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Abstract

Symmetric spin models were introduced by Jones to provide invariants of
links. In his paper he proposed to obtain the classification of models (X, w,,w_)
with |X| = 4,5,6 and 7. In the present paper we complete this task by show-
ing that the only spin models of these sizes are the Potts models and the ones
coming from cyclic groups for 5 < n < 7. For n = 4 we have some other
models by the product construction of de la Harpe. Iurthermore, we clas-
sify the non-symmetric Jones-type spin models introduced by Munemasa and
Watatani, for n = 4,95, as well.



1 Introduction

Symmetric spin models were introduced by Jones[6] to obtain. link invari-
ants for non-oriented links. Later Jaeger[5] and de la Harpe[4] developed the
connection between these models and association schemes. Recently several
constructions were given; see Bannai and Bannai[l], Nomura[8] and Mune-
masa and Watatani(7]. Even more recently, Bannai and Bannai have found
far reaching generalization of the concept[2].

Definition 1.1 Let a be a non-zero complex number, n be a positive integer,
and D be one of its square roots. A spin model with loop variable D and
modulus a is a triple (X, w4, w_), where X is a finite set of size n = D? and
wy,w_ are complex-valued functions on X x X which satisfy the following
properties for all o, B,y in X : :

1. wi(a,a) =a, w_(a,a) =a"

Yrex Wi(a,z) = Da™t, Yoex w_(a,z) = Da.
w+(a,ﬁ)w-(ﬂ, CY) =1

Yozex We(a,z)w_(z,B) =nbsp (where § is the Kronecker symbol),

SRS NG

Loex Wi, 2)wy (B 2)w_(v,2) = Dwi(a, flw_(8,7)w-(v,a).

The spin model is called symmetric if wy(a,B) = wy(B,a), w_(a,B) =
w_(B,a). holds, as well. '

The above definition can be reformulated using n X n matrices W, and W_
see [5]. Let Wi = (w+(a, B))aex sex and let o denote the Hadamard product
of matrices (i.e., the entry-wise product of two matrices of the same size).
Furthermore, let us define for (5,v) € X x X the column vector Yj., indexed
by X as ‘

Yg,(z) = wi (B, 2)w_(v,x) Ve € X.

Proposition 1.2 (X, w;,w_) is a spin model with loop variable D and mod-
ulus a if and only if the following properties hold:

I.ToW, =al, ToW_=a"1.
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2. JW, = Da='J, JW_ = DalJ.

3. Wy oWT =nd.

4. W,W_=nl.

5. For every (B,7) € X x X, W,Ys, = DW_(8,7)Yp,-

Here I denotes the identity matriz and J denotes the matriz whose entries
are all 1’s. i

For a symmetric spin model we have to require W, and W_ to be symmetric.
We shall use an other interpretation, too. Namely, we can write

t
I’V+ = Z a; Ai,

1=0

where ag is the modulus of the model, Ag = I, a; #a;forl <i<j<tand
Aj’s are adjacency matrices of edge-disjoint simple digraphs on vertex set X.
Thus, A;0A; = §;; A;. We denote the graph whose adjacency matrix is 4; by
G;. The above detremined t is called the degree of the model (X, W, ,W_).
Let us mention that the case when (X, A;: 0 <z < ¢) is an association scheme
is interesting for its own sake.

The following is a fundamental result concerning the classification prob-
lem.

Lemma 1.3 ([6],Proposition 2.16.) For each z € C let k, be the number
of ordered pairs (a, B) for which wi(a, B) = z. Then k, is a multiple ofn.l

As an immediate consequence of this lemma we obtain that the degree of a
spin model on a n element set is at most n — 1. However, we shall need a
stronger result in order to reduce the number of cases to be checked. This is
Theorem 2.1 of the next section.

It is known [1], that there exist spin model coming from the cyclic group
Cy for any n. The aim of this paper is to prove the following theorems.



