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Contraction-Elimination Theorem

東京工業大学理学部情報科学科 鹿島 亮 (Ryo Kashima)

$0$ Introduction

LK and LJ are the sequent calculi for, respectively, classical logic and intuitionistic

logic. (See, e.g., [4] for the standard treatment of the sequent calculi.) They were intro-

duced by Gentzen to prove certain meta-theorems about the logics, and many researchers,

since Gentzen, have studied LK, LJ, and their variations to investigate various problems

in logic. This paper is one of such studies.

LJ is obtained from LK by imposing the restriction that the right-hand side of a

sequent consists of at most one formula. On the other hand, LJ is equivalent to the

sequent calculus obtained by removing the right contraction rule from LK (see Theo-

rem 1.2). Moreover, the sequent calculus for BCK-logic is obtained by removing the left

contraction rule from LJ (see [3]). Thus the existence/non-existence of the contraction

rules determines the logics of Gentzen’s sequent calculi.

The purpose of this paper is to prove the “contraction-elimination theorem” (Theo-

rem 1.1): If a sequent $\Gamma\Rightarrow A$ is provable in the implicational fragment of LK (resp. of

LJ) and if no propositional variable has the PNN-occurrences (resp. PPN-occurrences) in

it, then it is provable without the right (resp. left) contraction rule, where a propositional

variable $a$ is said to have the PNN-occurrences (resp. PPN-occurrences) in $\Gamma\Rightarrow A$ if $a$

occurs at least once (resp. twice) in positive and at least twice (resp. once) in negative

in $\Gamma\Rightarrow A$ . (We wish to remove the restriction “the implicational fragment of,” but this

is somewhat problematic. See the discussion in [2].) As a corollary to the contraction-

elimination theorem, we get the following: If an implicational formula $A$ is a theorem of

classical logic (resp. of intuitionistic logic) and is not a theorem of intuitionistic logic (resp.

BCK-logic), then there is a propositional variable which has the PNN-occurrences (resp.

PPN-occurrences) in A. (Corollary 1.3) This refines the Ja\’{s}kowski’s result in [1]: If an
implicational formula $A$ is a theorem of classical logic and is not a theorem of BCK-logic,
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then there is a propositional variable which occurs at least three times in $A$ .
To show the contraction-elimination theorem, we introduce some new notions and

prove many lemmas. The author believes that the contraction-elimination theorem, to-

gether with the lemmas, will shed new light on the study of logic.

The contents of this paper are as follows. In Section 1, we present basic definitions

and state the contraction-elimination theorem for our sequent calculi. In Section 2, we

introduce novel modifications of sequent calculi, which we call “sequent calculi with $\star$ .
We show the relation between the sequent calculi and those with $\star$ . Then our goal is

reduced to proving the contraction-elimination theorem for the sequent calculi with $\star$ . In

Section 3, we prove the contraction-elimination theorem for $LJ_{arrow}^{\star}(i.e.$ , the implicational

fragment of LJ with $\star$). In Section 4, we prove the contraction-elimination theorem for
$LK_{arrow}^{\star}$ ( $i.e.$ , the implicational fragment of LK with $\star$). The proof for $LJ_{arrow}^{\star}$ is easy, but

the proof for $LK_{arrow}^{\star}$ is somewhat laborious. The outline of the latter is as follows. We

assign appropriate ordinal numbers to proofs in $LK_{arrow}^{\star}$ where $0$ is assigned to the proofs

containing no right contraction, and we give a transformation of proofs which decreases

the ordinals. This has some analogy to the famous cut-elimination theorem by Gentzen.

1 Sequent Calculi

In this paper, we consider only the implicational fragments of propositional logics.

Therefore our formulas are constructed from the propositional variables $andarrow(impli-$

cation). If $\Gamma$ and $\triangle$ are (possibly empty) sequences of formulas, then an expression
$\Gamma\Rightarrow\triangle$ is called a sequent. We will use letters $a,$ $b,$ $a_{1},$ $a_{2},$ $\ldots$ for propositional variables,

letters $A,$ $B,$ $A_{1},$ $A_{2},$
$\ldots$ for formulas, and letters $\Gamma,$ $\Delta,$ $\Gamma_{1},$ $\Gamma_{2},$

$\ldots$ for sequences of formu-

las. Parentheses will be omitted in such a way. that, for example, $Aarrow Barrow Carrow D$ denotes

$Aarrow(Barrow(Carrow D))$ .
We will use superscript to distinguish occurrences of sub-formulas. For example, in

the sequent
$A^{1},$ $A^{2}arrow B\Rightarrow B,$ $A^{3},$ $A^{4}$

there are four occurrences of the formula $A$ .

When we consider a sequent $\Gamma_{1}\Rightarrow\Gamma_{2}$ , the order of the formulas in $\Gamma_{i}(i=1,2)$ is

not important. Hence by $\Gamma\Rightarrow\triangle$ , we will denote a sequent I” $\Rightarrow\triangle^{J}$ where $\Gamma’$ and $\Delta’$ are
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permutations of, respectively, $\Gamma$ and $\triangle$ .
We define positive and negative occurrences of a propositional variable in a formula

and in a sequent, as follows:

1. $a^{1}$ is a positive occurrence in the formula $a^{1}$ .

2. A positive (resp. negative) occurrence in $A^{1}$ is a negative (resp. positive) occurrence

in the formula $A^{1}arrow B$ . A positive (resp. negative) occurrence in $B^{2}$ is a positive

(resp. negative) occurrence in the formula $Aarrow B^{2}$ .

