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1 Introduction
Symmetric spin models were introduced by Jones[6] to obtain. link invari-
ants for non-oriented links. Later Jaeger[5] and de la Harpe[4] developed the
connection between these models and association schemes. Recently several
constructions were given; see Bannai and Bannai[l], Nomura[8] and Mune-
masa and Watatani[7]. Even more recently, Bannai and Bannai have found
far reaching generalization of the concept[2].

Definition 1.1 Let $a$ be a non-zero complex number, $n$ be a positive integer,
and $D$ be one of its square roots. A spin model with loop variable $D$ and
modulus $a$ is a $t$ riple (X, $w_{+},$ $w_{-}$ ), where $X$ is a finite set of size $n=D^{2}$ and
$w+$ ’ w-are complex-valued functions on. $X\cross X$ which $satisf_{t}/$ the following
properties for all $\alpha,$

$\beta,$
$\gamma$ in $X$ :

1. $w_{+}(\alpha, \alpha)=a,$ $w_{-}(\alpha, \alpha)=a^{-1}$ .

2. $\sum_{x\in X}w_{+}(\alpha, x)=Da^{-1},$ $\sum_{x\in X}w_{-}(\alpha, x)=Da$ .

3. $w_{+}(\alpha,\beta)w_{-}(\beta, \alpha)=1$ .

4. $\sum_{x\in X}w_{+}(\alpha, x)’\iota o_{-}(x, \beta)=n\delta_{\alpha,\beta}$ (where $\delta$ is the Kronecker symbol),

5. $\Sigma_{x\in X}w_{+}(\alpha,x)w_{+}(\beta, x)w_{-}(\gamma, x)=Dw_{+}(\alpha, \beta)w_{-}(\beta, \gamma)’\iota o_{-}(\gamma, \alpha)$ .

The spin model is called symmetric if $w_{+}(\alpha, \beta)=w_{+}(\beta, \alpha),$ $w_{-}(\alpha, \beta)=$

$w_{-}(\beta, \alpha)$ . holds, as well.

The above definition can be reformulated using $n\cross n$ matrices $|/V_{+}$ and $W_{-}$

see [5]. Let $W_{\pm}=(\iota o_{\pm}(\alpha, \beta))_{cv\in X,\beta\in\lambda’}$ and let $0$ denote the Hadamard product
of matrices (i.e., the entry-wise product of two matrices of the same size).
Furthermore, let us define for $(\beta, \gamma)\in X\cross X$ the column vector $Y_{\beta\gamma}$ indexed
by $X$ as

$Y_{\beta\gamma}(x)=w_{+}(\beta, x)w_{-}(\gamma, x)$ $\forall x\in X$ .

Proposition 1.2 (X, $w_{+},$ $w_{-}$ ) is a spin model with loop variable $D$ and mod-
ulus $a$ if and only if the following prroperties hold:

1. $I$ $01/V_{+}=aI,$ $I$ $oW_{-}=a^{-1}I$ .
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2. $JT^{j}V_{+}=Da^{-1}J,$ $JW_{-}=DaJ$ .

3. $W_{+}oW_{-}^{T}=nJ$ .

4. $W_{+}W_{-}=nI$ .

5. For every $(\beta, \gamma)\in X\cross X,$ $W_{+}Y_{\beta\gamma}=DW_{-}(\beta, \gamma)Y_{\beta\gamma}$ .

Here I denotes the identity matrix and $J$ denotes the mat $\gamma\cdot ix$ whose $ent$ ri $es$

are all 1 $z_{S}$ . 1

For a symmetric spin model we have to require $|/V_{+}$ and $W_{-}$ to be symmetric.
We shall use an other interpretation, too. Namely, we can write

$W_{+}= \sum_{i=0}^{t}a_{i}A_{i}$ ,

where $a_{0}$ is the modulus of the model, $\mathcal{A}_{0}=I,$ $a_{i}\neq a_{j}$ for $1\leq i<j\leq t$ and
$A;s$ are adjacency matrices of edge-disjoint simple digraphs on vertex set $X$ .
Thus, $A_{i}oA_{j}=\delta_{ij}A_{i}$ . We denote the graph whose adjacency matrix is $A_{i}$ by
$G;$ . The above detremined $t$ is called the degree of the model (X, $\nu V_{+},$ $W_{-}$ ).
Let us mention that the case when (X, $A;:0\leq i\leq t$ ) is an association scheme
is interesting for its own sake.

The following is a fundamental result concerning the classification prob-
lem.

Lemma 1.3 ([6],Proposition 2.16.) For each $z\in \mathbb{C}$ let $k_{z}$ be the number
of ordered pairs $(\alpha, \beta)$ for which $w_{+}(\alpha, \beta)=z$ . Then $k_{\sim}$, is a multiple of $n.I$

As an immediate consequence of this lemma we obtain that- the degree of a
spin model on a $n$ element set is at most $n-1$ . However, we shall need a
stronger result in order to reduce the number of cases to be checked. This is
Theorem 2.1 of the next section.

It is known [1], that there exist spin model coming from the cyclic group
$C_{n}$ for any $n$ . The aim of this paper is to prove the following theorems.
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Theorem 1.4 Let (X, $|!V_{+},$ $W_{-}$ ) be an $n\cross nsymmetr\dot{\eta}C$ spin model. Fur-
thermore, let us assume that it is of degree $t>1,$ $i.e$ .,

$\nu V_{+}=a_{0}I+a_{1}A_{1}+\ldots,$ $a_{t}A_{t}$ .