Theorem 1.4 Let (X,W,,W_) be an n x n symmetric spin model. Fur-
thermore, let us assume that it is of degree t > 1, t.e.,

‘/V.}. = a0I+ alAl + ... ,atA,.

Then (X, {Ai}ocict) is the (symmetric) association scheme coming from the
cyclic group Cy, for 5 < n < 7. In particular, we have t = |2|. Ifn =4 the
model is either coming from the cyclic group or it is a product of two Potts
models on 2 spins.

Theorem 1.5 Let (X, W, W_) be an n x n non-symmetric spin model of
Jones type. Then it can be written as

W, =agl +aiA +...,a,A,,

where (X, {Ai}ocic<n) is the association scheme coming from the cyclic group
C,p forn =4,5.

In Theorem 1.5 we do not state that a;’s are all different. All possible solu-
tions will be given in a subsequent paper by Bannai, Bannai and Jaeger.

In Section 2 we formulate general results and in Section 3 we turn to the
symmetric case, while Section 4 deals with non-symmetric models. We will
use the three possible interpretations simultaneously, always switching to the
one which is most convenient to formulate the statement in question..

We consider two spin models equivalent if one can be obtained from the
other by simultaneous permutation of rows and columns (i.e. keeping di-
agonal elements in the diagonal). In the graph representation this means
simultaneous renumbering of the vertices of each graph. Furthermore, we
allow renumbering the G;’s when we use the graph interpretation.

2 General results

In this section we prove a strengthening of Lemma 1.3 as follows.

Theorem 2.1 Let (X, W, ,W_) be a spin model of degreet. Then each point
n G; has in-degree and out-degree k; fori=1,2,...,t where k; € N. In other
UJOT‘dS, JA, - A,‘Jz k‘J
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Proof of Theorem 2.1
Let X = {1,2,...,n} and let A, = diag(w_(1,7),w_(2,7),...,w_(n,7))
for v € X. We claim that

WeA, W, =DA, W, A, VvyeX. (1)
Indeed, the (o, #)-entry of the left hand side of (1) is

Z wi(a, @) w-(z,7) we(z, B)] (2)

rzeX

and the («, #)-entry of the right hand side of (1) is

Dw_(a,7)ws(e,B)w_(8,7)- (3)

The equality of (3) and (2) is equivalent to (5) of Definition 1.1. Note that
A, is invertible by (3) of Proposition 1.2. Now (1) is equivalent to

ATY Wy A, W, W_ = DW, A, W_ (4)

1e.,

DA Wy Ay =Wy A, WL (5)

Hence, A, and D! W, are conjugate.

It follows that the spectrum of A, does not depend on the choice of
v € X. Equivalently, the columns of W_ are permutations of each other.
Using (3) of Proposition 1.2 we obtain the same for W,.

Using (3JT) of [2] we obtain in a similar way that the rows of W, are
permutations of each other. Then simple counting shows that the in- and
out-degrees of G;’s must coincide.

The following theorem was independently proved by Jaeger [5] and de la
Harpe [4], but this proof is simpler.

Theorem 2.2 Let (X,W,_,W_) be a symmetric spin model of degree 2.
Then Gy (and consequently G,) is a strongly regular graph.

Proof of Theorem 2.2

We have to establish the existence of k£, A and u, that is we have to prove
that G 1s k-regular and the number of common neighbors of any pair of
connected (non-connected) vertices is A (p).
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The regularity follows from Theorem 2.1. Now we prove the existence
of A and p. Let o;; be the number of common «a; entries of rows ¢ and j.
Furthemore, suppose that (¢, 5) and (r,s) are edges of graph G;. We have to
prove that a;; = a,s. Using that the (¢,7) (resp. (r,s)) entry of W, W_ is 0,
we obtain

aga;l +agtay +n =2k + 204 + (k=1 — o) (a1a3' + a7lay) =0
and
apay! +aglay 7+ n—2k+ 20, + (k=1 = a;)(a1a5! +a7lay) = 0.
Taking the difference of these two equations we obtain
(aij — ars)(2 — a1a5' — aylay) = 0.