3. A positive (resp. negative) occurrence in $A^{1}$ is a negative (resp. positive) occurrence

in the sequent $A^{1},$ $\Gamma\Rightarrow\triangle$ . A positive (resp. negative) occurrence in $A^{2}$ is a positive

(resp. negative) occurrence in the sequent $\Gamma\Rightarrow\Delta,$ $A^{2}$ .

Now we define four sequent calculi $LK_{arrow},$ $LK_{arrow-RC},$ $LJ_{arrow}$ , and $LJ_{arrow-LC}$ .

The axioms in $LK_{arrow}$ :

$a\Rightarrow a$ (a is a propositional variable)

The inference rules in $LK_{arrow}:$

$\frac{\Gamma\Rightarrow\Delta}{A,\Gamma\Rightarrow\Delta}$ Left Weakening $\frac{\Gamma\Rightarrow\Delta}{\Gamma\Rightarrow\Delta,A}$ Right Weakening

$\frac{A,A,\Gamma\Rightarrow\Delta}{A,\Gamma\Rightarrow\Delta}$ Left Contraction $\frac{\Gamma\Rightarrow\Delta,A,A}{\Gamma\Rightarrow\Delta,A}$ Right Contraction

$\frac{\Gamma\Rightarrow\Delta,AB,\Pi\Rightarrow\Sigma}{Aarrow B,\Gamma,\Pi\Rightarrow\triangle,\Sigma}Leftarrow$ $\frac{A,\Gamma\Rightarrow\triangle,B}{\Gamma\Rightarrow\triangle,Aarrow B}Rightarrow$

$LK_{arrow-RC}$ is obtained by removing the right contraction rule from $LK_{arrow}$ .

The axioms in $LJ_{arrow}$ :

$a\Rightarrow a$ (a is a propositional variable)

The inference rules in $LJ_{arrow}:$

$\frac{\Gamma\Rightarrow B}{A,\Gamma\Rightarrow B}$ Left Weakening
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$\frac{A,A,\Gamma\Rightarrow B}{A,\Gamma\Rightarrow B}$ Left Contraction

$\frac{\Gamma\Rightarrow AB,\Delta\Rightarrow C}{Aarrow B,\Gamma,\Delta\Rightarrow C}Leftarrow$ $\frac{A,\Gamma\Rightarrow B}{\Gamma\Rightarrow Aarrow B}Rightarrow$

$LJ_{arrow-LC}$ is obtained by removing the left contraction rule from $LJ_{arrow}$ .

Let $L$ be a sequent calculus. Proofs in $L$ are defined as usual by the tree-like figures of

sequents. We will write $L\vdash\Gamma\Rightarrow\Delta$ ’ for $\Gamma\Rightarrow\Delta$ is provable in $L$ (i.e., there is a proof

of $\Gamma\Rightarrow\Delta$ in $L$ ).

Note that our sequent calculi are exchange-free and cut-free. But each rule contains

the effect of the exchange rule (recall our notation of sequents), and the exchange rule is

redundant. The cut rule is also redundant due to the cut-elimination theorem for LK-,
$LJ_{arrow}$ , and $LJ_{arrow-LC}$ ([3], [4]).

We say a propositional variable $a$ has the PNN-occurrences in a formula $A$ (or in a

sequent $\Gamma\Rightarrow\Delta$) if there are at least one positive and at least two negative occurrences of $a$

in $A$ (or in $\Gamma\Rightarrow\triangle$ ). The PPN-occurrences is defined similarly by “at least two positive and

at least one negative occurrences.” We say a formula or a sequent satisfies the no-PNN-

condition (resp. no-PPN-condition) if no propositional variable has the PNN-occurrences

(resp. PPN-occurrences) in it.

The purpose of this paper is to prove the following:

Theorem 1.1 (Contraction-Elimination Theorem)

(1) If $\Gamma\Rightarrow A$ is provable in $LK_{arrow}and$ satisfies the no-PNN-condition, then it is provable

in $LK_{arrow-RC}$ .
(2) If $\Gamma\Rightarrow A$ is provable in $LJ_{arrow}and$ satisfies the no-PPN-condition, then it is provable

in $LJ_{arrow-LC}$ .

We here remark that the statement of Theorem 1.1(1) cannot be generalized to “If
$\Gamma\Rightarrow\Delta$ is provable in $LK_{arrow}$ and $\ldots$ . Indeed, the sequent

$(aarrow b)arrow(carrow d)arrow e,$ $(darrow a)arrow(barrow c)arrow f\Rightarrow e,$ $f$

is provable in $LK_{arrow}$ and satisfies the no-PNN-condition, but is not provable in $LK_{arrow-RC}$ .

We show that $LK_{arrow-RC}$ and $LJ_{arrow}$ are equivalent:
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Theorem 1.2 $LK_{arrow-RC}\vdash\Gamma\Rightarrow A$ if and only if $LJ_{arrow}\vdash\Gamma\Rightarrow A$ .