Then (X, $\{A_{i}\}_{0\leq i\leq i}$ ) is the (symmetric) association scheme coming from the
cyclic group $C_{n}$ for $5\leq n\leq 7$ . In particular, we have $t= L\frac{n}{2}\rfloor$ . If $n=4$ the
model is either coming from the cyclic group or it is a product of two Potts
models on 2 spins.

Theorem 1.5 Let (X, $\nu V_{+)}W_{-}$ ) be an $n\cross n$ non-symmetric spin model of
Jones type. Then it can be $w$mtten as

$\nu V_{+}=a_{0}I+a_{1}A_{1}+\ldots,$ $a_{n}A_{n}$ ,

where (X, $\{A_{i}\}_{0\leq i\leq n}$ ) is the $associatio\cdot n$ scheme coming from the cyclic group
$C_{n}$ for $n=4,5$ .

In Theorem 1.5 we do not state that $a;s$ are all different. All possible solu-
tions will be given in a subsequent paper by Bannai, Bannai and Jaeger.

In Section 2 we formulate general results and in Section 3 we turn to the
symmetric case, while Section 4 deals with non-symmetric models. We will
use the three possible interpretations simultaneously, always switching to the
one which is most convenient to formulate the statement in question.,

We consider two spin models equivalent if one can be obtained from the
other by simultaneous permutation of rows and columns (i.e. keeping di-
agonal elements in the diagonal). In the graph representation this means
simultaneous renumbering of the vertices of each graph. Furthermore, we
allow renumbering the $G_{i}’ s$ when we use the graph interpretation.

2 General results
In this section we prove a strengthening of Lemma 1.3 as follows.

Theorem 2.1 Let (X, $lW_{+},$ $W_{-}$ ) be a spin model of degree $t$ . Then each point
in $G$ ; has in-degree and $out- deg_{l}eek_{i}$ for $i=1,2,$ $\ldots$ , $t$ where $k_{i}\in N$ . In other
$words_{f}JA_{i}=A_{i}J=k_{i}J$ .
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Proof of Theorem 2.1
Let $X=\{1,2, \ldots,n\}$ and let $\triangle_{\gamma}=diag(w_{-}(1, \gamma),w_{-}(2, \gamma),$

$\ldots$ , $w_{-}(n,\gamma))$

for $\gamma\in X$ . We claim that

$W_{+}\triangle_{\gamma}l^{j}V_{+}=D\triangle_{\gamma}i^{J}V_{+}\triangle_{\gamma}$ , $\forall\gamma\in X$ . (1)

Indeed, the $(\alpha, \beta)$ -entry of the left hand side of (1) is

$\sum_{x\in X}w_{+}(\alpha, x)[w_{-}(x, \gamma)w_{+}(x, \beta)]$ (2)

and the $(\alpha, \beta)$-entry of the right hand side of (1) is

$Dw_{-}(\alpha, \gamma)u_{+}(\alpha, \beta)w_{-}(\beta, \gamma)$ . (3)

The equality of (3) and (2) is equivalent to (5) of Definition 1.1. Note that
$\triangle_{\gamma}$ is invertible by (3) of Proposition 1.2. Now (1) is equivalent to

$\triangle_{\gamma}^{-1}T/V_{+}\triangle_{\gamma}W_{+}\nu V_{-}=Dl/V_{+}\triangle_{\gamma}W_{-}$ (4)

$i.e.$ ,
$D\triangle_{\gamma}-1\nu V_{+}\triangle_{\gamma}=W_{+}\triangle_{\gamma}W_{-}$ . (5)

Hence, $\triangle_{\gamma}$ and $D^{-1}W_{+}$ are conjugate.
It follows that the spectrum of $\triangle_{\gamma}$ does not depend on the choice of

$\gamma\in X$ . Equivalently, the columns of $l\prime V_{-}a1^{\backslash }e$ permutations of each other.
Using (3) of Proposition 1.2 we obtain the same for $|/V+\cdot$

Using $(3JT)$ of [2] we obtain in a similar way that the rows of $W_{+}$ are
permutations of each other. Then simple counting shows that the in- and
out-degrees of $G_{i}$

)
$s$ must coincide. I

The following theorem was independently proved by Jaeger [5] and de la
Harpe [4], but this proof is simpler.

Theorem 2.2 Let (X, $T^{J}V_{+},$ $W_{-}$ ) be a symmetric spin model of degree 2.
Then $G_{1}$ (and consequently $G_{2}$ ) is a strongly regular graph.

Proof of Theorem 2.2
We have to establish the existence of $k,$ $\lambda$ and $\mu$ , that is we have to prove

that $G_{1}$ is k-regular and the number of common neighbors of any pair of
connected (non-connected) vertices is $\lambda(\mu)$ .
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The regularity follows from Theorem 2.1. Now we prove the existence
of $\lambda$ and $\mu$ . Let $\alpha_{ij}$ be the number of common $a_{1}$ entries of rows $i$ and $j$ .
Furthemore, suppose that $(i,j)$ and $(r,s)$ are edges of graph $G_{1}.$

. We have to
prove that a$ij=\alpha_{rs}$ . Using that the $(i,j)$ (resp. $(r,$ $s)$ ) entry of $|/V_{+}W_{-}$ is $0$ ,
we obtain

$a_{0}a_{1}^{-1}+a_{0}^{-1}a_{1}+n-2k+2\alpha_{ij}+(k-1-\alpha_{ij})(a_{1}a_{2}^{-1}+a_{1}^{-1}a_{2})=0$

and

$a_{0}a_{1}^{-1}+a_{0}^{-1}a_{1}+n-2k+2\alpha_{rs}+(k-1-\alpha_{rs})(a_{1}a_{2}^{-1}+a_{1}^{-1}a_{2})=0$ .