If a;i; # ays, then alai'l + al"laz = 2, which implies a; = a3, a contradiction.
The existence of i can be proved exactly the same way. |
The next theorem is a natural extension of Theorem 2.2.

Theorem 2.3 Let (X, W,,W_) be a symmetric spin model of degree 3.
Then {Ap, A1, Ay, A3} are the adjacency matrices of a symmetric class 3
association scheme.

Proof of Theorem 2.3

Let M be the algebra generated by {J,W,} with respect to the ordmary
matrix product, and let H be the algebra generated by {I,W_} with respect
to the Hadamard product, as introduced in [5]. Furthermore, let A be the
algebra generated by { Ao, A1, A2, A3} with respect to the Hadamard product.
Because A; 0 A; = 6;; A;, we have that {Ag, A, Az, A3} is a basis of A. It is
clear that H C A. Now, I,J, W, and W_ are in H by [5]. The transition
matrix that takes {Aq, A1, A2, A3} into {I,J,W,,W_} is of Vandermonde
type. It’s determinant is non-zero, because t;’s are distinct for « = 1,2, 3.
Thus, {I,J,W,,W_} is also a basis of A, i.e. H = A. Consequently, H is
of dimension 4. Using that H = M, we obtain that M is of dimension four,
too. However, {I,J,W,,W_} C M that yields M = H. Now, applying
Proposition 3 of [5], we obtain that M is the Bose-Mesner algebra of an
association scheme. '

For non-symmetric spin models we have the following analogous theorem to
Theorem 2.3.
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Theorem 2.4 Let (X,W,,W_) be a non-symmetric spin model of degree 2.
Furthermore, let us assume that Ao A] = 0. Then (X,Ao=1,A;,A], Ay—
AT) is a non-symmetric class 3 association scheme provided A] # A;. If
Ay = A], then (X, Ay, A1, A7) is a non-symmetric class two association
scheme.

Proof of Theorem 2.4
Let us assume first A] # A,. Let M be the algebra generated by (J, W_, WT)
with respect to the ordmary matrix product and let H be generated by
(I, W4, W) with respect to Hadamard product. We shall prove that M =
‘H, which implies by Theorem 2.4 of [3] that M is the Bose-mesner algebra
of a self-dual association scheme.

Let A be the algebra generated by (Ao = I, A1, Al , A, —A] ) with respect
to the Hadamard product. It is easy to see that dim(.4) = 4 and that H C A.
J is clearly in H. We claim, that I, J, W, and W] are linearly independent.
Indeed, the transition matrix from the basis (Ag = I, A;, A],A; — A]) to
(I,J, W, W])is

1 0 0 O
1 1 1 1
tQ tl ity 1o
o o t1 t2

Its determinant is —(¢; — t2)? # 0. Thus, H = A. By Theorem 2.3 of [3] we
have that M and H are isomorphic. Furthermore, I,J, W, and I/VI are all
in M, thus M =H.

The case of A, = AIT 1s similar and left to the reader. |

3 Symmetric models

In this section we turn to the classification of small symmetric spin models.
It is easy to see that for any n, the only n x n spin model of degree 1 is the
Potts model [6]. So we shall always assume that the degree of the model is
at least 2. For the sake of completeness we begin with the case n = 4.

3.1 n=4

There can be models of degree 2 and 3 besides the Potts model.



Degree 2 G; and G, are 1 and 2-regular graphs, respectively by Theo-
rem 2.1. It is obvious that the two-regular graph must be the four-cycle, so
we obtained the cyclic group case.

Degree 3 Now G,, G, and G3 are all perfect matchings. Because two of
the matchings together form a 4-cycle, we may assume by renumbering the
vertices and the G;’s that W, is as follows

g a; az 4as
a1 Gp az dag
Gy a3z 4g
az 9 a7 Qg

W+=

Writing z = ag/a1, y = ap/as and z = ag/az we obtain the following set of
three equations from the condition W, W_ = nlI:

s+ 1/z+ylztzly = 0
y+1l/y+a/z+z/a = 0
z+1/z4+z/y+y/z = 0.