Proof If-part is trivial. Only-if-part is shown by induction on the length of the proof of
$\Gamma\Rightarrow A$ in $LK_{arrow-RC}$ , using the fact that if $LK_{arrow-RC}\vdash\Pi\Rightarrow\Sigma$ then $\Sigma$ is not empty (which

can be easily verified by induction). 1

We know that $LK_{arrow},$ $LJ_{arrow}$ and $LJ_{arrow-LC}$ are sequent calculi for, respectively, classical

logic, intuitionistic logic and BCK-logic (see [3], [4]). Then Theorems 1.1 and 1.2 tell us

an interesting property on the implicational fragments of propositional logics:

Corollary 1.3

(1) If an implicational formula $A$ is a theorem of classical logic and is not a theorem of
intuitionistic logic, then there is a propositional variable which has the PNN-occurrences

in $A$ .
(2) If an implicational formula $A$ is a theorem of intuitionistic logic and is not a theorem

of BCK-logic, then there is a propositional variable which has the PPN-occurrences in $A$ .

2 Sequent Calculi with $\star$

To prove the contraction-elimination theorem, we will give a general way to transform,

for example, the proof

$\frac{\frac{\frac{b\Rightarrow b}{b\Rightarrow b,c}}{\Rightarrow_{1}b,barrow c(barrow c)}a\Rightarrow a}{arrow a\Rightarrow b,a}$

$\frac{\frac{\frac{c\Rightarrow c}{b,c\Rightarrow c}}{c\Rightarrow barrow c(b^{2}arrow c)arrow}a\Rightarrow a}{a,c\Rightarrow a}$

$\overline{\frac{barrow c,(barrow c)arrow a,(barrow c)arrow a\Rightarrow a,a}{\frac{barrow c,(barrow c)arrow a,(barrow c)arrow a\Rightarrow a}{barrow c,(barrow c)arrow a\Rightarrow a}}}$

right contraction

in $LK_{arrow}$ into a proof of $barrow c,$ $(barrow c)arrow a\Rightarrow a$ in $LK_{arrow-RC}$ . To give such transformation, we

need detailed argument about proofs in our sequent calculi; and for that argument, we

must make a distinction between the occurrences of propositional variables which orig-

inate from the axioms and those which arise from the weakening rules in a proof. For

example, $b^{1}$ and $b^{2}$ in the above proof have different natures. To substantiate this differ-

ence, we introduce “sequent calculi with $\star$ in this section.
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First we introduce a new symbol $\star$ , and extend our definition of formulas by admitting
$\star$ as an atomic formula. $\star$ is not a propositional variable, and the no-PNN-condition/no-

PPN-condition for sequents containing $\star$ is defined by considering only the number of

occurrences of propositional variables.

We define a binary $relation\prec between$ formulas inductively as follows:

1. $\star\prec A$ for any formula $A$ ;

2. $a\prec A$ if and only if $A=a$ (a is a propositional variable);

3. $A_{1}arrow A_{2}\prec B$ if and only if ( $(B=B_{1}arrow B_{2})$ and $(A_{i}\prec B_{i})(i=1,2)$ ).

In other words, $A\prec B$ means that $B$ is obtained from $A$ by replacing some occurrences
$\star^{1},\star^{2},$

$\ldots,$

$\star^{n}$ in $A$ by some formulas $C_{1},$ $C_{2},$
$\ldots,$

$C_{n}$ , respectively.

Lemma 2.1

(1) If $A\prec\star$ , then $A=\star$ .
(2) If $A\prec a$ (a is a propositional variable), then $(A=\star)$ or $(A=a)$ .

(3) If $A\prec B_{1}arrow B_{2}$ , then $(A=\star)$ or ($(A=A_{1}arrow A_{2})$ and $(A_{i}\prec B_{i})(i=1,2)$).

Proof By the definition of\prec . 1

Lemma 2.2 $\prec is$ a partial order, $i.e.$ ,
$\bullet A\prec A$

$\bullet$ $A\prec B,$ $B\prec C$ implies $A\prec C$

$\bullet$ $A\prec B,$ $B\prec A$ implies $A=B$

hold for any formulas $A,$ $B,$ $C$ .

Proof By induction on the length of A. 1

Let $A$ and $B$ be formulas. When $\{A, B\}$ has an upper bound with respect $to\prec$ , i.e.,

there is a formula $C$ such that $A\prec C$ and $B\prec C$ , then we write

$A-B$ .
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Lemma 2.3

(1) $\star-A$ for any formula $A$ .
(2) $a-A$ (a is a propositional variable) if and only if $(A=\star)$ or $(A=a)$ .

(3) $A_{1}arrow A_{2}-B$ if and only if $(B=\star)$ or ($(B=B_{1}arrow B_{2})$ and $(A_{i}-B_{i})(i=1,2)$).

Proof Easy. 1
Lemma 2.4 Let $A$ and $B$ be formulas such that $A-B$ . Then $\{A, B\}$ has a supremum

with respect $to\prec,$ $i.e_{f}$ there is a formula $C$ such that
$\bullet A\prec C,$ $B\prec C$

$\bullet$ for any formula $D$ , if $A\prec D,$ $B\prec D$ , then $C\prec D$ .

Proof For any formulas $F$ and $G$ such that $F-G$ , we define a formula $S(F, G)$ by

induction on the length of $F$ as follows:

1. $S(\star, G)=G$ ;

2. $S(a, G)=a$ if $a$ is a propositional variable;

3. $S(F_{1}arrow F_{2}, G)=\{\begin{array}{l}F_{1}arrow F_{2}S(F_{1},G_{1})arrow S(F_{2},G_{2})\end{array}$ $ifG=\star ifG=G_{1}arrow G_{2}$

.