Taking the difference of these two equations we obtain

$(\alpha_{ij}-\alpha_{rs})(2-a_{1}a_{2}^{-1}-a_{1}^{-1}a_{2})=0$ .

If $\alpha_{ij}\neq\alpha_{rs}$ , then $a_{1}a_{2}^{-1}+a_{1}^{-1}a_{2}=2$ , which implies $a_{1}=a_{2}$ , a contradiction.
The existence of } $t$ can be proved exactly the same way. 1
The next theorem is a natural extension of Theorem 2.2.

Theorem 2.3 Let (X, $W_{+},$ $VV_{-}$ ) be a symmetric spin model of degree 3.
Then $\{A_{0}, A_{1}, A_{2}, A_{3}\}$ are the adjacency mat$\gamma\dot{\eta}$ ces of a symmetric class 3
association scheme.

$P_{7}oof$ of Theorem 2.3
Let $/Vt$ be the. algebra generated by $\{J, T/V_{+}\}$ with respect to the ordinary

matrix product, and let $\mathcal{H}$ be the algebra generated by {I, $\psi V_{-}$ } witb respect
to the Hadamard product, as introduced in [5]. Furthermore, let $\mathcal{A}$ be the
algebra generated by $\{A_{0}, A_{1}, A_{2}, A_{3}\}$ with respect to the Hadamard product.
Because $A_{i}oA_{j}=\delta_{ij}A_{i}$ , we have that $\{A_{0}, A_{1}, A_{2}, A_{3}\}$ is a basis of $A$ . It is
clear that $\mathcal{H}\subseteq A$ . Now, $I$ , J., $W_{+}$ and $l/V_{-}$ are in $\mathcal{H}$ by [5]. The transition
matrix that takes $\{A_{0}, A_{1}, A_{2}, A_{3}\}$ into {I, $J,$ $l/V_{+},$ $l/V_{-}$ } is of Vandermonde
type. It’s determinant is non-zero, because $t_{i}’ s$ are distinct for $i=1,2,3$ .
Thus, {I, $J,$ $i/V_{+)}W_{-}$ } is also a basis of $A$ , i.e. $\mathcal{H}=A$ . Consequently, $\mathcal{H}$ is
of dimension 4. Using that $\mathcal{H}\cong \mathcal{M}$ , we obtain that $\Lambda t$ is of dimension four,
too. However, {I, $J,$ $\iota\prime V_{+},$ $T\Psi_{-}$ } $\subset/Vt$ that yields $\mathcal{M}=\mathcal{H}$ . Now, applying
Proposition 3 of [5], we obtain that $/l4$ is the Bose-Mesner algebra of an
association scheme. 1
For non-symmetric spin models we have the following analogous theorem to
Theorem 2.3.
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Theorem 2.4 Let (X, $T^{1}V_{+},$ $\nu V_{-}$ ) be a non-symmetric spin model of degree 2.
Furthermore, let us assume that $A_{1}oA_{1}^{T}=0$ . Then (X, $A_{0}=I,$ $A_{1},$ $A_{1}^{T},$ $A_{2}-$

$A_{1}^{T})$ is a non-symmet$7^{\cdot}ic$ class 3 association scheme provided $A_{1}^{T}\neq A_{2}$ . If
$A_{2}=A_{1^{j}}^{T}$ then $(X, A_{0}, A_{1}, A_{1}^{T})$ is a non-symmetric class two association
scheme.

Proof of Theorem 2.4
Let us assume first $A_{1}^{T}\neq A_{2}$ . Let $\mathcal{M}$ be the algebra generated by $(J, W_{-}, W_{-}^{T})$

with respect to the ordinary matrix product and let $\mathcal{H}$ be generated by
(I, $W_{+},$ $W_{+}^{T}$ ) with respect to Hadamard product. We shall prove that $\mathcal{M}=$

$\mathcal{H}$ , which implies by Theorem 2.4 of [3] that $\mathcal{M}$ is the Bose-mesner algebra
of a self-dual association scheme.

Let $A$ be the algebra generated by $(A_{0}=I, A_{1}, A_{1}^{T}, A_{2}-A_{1}^{T})$ with respect
to the Hadamard product. It is easy to see that $\dim(A)=4$ and that $\mathcal{H}\subseteq A$ .
$J$ is clearly in $\mathcal{H}$ . We claim, that $I,$ $J,$ $W_{+}$ and $\nu V_{+}^{T}$ are linearly independent.
Indeed, the transition matrix from the basis $(A_{0}=I, A_{1}, A_{1}^{T}, A_{2}-A_{1}^{T})$ to
(I, $J,$ $W_{+}wI$ ) is

$\{\begin{array}{llll}1 0 0 01 l l 1t_{0} t_{l} t_{2} t_{2}t_{0} t_{2} t_{l} t_{2}\end{array}\}$ .

Its determinant is $-(t_{1}-t_{2})^{2}\neq 0$ . Thus, $\mathcal{H}=\mathcal{A}$ . By Theorem 2.3 of [3] we
have that $\mathcal{M}$ and $\mathcal{H}$ are isomorphic. Furthermore, $I,$ $J,$ $I\phi^{r_{+}}$ and $T/V_{+}^{T}$ are all
in $/W$ , thus $\mathcal{M}=\mathcal{H}$ .

The case of $A_{2}=A_{1}^{T}$ is similar and left to the reader. 1

3 Symmetric models
In this section we turn to the classification of small symmetric spin models.
It is easy to see that for any $n$ , the only $n\cross n$ spin model of degree 1 is the
Potts model [6]. So we shall always assume that the degree of the model is
at least 2. For the sake of completeness we begin with the case $n=4$ .