The only solution of this system is that one of the variables is equal to 1 and

the other two are negatives of each other. Thus, we may assume that W,
looks like

a a b —b

a a —=b b
Wy = b —=b a

-b b a a

Now taking into account the various equations coming from the star-triangle
equality we obtain that both « and b must be fourth roots of unity. All these
cases are covered by the direct product construction of de la Harpe [4].

3.2 n=5

By Theorem 2.1 the model is either of degree 1 or degree 2. Thus, if
(X, W,,W_) is not the Potts model, then we have that G; and G, are both
5-cycles so that their union is the complete graph K5 by Theorem 2.2. In
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this case W, looks like

Qg Gy dagz dz ap
ay Gg Qp Gp QA
Wie=1a, a7 ao a1 ap
a; a2 ay ap 4

| @1 a2 4z a1 Qo |

This is the well-studied case of the pentagon [4, 5].

3.3 n=6

In this case a model could be of degree 2,3,...,5.

3.3.1 Degree 2

By Theorem 2.2 the graph G, has to be strongly regular. Furthermore,
we may assume that it is 1- or 2-regular, otherwise we just have to switch
between G, and G,. However, in any case (G is disconnected that contradicts
to Jaeger’s conditions [5, 4].

3.3.2 Degree 3

G1, Go, and G are regular graphs by Theorem 2.1. There are two possibil-
ities, namely two matching and a three regular graph, or one matching and
two 2-regular graphs. In the first case the two matchings together form a
6-cycle, so W, is as follows.

p @1 az daz das dop
ay dg a9 a3 dasz dag
W, = az Qp Qg @1 a3 a3
as a3z ay ap dapg das
as az az 9 dag ai’
ap a3z daz az ay Aaop

Taking the (1,3) and (3,1) entries of W, W_, we obtain the following two
equations:

aoag1 + a51a3 + alaz“l + ag,al'1 + azagl +1 =

-1 - - = - '
aoty + aolag + aj la, + a31a1 + a; las+1 =



ap ay az asz as dl

a
ay Go a1 az a; as
a, do Gy Aag @y az .as
as asz aiy ag a; a:
a, asz az a4z ay aop a
L &1 43 dz a4z a1 dop |

Figure 1: Decomposition of Kg into two Cg’s and a matching.

Substracting the second one from the first and multiplying by ajasa; we
obtain

afag - aga;; + a§a2 - afag + agal — a§a1 =0

that is equivalent to

(ag — ay)(az —ay)(az —az) = 0.

However, this contradicts to the assumption of degree 3. We call the above
type equation pair the cyclic permutation equation.

- In the second case, we still have two choices. The first one is that G; is a
matching and G; and Gj are 6-cycles. There is only one way to decompose
K, into one matching and two 6-cycles (see Figure 1). Indeed, we may assume
that one of the 6-cycles is (123456). Then in the other cycle we have to have
a pair of adjacent edges so that the difference of the end points of one of
them is 2, and the same for the other one is 3. By renumbering the vertices
cyclically and possibly reversing the cyclic order we may assume that (1, 4)
and (2,4) are edges of the other cycle. Now if (2,5) were an edge of the
second cycle then the other edge from vertex 5 should go to vertex 3, but
that would imply (3,6) is an edge of the second cycle and (6,1), too. But
that is a contradiction. Thus, the other edge from vertex 2 in the second
cycle must be (2,6). The resulting decomposition is shown on Figure 1.
Taking the difference of (1,2) and (2,1) entries of W,_W_ we obtain the
cyclic permutation equation as before, hence a contradiction.