Note that $S(F_{1}arrow F_{2}, G)$ is well defined by this equation due to Lemma 2.3 (3). We can

verify that $S(A, B)$ is the supremum of $\{A, B\}$ . I

Now, we define $LK_{arrow}^{\star},$ $LK_{arrow-RC}^{\star},$ $LJ_{arrow}^{\star}$ , and $LJ_{arrow-LC}^{\star}$ , which we call “sequent calculi

with $\star$ .

The axioms in $LK_{arrow}^{\star}:$

$a\Rightarrow a$ (a is a propositional variable.)

The inference rules in $LK_{arrow}^{\star}:$

$\frac{\Gamma\Rightarrow\triangle}{\star,\Gamma\Rightarrow\triangle}$ Left Weakening $\frac{\Gamma\Rightarrow\triangle}{\Gamma\Rightarrow\triangle,\star}$ Right Weakening

$\frac{A,B,\Gamma\Rightarrow\Delta}{S(A,B),\Gamma\Rightarrow\triangle}$ Left Contraction \dagger $\frac{\Gamma\Rightarrow\triangle,A,B}{\Gamma\Rightarrow\triangle,S(A,B)}$ Right Contraction \dagger

$\frac{\Gamma\Rightarrow\Delta,AB,\Pi\Rightarrow\Sigma}{Aarrow B,\Gamma,\Pi\Rightarrow\Delta,\Sigma}Leftarrow$ $\frac{A,\Gamma\Rightarrow\triangle,B}{\Gamma\Rightarrow\triangle,Aarrow B}Rightarrow$



17

\dagger Contraction is admitted when $A-B$ . $(S(A, B)$ is the supremum of $\{A, B\}$ , defined in

the proof of Lemma 2.4.)

$LK_{arrow-RC}^{\star}$ is obtained by removing the right contraction rule from $LK_{arrow}^{\star}$ .

The axioms in $LJ_{arrow}^{\star}$ :

$a\Rightarrow a$ (a is a propositional variable.)

The inference rules in $LJ_{arrow}^{\star}:$

$\frac{\Gamma\Rightarrow B}{\star,\Gamma\Rightarrow B}$ Left Weakening

$\frac{A,B,\Gamma\Rightarrow C}{S(A,B),\Gamma\Rightarrow C}$ Left Contraction \dagger

$\frac{\Gamma\Rightarrow AB,\triangle\Rightarrow C}{Aarrow B,\Gamma,\Delta\Rightarrow C}Leftarrow$ $\frac{A,\Gamma\Rightarrow B}{\Gamma\Rightarrow Aarrow B}Rightarrow$

\dagger Contraction is admitted when $A-B$ .

$LJ_{arrow-LC}^{\star}$ is obtained by removing the left contraction rule from $LJ_{arrow}^{\star}$ .

Example of a proof in LK:

$\frac{\frac{\frac{b\Rightarrow b}{b\Rightarrow b,\star}}{\Rightarrow b,barrow\star(barrow\star)arrow}a\Rightarrow a}{a\Rightarrow b,a}$

$\frac{\frac{\frac{c\Rightarrow c}{\star,c\Rightarrow c}}{c\Rightarrow\stararrow c(\stararrow c)arrow}a\Rightarrow a}{a,c\Rightarrow a}$

$\frac{barrow c,(barrow\star)arrow a,(\stararrow c)arrow a\Rightarrow a,a}{\frac{barrow c,(barrow\star)arrow a,(\stararrow c)arrow a\Rightarrow a}{barrow c,(barrow c)arrow a\Rightarrow a}}$

(Compare this with the proof at the beginning of this section.)

We introduce notation convenient for our argument. By $A^{\star}$ , we denote some formula
$B$ such that $B\prec A$ . In other words, $A^{\star}$ is a formula which is obtained from $A$ by replacing

some sub-formulas by $\star s$ . $A^{\star}$ is not uniquely determined for any fixed $A$ except $\star$ and
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we will use this notation as follows. For example, by

$\frac{A^{\star},A^{\star},\dot{\Gamma}\Rightarrow A^{\star}:}{A^{\star},\Gamma\Rightarrow A^{\star}}$

left contraction

we mean

$\frac{A_{1},A_{2},\Gamma\Rightarrow A_{3}::}{S(A_{1},A_{2}),\Gamma\Rightarrow A_{3}}$

left contraction

for some formulas $A_{1},$ $A_{2}$ , and $A_{3}$ such that $A_{i}\prec A(i=1,2,3)$ . (Note that $S(A_{1},$ $A_{2})\prec A.$ )

If $\Delta=B_{1},$ $B_{2},$
$\ldots,$

$B_{n}$ , then $\triangle^{\star}$ means $B_{1}^{\star},$ $B_{2}^{\star},$

$\ldots,$
$B_{n}^{\star}$ .

The following theorem shows the relation between sequent calculi and those with $\star$ .

Theorem 2.5 Let $L$ be one of $LK_{arrow},$ $LK_{arrow-RC_{f}}LJ_{arrow}$ , and $LJ_{arrow-LC}$ , and let $\Gamma\Rightarrow\Delta$ be

a sequent containing no $\star$ . Then, $L\vdash\Gamma\Rightarrow\Delta$ if and only if ($L^{\star}\vdash\Gamma^{\star}\Rightarrow\Delta^{\star}$ for some
$\Gamma^{\star}\Rightarrow\Delta^{\star})$ .