3.1 $n=4$

There can be models of degree 2 and 3 besides the Potts model.
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Degree 2 $G_{1}$ and $G_{2}$ are 1 and 2-regular graphs, respectively by Theo-
rem 2.1. It is obvious that the two-regular graph must be the four-cycle, so
we obtained the cyclic group case.

Degree 3 Now $G_{1},$ $G_{2}$ and $G_{3}$ are all perfect matchings. Because two of
the matchings together form a 4-cycle, we may assume by renumbering the
vertices and the $G_{i}’ s$ that $\nu V_{+}$ is as follows

$\nu V_{+}=\{\begin{array}{llll}a_{0} a_{l} a_{2} a_{3}a_{l} a_{0} a_{3} a_{2}a_{2} a_{3} a_{0} a_{l}a_{3} a_{2} a_{1} a_{0}\end{array}\}$ .

Writing $x=a_{0}/a_{1},$ $y=a_{0}/a_{2}$ and $\sim^{i’}’=a_{0}/a_{3}$ we obtain the following set of
three equations from the condition $W_{+}W_{-}=nI$ :

$x+1/x+y/z+z/y$ $=$ $0$

$y+1/y+x/z+z/x$ $=$ $0$

$z+1/z+x/y+y/x$ $=$ $0$ .

The only solution of this system is that one of the variables is equal to 1 and
the other two are negatives of each other. Thus, we may assume that $W_{+}$

looks like

$W_{+}=[-baab$ $-baab$ $-baab$ $-bc\iota ab]$ .

Now taking into account the various equations coming from t.he star-triangle
equality we obtain that both $a$ and $b$ must be fourth roots of unity. All these
cases are covered by the direct product construction of de la Harpe [4].

3.2 $n=5$

By Theorem 2.1 the model is either of degree 1 or degree 2. Thus, if
(X, $l^{J}V_{+},$ $l/V_{-}$ ) is not the Potts model, then we have that $G_{1}$ and $G_{2}$ are both
5-cycles so that their union is the complete graph $K_{5}$ by Theorem 2.2. In
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this case $W_{+}$ looks like

肌 $=\{\begin{array}{lllll}a_{0} a_{l} a_{2} a_{2} a_{l}a_{l} a_{0} a_{l} a_{2} a_{2}a_{2} a_{l} a_{0} a_{l} a_{2}a_{2} a_{2} a_{l} a_{0} a_{l}a_{l} a_{2} a_{2} a_{l} a_{0}\end{array}\}$

This is the well-studied case of the pentagon $[4, 5]$ .

3.3 $n=6$

In this case a model could be of degree 2,3,. . . ,5.

3.3.1 Degree 2

By Theorem 2.2 the graph $G_{1}$ has to be strongly regular. Furthermore,
we may assume that it is 1- or 2-regular, otherwise we just have to switch
between $G_{1}$ and $G_{2}$ . However, in any case $G_{1}$ is disconnected that contradicts
to Jaeger’s conditions $[5, 4]$ .

3.3.2 Degree 3

$G_{1},$ $G_{2}$ , and $G_{3}$ are regular graphs by Theorem 2.1. There are two possibil-
ities, namely two matching and a three regular graph, or one matching and
two 2-regular graphs. In the first case the two matchings together form a
6-cycle, so $W_{+}$ is as follows.

$\nu V_{+}=[a_{1}^{0}a_{2}a^{3}a^{3}a$
$c\iota_{0}^{1}c\iota_{3}^{\sim}c\iota_{3}c\iota^{9}aa_{3}c\iota_{2}a_{1}c\iota_{0}^{3}a_{3}c\iota_{3}ac\iota_{0}c\iota c\iota c\iota_{3}Cl_{2}^{3}a_{3}1$

$a_{2}^{3}a_{0}c\iota a_{1}^{3}aa3cca_{0}aa^{3}\iota_{3}^{2}a_{1}^{3}\iota.]$

Taking the $(1, 3)$ and $(3, 1)$ entries of $|/V_{+}T/V_{-}$ , we obtain the following two
equations:

$a_{0}a_{3,-1}^{-1}+a_{0}^{-1}a_{3}+a_{1}a_{2}^{-1}+a_{3}a_{1}^{-1}+a_{2}a_{3}^{-1}+1$
$=$ $0$

$a_{0}a_{3}+a_{0}^{-1}a_{3}+a_{1}^{-1}a_{2}+a_{3}^{-1}a_{1}+a_{2}^{-1}a_{3}+1$ $=$ $0$
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$aaa231$
$[a_{3}a_{1}a_{2}^{0}a_{3}^{1}aa$

$a_{3}^{1}a_{3}a_{1}^{0}aa_{2}a$ $a_{3}a_{3}^{2}a_{0}^{1}aa_{1}aa_{2}^{3}a_{3}a_{1}^{1}a_{0}aa$ $a_{3}a_{2}^{3}a_{1}a_{1}^{0}aa$
$a_{0}a_{3}^{1}a_{3}a_{1}^{2}aa]$

4

Figure 1: Decomposition of $\Lambda_{6}^{\nearrow}$ into two $C_{6}’ s$ and a matching.

Substracting the second one from the first and multiplying by $a_{1}a_{2}a_{3}$ we
obtain

$a_{1}^{2}a_{3}-a_{2}^{2}a_{3}+a_{3}^{2}a_{2}-a_{1}^{2}a_{2}+a_{2}^{2}a_{1}-a_{3}^{2}a_{1}=0$

that is equivalent to

$(a_{2}-a_{1})(a_{3}-a_{1})(a_{3}-a_{2})=0$ .