The other possibility is the decomposition K¢ = Mg U 2C3 U Cs, whele
Ms is a matching on six points (see Figure 2). This corresponds to the Cyclic
Group Cs. '
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a q
ay ag a; 4ag das das
a, ay ag ai; a, a
a, W, = 2 Q1 G a1 ay ag
az a2 ay Go ay ap
a ., a; az az ay ag ai
................ L a1 az a3z az a3 Qg i

Figure 2: The Cyclic Group decomposition of Kg

3.3.3 Degree 4

According to Theorem 2.1 there are two possible cases.

Case 1. Gi, G; and G3 are matchings and G4 is a 6-cycle.There is only
one such decomposition, because two of the matchings together form another

W, is
[ao a1 a2 az ag ap ]
a ap ay ag4 ag das
dg ay apg ay ag ay
a3 a4 a; Qg a; as
agy Gy Q3 G Qo a
a; az a4 ag dy Qg

VV; =

Taking the (1,5) and (5,1) entries of W, W_ we obtain the cyclic permutation
equation as before, hence a contradiction.

Case 2. G,, G, and G3 are matchings and G4 1s a union of two triangles. It
is easy to see that if we assume that the two triangles are on vertices {1,2,3}
and {4,5,6}, respectively, then taking the (1,2) and (2,1) entries of W, W_
we obtain the cyclic permutation equation, hence a contradiction.

3.3.4 Degree 5

Now we have a decomposition of K into five matchings. There is only one
way to decompose I into five matchings up to permutation of the matchings,



because two pairs of these matchings form two 6-cycles and we can apply the

ag a1 az s a4 Q2
ay dag a9 a4 d4ag das
ads a9 dg Qa1 das 44
as a4 a1 dg a9 dag
ay4 Az Qg dg dg
L A2 as a4 az dap dap

I’V+ =

Taking the difference of the (1,2) entry of W, W_ with the (3,4), (4,3), (5,6)
and (6,5) entries, respectively, we obtain the following four equations.

1

-1 -1 -1 -1 -1 _
asa, + aza; 4+ asay —aga; —aza; —asa, = 0
-1 -1 -1 -1 -1 ~1 _
asa;” + aqa3 + asay — azay — aga; —asa; = 0
—1 -1 -1 . -1 -1 -1
asa; +agay + aga5° — aga3 — asa, —azay; = 0
-1 -1 -1 -1 -1 -1 __
asa3” + azag + asay — azay —asaz; —aqa; = 0
Reducing we obtain
(a5 - ag) (a3a4 — UsQq4 — UoQ4 + asaz) = 0
(az — a4) (asaq + asaq — agay —azay) = 0
(aq — a3) (agay + asay — asay —agas) = 0
(a4 - (L5) (agag + dsdy — d3zdy — a3a5) = 0.
Using that a;’s are different, it yields a3 = —as and a4 = —a, that easily

leads to a contradiction. Thus, the case n = 6 is finished.

34 n=7

Applying again Theorem 2.1 we obtain that the number of different off-
diagonal entries of W, is at most three. If (X, W, , W_) were of degree two,
then Gy should be a strongly regular graph. However, strongly regular graph
on 7 vertices does not exist. So, we may assume that the model is of degree
3. Now Gy, G, and G35 are all regular graphs. Thus, they are all 2-regular
graphs, i.e. unions of cycles. Furthermore, by Theorem 2.3 we have that A;’s
are adjacency matrices of an association scheme. However, it is well known
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ap ay az asz az daz a

a @y Go a; az az daz ar
1

—_— as. ay Qap a; as dsz das

a VVg_:: az a4y @1 dg A as as

- a3 az az 41 ag ay daz
a, ay, a3 a3 as ay dg G

ay ag az dz d dy dg

Figure 3: The Cyclic Group decomposition K7 = C7; U C7 U Cy

folklore that the only association scheme on 7 points with &, = ko = k3 = 2
is the scheme of the 7-gon. Thus the only case here is the cyclic group case
(see Figure 3). The proof of Theorem 1.4 is now completed.