Proof By induction on the length of the proofs. (See [2] for the detail.) 1

Let $A$ and $B$ be formulas such that $A\prec B$ . We define the natural mapping $\theta$ by $A\prec B$

inductively as follows:

1. $\theta$ is a mapping from the set of all occurrences of sub-formulas in $A$ to the set of all

occurrences of sub-formulas in $B$ .

2. If $A=\star$ or $a$ (propositional variable), then $\theta(A)=B$ .

3. If $A=A_{1}arrow A_{2}$ , then

$\{\begin{array}{l}\theta(A)\theta(A_{1})\theta(A_{2}’)\end{array}$
$===$ $\theta_{2}(A_{2}’)\theta(A_{1}’)B_{1}ifA_{2}^{1}isasub- occurrenceinA_{2}^{1}ifA’isasub- occurrenceinA$

where $B=B_{1}arrow B_{2}$ and $\theta_{i}$ is the natural mapping by $A_{i}\prec B_{i}(i=1,2)$ .

For example, when $\theta$ is the natural mapping by $(a^{1}arrow\star^{2})^{3}\prec(a^{4}arrow(\stararrow b)^{5})^{6}$ , then
$\theta(a^{1})=a^{4},$ $\theta(\star^{2})=(\stararrow b)^{5}$ , and $\theta((aarrow\star)^{3})=(aarrow(\stararrow b))^{6}$ .

Let $A$ be a formula. The right-most occurrence of the atomic formula in $A$ is called
the core of $A$ .
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Lemma 2.6 Let $\theta$ be the natural mapping by $A\prec B$ . Then we have the following:

$\bullet$ $A’\prec\theta(A’)$ for any sub-occurrence $A’$ in $A$ .

1 If $c$ is a propositional variable in $A$ , then $\theta(c)$ is the same propositional variable $c$

in B. Moreover, if $c$ is a positive (resp. negative) occurrence in $A_{f}$ then $\theta(c)$ is also

a positive (resp. negative) occurrence in $B$ ; if $c$ is the core of $A_{f}$ then $\theta(c)$ is also

the core of $B$ .

$\bullet$
$\theta$ is one-one.

$\bullet$ Let $B’$ be a sub-occurrence in B. If there is no sub-occurrence $A’$ in $A$ such that

$\theta(A’)=B’$ , then there is $\star$ in $A$ such that $B’$ is a sub-occurrence in $\theta(\star)$ .

Proof By the definition of the natural mappings. 1

Lemma 2.7 If $\Gamma\Rightarrow\Delta$ satisfies the no-PNN-condition/no-PPN-condition, then $\Gamma^{\star}\Rightarrow\Delta^{\star}$

also satisfies the condition, for any $\Gamma^{\star}\Rightarrow\Delta^{\star}$ .

Proof By Lemma 2.6. (The natural mappings preserve the occurrences of propositional

variables.) 1

Now Theorem 1.1 is reduced, by Theorem 2.5, Lemma 2.7, and transitivity $of\prec$ , to

the following:

Theorem 2.8 (Contraction-Elimination Theorem with $\star$)

(1) If $\Gamma\Rightarrow A$ is provable in $LK_{arrow}^{\star}and$ satisfies the no-PNN-condition, then $\Gamma^{\star}\Rightarrow A^{\star}$ is

provable in $LK_{arrow-RC}^{\star}$ for some $\Gamma^{\star}\Rightarrow A^{\star}$ .

(2) If $\Gamma\Rightarrow A$ is provable in $LJ_{arrow}^{\star}and$ satisfies the no-PPN-condition, then $\Gamma^{\star}\Rightarrow A^{\star}$ is

provable in $LJ_{arrow-LC}^{\star}$ for some $\Gamma^{\star}\Rightarrow A^{\star}$ .

In the rest of this section, we give some definitions and lemmas which will be used for

proving Theorem 2.8.

Let $R$ be an inference rule in sequent calculi with $\star$ . We define the child of an occur-
rence of sub-formula in the upper sequent of $R$ , as follows:
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1. When $R$ is the left/right weakening rule or the $left/rightarrow rule$ , then for any occur-

rence $A^{1}$ of sub-formula in the upper sequent, there is the uniquely corresponding

occurrence $A^{2}$ in the lower sequent. We define that $A^{2}$ is the child of $A^{1}$ .

2. When $R$ is the left/right contraction rule, for example

$\frac{B_{1},B_{2},\Gamma\Rightarrow\Delta}{S(B_{1},B_{2}),\Gamma\Rightarrow\Delta}$

then the child of an occurrence in $\{\Gamma;\Delta\}$ is defined similarly to the case of the other

inference rules. If $A$ is an occurrence of sub-formula in $B_{i}$ ($i=1$ or 2) in the upper

sequent, then the child of $A$ is the occurrence $\theta(A)$ in the lower sequent where $\theta$ is

the natural mapping by $B_{i}\prec S(B_{1}, B_{2})$ .

Let $P$ be a proof in sequent calculi with $\star$ and $A$ and $B$ be occurrences of sub-formulas

in $P$ . We say $A$ is an ancestor of $B$ , and $B$ is a descendant of $A$ , if there are occurrences
$C_{1},$ $C_{2},$

$\ldots,$
$C_{n}(n\geq 1)$ in $P$ such that

$\bullet$ $C_{1}$ is $A$ , and $C_{n}$ is $B$ ;

$\bullet$ $C_{i+1}$ is the child of Ci $(1 \leq i\leq n-1)$ .