However, this contradicts to the assumption of degree 3. We call the above
type equation pair the cyclic $pe$rmutation equation.

In the second case, we still have two choices. The first one is that $G_{1}$ is a
matching and $G_{2}$ and $G_{3}$ are 6-cycles. There is only one way to decompose
$I\iota_{6}^{\nearrow}$ into one matching and two 6-cycles (see Figure 1). Indeed, we may assume
that one of the 6-cycles is (123456). Then in the other cycle we have to have
a pair of adjacent edges so that the difference of the end points of one of
them is 2, and the same for the other one is 3. By renumbering the vertices
cyclically and possibly reversing the cyclic order we may assume that $(1, 4)$

and $(2, 4)$ are edges of the other cycle. Now if $(2, 5)$ were an edge of the
second cycle then the other edge from vertex 5 should go to vertex 3, but
that would imply $(3, 6)$ is an edge of the second cycle and $(6, 1)$ , too. But
that is a contradiction. Thus, the other edge from vertex 2 in the second
cycle must be $(2, 6)$ . The resulting decomposition is shown on Figure 1.
Taking the difference of $(1, 2)$ and $(2, 1)$ entries of $\nu V_{+}\nu V_{-}$ we obtain the
cyclic permutation equation as before, hence a contradiction.

The other possibility is the decomposition $K_{6}=i|./l_{6}\cup 2C_{3}\cup C_{6}$ , where
$M_{6}$ is a matching on six points (see Figure 2). This corresponds to the Cyclic
Group $C_{6}$ .
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$a_{1}a_{2}a_{3}$
$W_{+}=[a_{2}aa_{1}^{0}a_{1}^{3}a_{2}aa_{2}a_{3}^{1}a_{2}^{0}aaa^{1}a_{2}^{2}a_{3}a_{0}^{1}aaa_{1}a_{1}^{3}a_{0}a_{1}^{2}a_{2}aaa_{2}a_{2}a_{1}^{3}a^{0}a_{1}aa_{2}^{1}a_{0}a_{1}^{3}aa_{2}a]$

4

Figure 2: The Cyclic Group decomposition of $It_{6}’$

3.3.3 Degree 4

According to Theorem 2.1 there are two possible cases.

Case 1. $G_{1},$ $G_{2}$ and $G_{3}$ are matchings and $G_{4}$ is a 6-cycle.There is only
one such decomposition, because two of the matchings together form another
6-cycle and we can apply the argument of Section 3.2.2. The corresponding
$W+is$

$W_{+}=[c\iota_{2}a_{0}ca_{1}a_{1}^{4}a^{l_{3}}$
$c\iota a_{1}a^{0}a_{3}^{2}ac\iota_{4}^{1}a_{0}^{1}a^{2}aa_{4}c\iota_{3}a_{1}$ $a_{0}a_{1}^{3}a_{2}a^{4}aa_{1}$ $a_{1}^{3}a_{0}^{4}a_{2}a_{1}aa$

$a_{0}a_{3}^{1}a_{1}^{4}a_{2}aa]$ .

Taking the $(1, 5)$ and $(5, 1)$ entries of $\nu V_{+}W_{-}$ we obtain the cyclic permutation
equation as before, hence a contradiction.

Case 2. $G_{1},$ $G_{2}$ and $G_{3}$ are matchings and $G_{4}$ is a union of two triangles. It
is easy to see that if we assume that the two triangles are on vertices {1,2,3}
and {4,5,6}, respectively, then taking the $(1, 2)$ and $(2, 1)$ entries of $W_{+}W_{-}$

we obtain the cyclic permutation equation, hence a contradiction.

3.3.4 Degree 5

Now we have a decomposition of $I\iota_{6}’$ into five matchings. There is only one
way to decompose $\Lambda_{6}’$ into five matchings up to permutation of the matchings,
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because two pairs of these matchings form two 6-cycles and we can apply the
argument of Section 3.2.2. The resulting $W+is$ as follows.

$W_{+}=[a_{3}aa_{5}^{0}a_{4}^{1}a_{2}a$
$a_{0}^{1}a_{3}a_{5}^{2}a^{4}aac\iota_{2}a_{3}a_{1}a^{0}c\iota_{5}a_{4}$ $a_{4}^{5}aa_{3}^{0}c\iota_{1}a_{2}a$

$a_{5}^{4}a_{0}a_{1}^{3}a_{2}aaa_{3}^{2}a_{5}a_{1}^{4}a_{0}aa]$

Taking the difference of the $(1, 2)$ entry of $i^{J}V_{+}W_{-}$ with the $(3, 4)$ , $(4, 3)$ , $(5, 6)$

and $(6, 5)$ entries, respectively, we obtain the following four equations.