4 Non-symmetric models

In this section G,’s are oriented graphs. Furthermore, we always assume that
the models are really non-symmetric, i.e., there exists at least one G; and an
edge (k,l) € E(G;) such that ({,k) ¢ E(G;). By Thorem 2.1 we have that
in-degree=out-degree=k; for every vertex in G; ¢+ = 1,2,.... If the model is
of degree 1, then it is symmetric and it 1s the Potts model.

4.1 n=4
4.1.1 Degree 2

We may assume that k&; = 1 and kA, = 2. Now () contains either two
independent edges directed in both ways, or it is a directed four-cycle. In
the first case we obtain a symmetric model. In the second case we may
assume that the directed four cycle is (1234), i.e., W, is

dg Qa; Qg Qs

ay da a a
vv; — 0 1 2

dy g o Qi
ay dq Qo AQp
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Taking the (1,2) and (2, 1) entries of W, W_ we obtain a cyclic permutation
equation in variables ag,ay,aq, i.€., (ag — ay)(ag — az)(a; — a3) = 0. This
implies that ag = a; or ag = a2. In the first case we obtain

I’V+ =

ao
ag
a
aq

ar
ag
ao
o

a2
a2
ag
ao

Taking the (1,2) and (1, 3) entries of W, W_ we obtain

-1 -1 ‘ -1 -1
aga;’ + ag G, + 2 =0 = 2(aga;” + ag az),

a contradiction.

In the second case we have

Qp
Qo
ao
aq

I’V_*. =

a
ao
Qo
ao

ao
ax
ao
ao

ao
ao
ai
do

This is an instance of the cyclic group case.

4.1.2 Degree 3

G, G, and G3 all have both in-degree and out-degree 1. If the model is
‘non-symmetric, then we may assume that G, is a directed four-cycle. This
implies that the other two graphs must be the reverse four-cycle and the
diagonals oriented in both ways. Thus,

I/V+ =

ay
Qo
as
as

a9
ay
Qo
as

as
as
ai
ag

This is another instance of the cyclic group case.

4.2
4.2.1

n=23
Degree 2

Now we have two cases to be distinguished: k& =1 and k& = 2.
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k; =1 In this case G; cannot be symmetric. There are two possibilities for
G+. One is that it is a union of a directed triangle and an edge oriented both
ways, the other is the directed five-cycle. In the first case assuming that the
directed triangle is (123) we have that

[ap a1 a; ay ay |
a; Gy a7 Gy Qo
Wyoy=1|a a a a a2
a; az az ap a4
ay ay a; a; Qo

L .

From the (1,2) and (2,1) entries of W, W_ we obtain the cyclic permutation
equation (ap — ai)(ao — a2)(a1 — az) = 0. This implies that either ao =
@y Or dg = ap. In the first case the (4,5) entry of WL W_ would be 5, a
contradiction. In the second case we obtain the system of equations

et +a5la; +3 = 0
4ag+a;, = i\/gagl
da3' + a7t = +v5ag

that has no solution. |
If G, is a directed five-cycle, then we obtain an instance of the cyclic
group model.

k; = 2 Because the model is non-symmetric, we may assume that (1,2) €

E(G,) and (2,1) € E(G;). Now the first two rows of W, look like

Qs a4 g9 T Y
as dg A1 2 U

after suitable rearrangement of the last three rows and columns, where the
part T Y stands for either 7t “? or U % any case, from the (1,2)
z u a; a; a, a
and (2,1) entries of W, W_ we obtain again the cyclic permutation equation
(ap — ay)(ap — az)(a; — ay) = 0, which implies that either ¢y = a; or ay = as.
By symmetry reasons we may assume that ap = a;. Now the product of
row 7 of W, and column j of W_ for i # j is either 2(apa7' + ag'a;) + 1 or
aoar’ + ag'a; + 3. However, both cannot occur at the same time. If the first



apg dgo a1y 4y Aap

two rows of W, are , then ag’s should stand under the

a1 dop Qo 4o u
a,’s of the first row, the second row, ...of W, otherwise we would get both
types of products, a contradiction. However, that would imply four of the
ag’s in the third row, also a contradiction.