Lemma 2.9

(1) If $A$ is an ancestor of $B$ , then $A\prec B$ ,

(2) If $a^{1}$ in $\Gamma\Rightarrow\triangle$ is an ancestor of $a^{2}$ in $\Pi\Rightarrow\Sigma$ , and $a^{1}$ is a positive (resp. negative)

occurrence in $\Gamma\Rightarrow\Delta$ , then $a^{2}$ is also a positive (resp. negative) occurrence in $\Pi\Rightarrow\Sigma$ .

Proof By Lemma 2.6. 1

If $a^{1}\Rightarrow a^{2}$ is an occurrence of an axiom in a proof, and $a^{3}$ is a descendant of either $a^{1}$

or $a^{2}$ , then $a^{1}\Rightarrow a^{2}$ is said to be an ancestor axiom of $a^{3}$ .
Let $\Gamma\Rightarrow\Delta$ be an occurrence of a sequent in a proof, and $a^{1}$ and $a^{2}$ be, respectively, a

positive and a negative occurrences of a propositional variable in $\Gamma\Rightarrow\triangle$ such that there

is an ancestor axiom $a^{4}\Rightarrow a^{3}$ of both $a^{1}$ and $a^{2}$ (i.e., $a^{3}$ and $a^{4}$ are the ancestors of,

respectively, $a^{1}$ and $a^{2}$ ). Then $a^{i}$ is said to be the partner of $a^{j}((i,j)=(1,2),$ $(2,1))$ .
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Lemma 2.10 Let $A_{1}$ and $A_{2}$ be formulas such that $A_{1}-A_{2}$ , and $\theta_{i}$ be the natural mapping

by $A_{i}\prec S(A_{1}, A_{2})(i=1,2)$ . Then, for any occurrence $a^{1}$ of a propositional variable in
$S(A_{1}, A_{2})$ , there is an occurrence $a^{2}$ in $A_{j}$ such that $\theta_{j}(a^{2})=a^{1}$ for some $j$ ($j=1$ or 2).

Proof By induction on the length of $S(A, B)$ , using Lemma 2.1 and the definition of

$S(A, B)$ . 1

Lemma 2.11 Let $P$ be a proof of $\Gamma\Rightarrow\Delta$ in sequent calculi with $\star$ . $Then_{f}$ for any axiom
$a^{1}\Rightarrow a^{2}$ in $P$ , there are two occurrences $a^{3}$ and $a^{4}$ in $\Gamma\Rightarrow\Delta$ which are the descendants of,

respectively, $a^{1}$ and $a^{2}$ ; and for any occurrence of propositional variable in $\Gamma\Rightarrow\Delta$ , there

is at least one ancestor axiom of it in P. Therefore, for any occurrence of propositional

variable in $\Gamma\Rightarrow\Delta_{f}$ there is at least one partner of it.

Proof By induction on the length of $P$ , using Lemma 2.10. 1

Lemma 2.11 shows an important property of sequent calculi with $\star$ and we will tacitly

use this henceforth.

Lemma 2.12 Let $L$ be a sequent calculus with $\star$ . Suppose that

$\bullet$ $P$ is a proof of $\Gamma\Rightarrow\triangle$ in $L$ , and $Q$ is a sub-proof in $P$ whose last sequent is
$A_{1},$ $A_{2},$

$\ldots,$
$A_{m}\Rightarrow B_{1},$ $B_{2},$

$\ldots,$
$B_{n}$ ; (Fig. 1)

$\bullet$ sub-formulas $C_{1},$ $C_{2},$
$\ldots,$

$C_{m},$ $D_{1},$ $D_{2},$
$\ldots,$

$D_{n}$ in $\Gamma\Rightarrow\Delta$ are the descendants of, respec-

tively, $A_{1},$ $A_{2},$
$\ldots,$

$A_{m},$ $B_{1},$ $B_{2},$ $B_{n}$ ;

$\bullet$ $R$ is a proof of $C_{1}^{\star},$ $C_{2}^{\star},$

$\ldots,$
$C_{m}^{\star}\Rightarrow D_{1}^{\star},$ $D_{2}^{\star},$

$\ldots,$
$D_{n}^{\star}$ in $L$ .

Then we get a proof $P’$ in $L$ such that

$\bullet$ $P’$ is a proof of $\Gamma^{\star}\Rightarrow\triangle^{\star}$ for some $\Gamma^{\star}\Rightarrow\Delta_{r}^{\star}$ and $R$ is a sub-proof of $P’$ ; (Fig. 2)

$\bullet$ the part of proof which is obtained from $P’$ by eliminating

$R,$ $(C_{1}^{\star}, \ldots, C_{m}^{\star}\Rightarrow D_{1}^{\star}, \ldots, D_{n}^{\star}),$
$\cdots,$

$(\Gamma^{\star}\Rightarrow\triangle^{\star})$

is exactly the same as that obtained from $P$ by eliminating

$Q,$ $(A_{1}, \ldots, A_{m}\Rightarrow B_{1}, \ldots, B_{n}),$
$\cdots,$

$(\Gamma\Rightarrow\triangle)$
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$\bullet$ the sequence of inference rules between $(C_{1}^{\star}, \ldots, C_{m}^{\star}\Rightarrow D_{1}^{\star}, \ldots, D_{n}^{\star})$ and $(\Gamma^{\star}\Rightarrow\triangle^{\star})$ in

$P’$ is the same as that between $(A_{1}, \ldots, A_{m}\Rightarrow B_{1}, \ldots, B_{n})$ and $(\Gamma\Rightarrow\triangle)$ in $P$ .