$a_{3}a_{2}^{-1}+a_{2}a_{5}^{-1}+a_{5}a_{4,-1}^{-1}-a_{2}c\iota_{4,-1}^{-1}-a_{3}a_{5,-1}^{-1}-a_{5}a_{2}^{-1}$
$=$ $0$

$a_{3}a_{2}^{-1}+a_{4}a_{3}^{-1}+a_{5}a_{4,-1}-a_{3}c\iota_{4,-1}-a_{4}a_{2,-1}-a_{5}a_{3}^{-1}$
$=$ $0$

$a_{3}a_{2}^{-1}+a_{4}a_{3}^{-1}+a_{2}a_{5,-1}-\dot{a}_{2}a_{3,-1}-a_{4}a_{2,-1}-a_{3}a_{5}^{-1}$
$=$ $0$

$a_{4}a_{3}^{-1}+a_{2}a_{5}^{-1}+a_{5}a_{4}$ $-a_{2}a_{4}$ $-a_{5}a_{3}$ $-a_{4}a_{5}^{-1}$ $=$ $0$

Reducing we obtain

$(a_{\overline{i)}}-a_{2})(a_{3}a_{4}-a_{5}a_{4}-a_{2}a_{4}+a_{5}a_{2})$ $=$ $0$

$(a_{3}-a_{4})(a_{5}a_{2}+a_{3}a_{4}-c\iota_{3}a_{2}-a_{2}a_{4})$ $=$ $0$

$(a_{2}-a_{3})(a_{3}a_{2}+a_{5}a_{4}-a_{5}a_{2}-a_{3}a_{5})$ $=$ $0$

$(a_{4}-a_{5})(a_{3}a_{2}+a_{s^{a}-\downarrow-a_{3}a_{4}-a_{3}a_{5})}$ $=$ $0$ .

Using that $a_{i}’ s$ are different, it yields $a_{3}\cdot=-a_{5}$ and $a_{4}=-a_{2}$ that easily
leads to a contradiction. Thus, the case $n=6$ is finished.

3.4 $n=7$

Applying again Theorem 2.1 we obtain that the number of different off-
diagonal entries of $W_{+}$ is at most three. If (X, $W_{+},$ $W_{-}$ ) were of degree two,
then $G_{1}$ should be a strongly regular graph. However, strongly regular graph
on 7 vertices does not exist. So, we may assume that the model is of degree
3. Now $G_{1},$ $G_{2}$ and $G_{3}$ are all regular graphs. Thus, they are all 2-regular
graphs, i.e. unions of cycles. Furthermore, by Theorem 2.3 we have that $A_{i}’ s$

are adjacency matrices of an association scheme. However, it is well known
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$\frac{a_{2}}{a_{3}}a_{1}$

$\nu V_{+}=[a_{0}aa_{3}^{1}a_{3}a^{2}a_{1}a_{3}^{1}a_{3}a_{2}^{1}a_{2}^{0}aaa$
$a_{0}^{1}a^{2}aa_{3}^{2}a_{3}c\iota a1$ $a_{2}^{2}a_{3}^{3}a_{0}a^{1}aaa_{1}$ $a_{1}^{2}a_{1}^{3}a_{0}^{3}aaac\iota_{2}$ $a_{0}^{2}a_{3}a_{1}^{3}a_{2}a_{1}aa$

$a_{0}^{1}a_{3}a_{3}^{2}a_{1}a_{2}aa\ovalbox{\tt\small REJECT}$

Figure 3: The Cyclic Group decomposition $K_{7}=C_{7}\cup C_{7}\cup C_{7}$

folklore that the only association scheme on 7 points with $k_{1}=k_{2}=k_{3}=2$

is the scheme of the 7-gon. Thus the only case here is the cyclic group case
(see Figure 3). The proof of Theorem 1.4 is now completed.

4 Non-symmetric models
In this section $G_{i}’ s$ are oriented graphs. Furthermore, we always assume that
the models are really non-symmetric, i.e., there exists at least one $G_{i}$ and an
edge $(k, l)\in E(G_{i})$ such that $(1, k$ ) $\not\in E(G_{i})$ . By Thorem 2.1 we have that
in-degree$=out-\deg_{I}\cdot ee=k$ ; for every vertex in $G_{i}i=1,2,$ $\ldots$ . If the model is
of degree 1, then it is symmetric and it is the Potts model.

4.1 $n=4$

4.1.1 Degree 2

We may assume that $k_{1}=1$ and $k_{2}=2$ . Now $G_{1}$ contains either two
independent edges directed in both ways, or it is a directed four-cycle. In
the first case we obtain a symmetric model. In the second case we may
assume that the directed four cycle is (1234), i.e., $W_{+}$ is

$\nu V_{+}=\{\begin{array}{llll}a_{0} a_{l} a_{\sim} a_{2}c\iota_{2} a_{0} c\iota_{1} c\iota_{2}c\iota_{2} c\iota_{2} c\iota_{0} a_{l}a_{l} a_{2} a_{2} a_{0}\end{array}\}$ .
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Taking the $(1, 2)$ and $(2, 1)$ entries of $\nu V_{+}W_{-}$ we obtain a cyclic permutation
equation in variables $a_{0},$ $a_{1},$ $a_{2}$ , i.e., $(a_{0}-a_{1})(a_{0}-a_{2})(a_{1}-a_{2})=0$ . This
implies that $a_{0}=a_{1}$ or $a_{0}=a_{2}$ . In the first case we obtain

$W_{+}=\{\begin{array}{llll}a_{0} a_{0} a_{2} a_{2}a_{2} a_{0} a_{0} a_{2}a_{2} a_{2} a_{0} a_{0}a_{0} c\iota_{2} c\iota_{2} a_{0}\end{array}\}$ .

Taking the $(1, 2)$ and $(1, 3)$ entries of $W_{+}\nu V_{-}$ we obtain

$a_{0}a_{2}^{-1}+a_{\overline{0}^{1}}a_{2}+2=0=2(a_{0}a_{2}^{-1}+a_{0}^{-1}a_{2})$,

a contradiction.
In the second case we have

$\nu V_{+}=\{\begin{array}{llll}c\iota_{0} a_{l} a_{0} a_{0}a_{0} a_{0} a_{l} a_{0}a_{0} a_{0} a_{0} a_{l}a_{l} a_{0} a_{0} a_{0}\end{array}\}$ .