On the other hand, if the first two rows of W, look like %0 %0 1 @1 o
4y Go Qo ay Qo
then the (3,5) entry of Wimust be «;, otherwise again both types of product
would occur. However, that would imply three ¢,’s in the fifth column, a con-
tradiction. To finish this case we have to note only that the first two rows of
W can be assumed of ene of the above two forms via suitable rearrangement

of the rows and columns.

4.2.2 Degree 3

We may assume that &y = k; =1 and k3 = 2. If (G; is a union of a directed
triangle and an edge directed in both ways, then we may assume that the
triangle is (123). By symmetry, and the regularity of the G;’s we may assume
that the last two rows of W, are as follows:

ads a3z ag ag dp
dg a3 dz a1 Qg )

Now (i contains the triangle (123) and we can apply the regularity, so W,
1s

dop 7 az az Qg
az dp @1 dg dag
I’V+ = ay ap dg Qaz dasg
az dz Q9 Qo dap
dp dz dAz a1 4agp

Taking the (1,2) and (2, 1) entries of W, W_ we obtain a cyclic permutation
equation in variables ag,a; and az. On the other hand, (3,5) and (5,3)
entries give the cyclic permutation equation in variables ag,a, and as. This
implies that ao = a3. However, in this'case the (1,3) and (3, 1) entries give a
cyclic permutation equation in a;, ¢, and a3, a contradiction. Thus, we may
assume that both G, and G, are directed five-cycles. Let us denote for a
digraph G by —G the graph with edges exactly the reverses of those of G. If
G1 = ~G,or Gi1N =G, = 0, then we have instances of the cyclic group case.
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Thus, we may assume that G; is the five-cycle (12345) and that (2,1) € G;
and (3,2) € G;. Now we have to consider two cases.

Case 1. (2,5) € Ga. It is easy to see that this implies that G is the cycle
(13254). So Wi is

dp a; az a4z as 1
as 4ap ai; 4asz ag
Wye=|as a ay a as
adg a3z a3z dag a;

ay az a3z az ap

- ~

Considering again several entries of the product W, W_, we have that (3,4)
and (4, 3) give cyclic permutation equation in variables ag, a; and a3z, while
(4,5) and (5,4) give one in variables ag,a; and a;. This implies ag = a;.
Substituting that value we get that (1,2) and (2, 1) give the cyclic permuta-
tion in variables ay, a; and a3, a contradiction.

Case 2. (2,4) € G,. This results in that G, = (15324), and

i dp a7 a3z az aq W
az do «p 4z asg
Wy=1|as a ap a a3
A az as ap a4
a; az az asz 4ap

In a similar way as in Case 1 we obtain from the cyclic permutation equations
given by (1,2) and (2,1) morover (2,3) and (3,2) that ag = a;. However,
with this value we obtain the cyclic permutation equation from (4,5) and
(5,4) in variables aq,a, and a3, a contradiction.

4.2.3 Degree 4

First we must observe that if G; = —G; for some ¢ and j, then we have an
instance of the cyclic group case. Next, if G 1s a union of a directed triangle
and an edge directed in both ways, then assuming that the triangle is (123),
we have

ag a; *x %
* ag ay *
Wey=1| a3 * a o
a;; G 44y dg Qg

ajy Gj; dj; az Qo



Here i1,19,13 and Jq, 2, J3 are permutations of {2,3,4} so'that 7, # j; for k =
,2,3. This immediately implies a cyclic permutation equation in variables
aq,az and a4, a contradiction.

Thus, we may assume that all four G;’s are five-cycles. If G1 NGy =0,
then again we have an instance of the cyclic group case. So we assume that
G, = (12345), (2,1) € G, and (3,2) € G,. Similarly to the degree 3 case
we obtain that either G, = (13254) or G, = (15324). However, it is not
hard to verify that in neither of these cases can we decompose the remaining
edges into two directed five-cycles. This completes the proof of Theorem 1.5
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