Proof By induction on the number of sequents between $(A_{1}, \ldots, A_{m}\Rightarrow B_{1}, \ldots, B_{n})$ and
$(\Gamma\Rightarrow\Delta)$ in P. 1

3 Contraction-Elimination for $LJ_{arrow}^{\star}$

In this section we prove Theorem 2.8 (2).

Lemma 3.1 Suppose that $P$ is a proof of $A_{1},$ $A_{2},$
$\ldots,$

$A_{n},$ $\Gamma\Rightarrow B(n\geq 0)$ in LJ$\stararrow$ and

the core of $A_{i}$ is $\star$ for all $i$ . Then we can get a proof $Q$ of $\Gamma^{\star}\Rightarrow B^{\star}$ in $LJ_{arrow f}^{\star}$ for some
$\Gamma^{\star}\Rightarrow B^{\star}$ , such that the number of left contrcections in $Q$ is less than or equal to that in
$P$ .

Proof By induction on the length of P. (See [2] for the detail.) 1
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We say that an instance of the left contraction rule

$\frac{A,B,\Gamma\Rightarrow C}{S(A,B),\Gamma\Rightarrow C}$

is essential if both the core of $A$ and the core of $B$ are propositional variables, and is

nonessential if it is not essential.

Lemma 3.2 Suppose that

$\bullet$ $P$ is a proof of $A^{1},$ $\Gamma\Rightarrow B$ in $LJ_{arrow}^{\star}$ ;

$\bullet$ there is no nonessential lefl contraction in $P$ ;

$\bullet$
$a^{2}$ is the core of $A^{1}$ , and $b^{3}$ is another occurrence in $A^{1}$ than $a^{2}$ (both $a$ and $b$ are

propositional variables).

Then for any ancestor axiom $b^{4}\Rightarrow b^{5}$ of $b^{3}$ , there exists an ancestor axiom $a^{6}\Rightarrow a^{7}$ of $a^{2}$

on the right of $b^{4}\Rightarrow b^{5}$ . (Fig. 3)

Proof By induction on the length of $P$ . We distinguish cases according to the form of
$P$ , and we show only the following case: $P$ is of the form

$\frac{A_{1},A_{2},\Gamma\Rightarrow B::}{S(A_{1},A_{2}),\Gamma\Rightarrow B}$

left contraction

$(A=S(A_{1}, A_{2}))$ . Both the core of $A_{1}$ and the core of $A_{2}$ are $a$ since this is an essential

left contraction. Then we have the following: (1) Any ancestor axiom of the core of $A_{i}$

$(i=1,2)$ is an ancestor axiom of $a^{2}$ . On the other hand, by Lemma 2.10, we have the

following: (2) Any ancestor axiom of $b^{3}$ is an ancestor axiom of $b^{0}$ in $A_{j}$ for some $j$

($j=1$ or 2). Hence by (1),(2), and the induction hypothesis, we can show that this

Lemma holds. 1
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Lemma 3.3 (Contraction-Elimination Lemma for $LJ_{arrow}^{\star}$ ) Let $P$ be a proofof $\Gamma\Rightarrow A$

in $LJ_{arrow}^{\star}such$ that

$\bullet$
$\Gamma\Rightarrow A$ satisfies the no-PPN-condition;

$\bullet$ there is at least one left contraction in $P$ .

Then we can get a proof $Q$ of $\Gamma^{\star}\Rightarrow A^{\star}$ in $LJ_{arrow}^{\star}$ , for some $\Gamma^{\star}\Rightarrow A^{\star}$ , such that the number

of lefl contractions in $Q$ is less than that in $P$ .

Proof First we show that there is at least one nonessential left contraction in $P$ . As-

sume that there is no nonessential left contraction in $P$ . Then there is an essential left

contraction
:
:

$\frac{(\cdotsarrow a^{1}),(\cdotsarrow a^{2}),\Delta\Rightarrow B}{(\cdotsarrow a)_{::},\triangle\Rightarrow B}$

in $P$ . Let $a^{3}\Rightarrow a^{4}$ and $a^{5}\Rightarrow a^{6}$ be ancestor axioms of, respectively, $a^{1}$ and $a^{2}$ . Then by

the no-PPN-condition for $\Gamma\Rightarrow A$ , the descendants of $a^{4}$ and the descendants of $a^{6}$ must

be united by an essential left contraction in $P$ . This means that $P$ is of the form

::
$\frac{(\cdots a^{7}\cdotsarrow b^{8}),.(\cdot.\cdot\cdot a^{9}\cdotsarrow b^{10}),\Pi\Rightarrow C}{(\cdots a\cdotarrow b),\Pi\Rightarrow C,::}$

left contraction

where $a^{7}$ and $a^{9}$ are descendants of, respectively, $a^{4}$ and $a^{6}$ . Then by Lemma 3.2, there is

an ancestor axiom $b^{11}\Rightarrow b^{12}$ of $b^{8}$ on the right of $a^{3}\Rightarrow a^{4}$ . By iteration of this argument,

we have infinitely many axioms in $P$ . Contradiction.

Hence, there is a nonessential left contraction in $P$ , and we can eliminate it by

Lemma 3.1. 1

Now we can prove contraction-elimination theorem for $LJ_{arrow}^{\star}:$

Proof of Theorem 2.8 (2) By Lemma 3.3, Lemma 2.7, transitivity $of\prec$ , and induction
on the number of left contractions in the proof. 1
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4 Contraction-Elimination for $LK_{arrow}^{\star}$

In this section we prove Theorem 2.8 (1).