This is an instance of the cyclic group case.

4.1.2 Degree 3

$G_{1},$ $G_{2}$ and $G_{3}$ all have both in-degree and out-degree 1. If the model is
non-symmetric, then we may assume that $G_{1}$ is a directed four-cycle. This
implies that the other two graphs must be the reverse four-cycle and the
diagonals oriented in both ways. Thus,

$\nu V_{+}\pm\{\begin{array}{llll}a_{0} a_{l} c\iota_{2} a_{3}a_{3} a_{0} a_{l} a_{2}a_{2} a_{3} 0_{\prime 0} a_{l}a_{l} a_{2} c\iota_{3} a_{0}\end{array}\}$ .

This is another instance of the cyclic group case.

4.2 $n=5$

4.2.1 Degree 2

Now we have two cases to be distingu: $s1_{1}ed:k_{1}=1$ and $k_{1}=2$ .



86

$k_{1}=1$ In this case $G_{1}$ cannot be symmetric. There are two possibilities for
$G_{1}$ . One is that it is a union of a directed triangle and an edge oriented both
ways, the other is the directed five-cycle. In the first case assuming that the
directed triangle is (123) we have that

$\nu V_{+}=\{\begin{array}{lllll}a_{0} a_{l} a_{2} a_{2} a_{2}a_{2} a_{0} a_{l} c\iota_{2} a_{2}a_{1} a_{2} a_{0} a_{2} a_{2}a_{2} a_{2} a_{2} a_{0} a_{l}c\iota_{2} \zeta l_{2} a_{2} a_{1} a_{0}\end{array}\}$ .

From the $(1, 2)$ and $(2, 1)$ entries of $\nu V_{+}i^{J}V_{-}$ we obtain the cyclic permutation
equation $(a_{0}-a_{1})(a_{0}-a_{2})(a_{1}-a_{2})=0$ . This implies that either $a_{0}=$

$a_{1}$ or $a_{0}=a_{2}$ . In the first case the $(4, 5)$ entry of $W_{+}W_{-}$ would be 5, a
contradiction. In the second case we obtain the system of equations

$a_{0}c\iota_{1}^{-1}+a_{0}^{-1}a_{1}+3$ . $=$ $0$

$4a_{0}+a_{1}$ $=$ $\pm\sqrt{\overline{0}}a_{0}^{-1}$

$4a_{0}^{-1}+a_{1}^{-1}$ $=$ $\pm\sqrt{5}a_{0}$

that has no solution.
If $G_{1}$ is a directed five-cycle, then we obtain an instance of the cyclic

group model.

$k_{1}=2$ Because the model is non-symmetric, we may assume that $(1, 2)\in$

$E(G_{1})$ and $(2, 1)\in E(G_{2})$ . Now the first two rows of $\dagger/V_{+}$ look like

$a_{0}$ $a_{1}$ $a_{2}$ $x$ $y$

$a_{2}$ $a_{0}$ $a_{1}$ $Z$ $Cl$

after suitable rearrangement of the last three rows and columns, where the

part $xz$ $c\iota y$ stands for either $a_{2}^{1}a$ $c\iota_{2}a_{1}$ or $c\iota_{1}a_{1}$ $a_{2}a^{2}$ In any case, from the $(1,2)$

and $(2, 1)$ entries of $\nu V_{+}\nu V_{-}$ we obtain again the cyclic permutation equation
$(a_{0}-a_{1})(a_{0}-a_{2})(a_{1}-a_{2})=0$ , which implies that either $a_{0}=a_{1}$ or $a_{0}=a_{2}$ .
By symmetry reasons we may assume that $a_{0}=a_{2}$ . Now the product of
row $i$ of $W_{+}$ and column $j$ of $T/V_{-}$ for $i\neq j$ is either $2(a_{0}a_{1}^{-1}+a_{0}^{-1}a_{1})+1$ or
$a_{0}a_{1}^{-1}+a_{0}^{-1}c\iota_{1}+3$ . However, both cannot occur at the same time. If the first
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two rows of $W_{+}$ are
$a_{0}$ $a_{0}$ $a_{1}$ $a_{1}$ $a_{0}$

, then $a_{0}’ s$ should stand under the
$a_{1}$ $a_{0}$ $a_{0}$ $a_{0}$ $a_{1}$

$a_{1}’ s$ of the first row, the second row, . . . of $W_{+}$ otherwise we would get both
types of products, a contradiction. However, that would imply four of the
$a_{0}’ s$ in the third row, also a contradiction.

On the other hand, if the first two rows of $\nu V_{+}$ look like
$a_{0}$ $a_{0}$ $a_{1}$ $a_{1}$ $a_{0}$

,
$a_{1}$ $a_{0}$ $a_{0}$ $a_{1}$ $a_{0}$

then the $(3, 5)$ entry of $\nu V_{+}m\iota\iota st$ be $a_{1}$ , otherwise again both types of product
would occur. However, that would imply three $a_{1}’ s$ in the fifth column, a con-
tradiction. To finish this case we have to note only that the first two rows of
$W_{+}$ can be assumed of one of the above two forms via suitable rearrangement
of the rows and columns.

