained in

$\{\Im\zeta<0\}$ . On the other hand, for any $z,$ $Q_{\zeta,+}(z)^{-1}$ is also a meromorphic function

in $\zeta$ . Since on $\zeta\in\Sigma,$ $Q_{(,+}(z)$ is uniformly continuous in $z$ near $z_{0}$ , we see that

$\int_{\Sigma}\mathcal{Q}_{\zeta,+}^{-1}(z)(\zeta-\zeta_{0})^{p}d(\neq 0$

if $|z-z_{0}|$ is sufficiently small. $\square$
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