4.2.2 Degree 3

We may assume that $k_{1}=k_{2}=1$ ancl $k_{3}=2$ . If $G_{1}$ is a union of a directed
triangle and an edge directed in both ways, then we may assume that the
triangle is (123). By symmetry, and the regularity of the $G_{i}’ s$ we may assume
that the last two rows of $Ll^{\gamma_{+}}al’ e$ as follows:

$0_{3}$ $a_{3}$ $a_{2}$ $a_{0}$ $a_{1}$

$a_{2}$ $a_{3}$ $a_{3}$ $a_{1}$ $a_{0}$

$isNowG_{1}$
contains the triangle (123) and we can apply the regularity, so $T/V_{+}$

$\nu V_{+}=\{\begin{array}{lllll}c\iota_{0} c\iota_{1} c\iota_{3} a_{3} a_{2}a_{3} Cl_{0} a_{l} a_{2} a_{3}c\iota_{1} a_{2} a_{0} a_{3} c\iota_{3}a_{3} a_{3} a_{2} a_{0} a_{1}c\iota_{2} a_{3} a_{3} a_{l} a_{0}\end{array}\}$ .

Taking the $(1, 2)$ and $(2, 1)$ entries of $\nu V_{+}\nu V_{-}$ we obtain a cyclic permutation
equation in variables $a_{0},$ $a_{1}$ and $a_{3}$ . On the other hand, $(3, 5)$ and $(5, 3)$

entries give the cyclic permutation equation in variables $a_{0},$ $a_{2}$ and $a_{3}$ . This
implies that $a_{0}=a_{3}$ . However, in this case the $(1, 3)$ and $(3, 1)$ entries give a
cyclic permutation equation in $a_{1},$ $c\iota_{2}$ and $a_{3}$ , a contradiction. Thus, we may
assume that both $G_{1}$ and $G_{2}$ are directed five-cycles. Let us denote for a
digraph $Gby-G$ the graph with edges exactly the reverses of those of $G$ . If
$G_{1}=-G_{2}$ or $G_{1}\cap-G_{2}=\emptyset$ , then we have instances of the cyclic group case.
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Thus, we may assume that $G_{1}$ is the five-cycle (12345) and that $(2, 1)\in G_{3}$

and $(3, 2)\in G_{2}$ . Now we have to consider two cases.
Case 1. $(2, 5)\in G_{2}$ . It is easy to see that this implies that $G_{2}$ is the cycle
(13254). So $W+is$

$\nu V+=\{\begin{array}{lllll}a_{0} a_{1} a_{2} a_{3} a_{3}a_{3} a_{0} a_{1} a_{3} a_{2}a_{3} a_{2} a_{0} a_{l} a_{3}a_{2} a_{3} c\iota_{3} a_{0} a_{l}a_{l} a_{3} a_{3} a_{2} a_{0}\end{array}\}$ .

Considering again several entries of the product $W_{+}W_{-}$ , we have that $(3, 4)$

and $(4, 3)$ give cyclic permutation equation in variables $a_{0)}a_{1}$ and $a_{3}$ , while
$(4, 5)$ and $(5, 4)$ give one in variables $a_{0},$ $a_{1}$ and $a_{2}$ . This implies $a_{0}=a_{1}$ .
Substituting that value we get that $(1, 2)$ and $(2, 1)$ give the cyclic permuta-
tion in variables $a_{1},$ $a_{2}$ and $a_{3}$ , a contradiction.
Case 2. $(2, 4)\in G_{2}$ . This results in that $G_{2}=(15324)$ , and

$tV_{+}=\{\begin{array}{lllll}a_{0} c\iota_{l} c\iota_{3} a_{3} a_{2}a_{3} a_{0} c\iota_{l} a_{2} a_{3}a_{3} c\iota_{2} a_{0} a_{l} a_{3}c\iota_{2} a_{3} a_{3} a_{0} a_{l}a_{l} a_{3} a_{2} a_{3} a_{0}\end{array}\}$ .

In a similar way as in Case 1 we obtain from the cyclic permutation equations
given by $(1, 2)$ and $(2, 1)$ morover $(2, 3)$ and $(3, 2)$ that $a_{0}=a_{1}$ . However,
with this value we obtain the cyclic permutation equation from $(4, 5)$ and
$(5, 4)$ in variables $a_{1},$ $a_{2}$ and $a_{3}$ , a contradiction.

4.2.3 Degree 4

First we must observe that if $G;=-G_{j}$ for some $i$ and $j$ , then we have an
instance of the cyclic group case. Next, if $G_{1}$ is a union of a directed triangle
and an edge directed in both ways, then assuming that the triangle is (123),
we have

$\nu V_{+}=\{\begin{array}{lllll}a_{*}o a_{1} a_{l}^{*} ** *c\iota_{3} a_{*}o c\iota_{0} c\iota_{l} **a_{i_{1}} a_{i_{2}} a_{i_{3}} a_{0} a_{l}a_{j_{1}} a_{j_{2}} c\iota_{j_{3}} a_{3} a_{0}\end{array}\}$ .
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Here $i_{1},$ $i_{2},$ $i_{3}$ and $j_{1},j_{2},j_{3}$ are permutations of {2, 3, 4} so‘that $i_{k}\neq j_{k}$ for $k=$

$1,2,3.$ This immediately implies a cyclic permutation equation in variables
$a_{2},$ $a_{3}$ and $a_{4}$ , a contradiction.

Thus, we may assume that all four $G;s$ are five-cycles. If $G_{1}\cap G_{2}=\emptyset$ ,
then again we have an instance of the cyclic group case. So we assume that
$G_{1}=$ (12345), $(2, 1)\not\in G_{2}$ and $(3, 2)\in G_{2}$ . Similarly to the degree 3 case
we obtain that either $G_{2}=$ (13254) or $G_{2}=$ (15324). However, it is not
hard to verify that in neither of these cases can we decompose the remaining
edges into two directed five-cycles. This completes the proof of Theorem 1.5.1
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