Lemma 4.1

(1) Let $B$ and $C$ be formulas such that $B-C$, and let $\theta$ be the natural mapping by

$B\prec S(B, C)$ . Moreover, let $a^{0}$ be an occurrence of a propositional variable in $B$ , and let
$A_{1},$ $A_{2},$

$\ldots,$
$A_{n}$ be formulas such that $\theta(a^{0})$ occurs in the form of $(A_{n}arrow A_{n-1}arrow\cdotsarrow A_{1}arrow\theta(a^{0}))$

in a sub-formula in $S(B, C)$ . Then $a^{0}$ occurs in the form of $(A_{n}^{\star}arrow A_{n-1}^{\star}arrow\cdotsarrow A_{1}^{\star}arrow a^{0})$

in a sub-formula in $B$ .

(2) Let $P$ be a proof of $\Gamma\Rightarrow\Delta$ in $LK_{arrow f}^{\star}a^{1}\Rightarrow a$ be an axiom in $P$ , and $a^{0}$ be the de-

scendant of $a^{1}$ in $\Gamma\Rightarrow\Delta$ . If $a^{0}$ occurs in the form of $(A_{n}arrow A_{n-1}arrow\cdotsarrow A_{1}arrow a^{0})$ in a

sub-formula in $\Gamma\Rightarrow\Delta$ , then $P$ is of the form

$a^{1}\Rightarrow a:.\cdot$

$\frac{\Pi_{1}\Rightarrow:_{\Sigma_{1},A_{1}^{\star}a^{2},\Gamma_{1}\Rightarrow\Delta_{1}}:}{A_{1}^{\star}arrow a,\Pi,\Gamma\Rightarrow\Sigma_{1},\triangle_{1}}leftarrow$

$\frac{\Pi_{2}\Rightarrow 2:_{\Sigma,A_{2}^{\star}A_{1}^{\star}arrow a^{3},\dot{\Gamma}_{2}\Rightarrow\Delta_{2}}:}{A_{2}^{\star}arrow A_{1}^{\star}arrow a,\Pi_{2},\Gamma_{2}\Rightarrow\Sigma\triangle}leftarrow$

$\frac{\Pi_{nn}\Rightarrow\Sigma,A_{n}^{\star}A_{n-1}^{\star}arrow\cdotsarrow A_{1}^{\star}arrow a^{n+1},\Gamma_{n}\Rightarrow\triangle_{n}::}{A_{n}^{\star}arrow A_{n-1}^{\star}arrow\cdotsarrow A_{1}^{\star}arrow a,\Pi_{n},\Gamma_{n}\Rightarrow\Sigma\triangle}leftarrow$

:
:

$\Gamma\Rightarrow\Delta$

where $a^{2},$ $a^{3},$
$..,$

$a^{n+1}$ are the descendants of $a^{1}$ .

Proof

(1) By Lemmas 2.1 and 2.6.

(2) By induction on the length of $P$ , using (1) of this Lemma. 1

Lemma 4.2 Let $P$ be a proof of $A_{1},$ $A_{2},$
$\ldots,$

$A_{n}\Rightarrow a$ (a is a propositional variable, and

$n\geq 1)$ in $LK_{arrow}^{\star}$ . Then the core $ofA_{t}$ is the propositional variable $a$ , for some $t(1\leq t\leq n)$ .

Proof See [2]. 1
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We say that an instance of the right contraction rule

$\frac{\Gamma\Rightarrow\triangle,A,B}{\Gamma\Rightarrow\triangle,S(A,B)}$

is essential if $A=B=a$ (a is a propositional variable), and is nonessential if it is not

essential.

In the following, we will use ordinals less than $\omega^{td}$ . Let $\alpha$ and $\beta$ be ordinals such that

$\alpha$ $=\omega^{n_{1}}+\omega^{n_{2}}+\cdots+\omega^{n_{i}}+k$ $(n_{1}\geq n_{2}\geq\cdots\geq n_{i}>0, k<\omega)$

$\beta=\omega^{m_{1}}+\omega^{m_{2}}+\cdots+\omega^{m_{j}}+l(m_{1}\geq m_{2}\geq\cdots\geq m_{j}>0, l<\omega)$

Then $\alpha\#\beta$ denotes the ordinal

$\omega^{P1}+\omega^{P2}+\cdots+\omega^{pi+j}+k+l$

where $(p_{1},p_{2}, \ldots,p_{i+j})$ is a permutation of $(n_{1}, n_{2}, \ldots, n_{i}, m_{1}, m_{2}, \ldots, m_{j})$ such that

$p_{1}\geq p_{2}\geq\cdots\geq p_{i+j}$ .

We call $\alpha\#\beta$ the natural sum of $\alpha$ and $\beta$ .
We define the width of a proof $P$ as the number of all occurrences of axioms in $P$ . We

define the length of a formula $A$ as the number of all occurrences of atomic formulas in
$A$ . Let $P$ be a proof in $LK_{arrow}^{\star}$ of the form

$\frac{\Gamma\Rightarrow\Delta^{:},A,B:..R}{\Gamma\Rightarrow\triangle,S(A,B)}$

:

right contraction

and let the width of $R$ be $m$ and the length of $S(A, B)$ be $n$ . Then we define the degree

of this right contraction as an ordinal $(\omega^{m}+n)$ . Also we define the degree of $P$ as the

natural sum of the degrees of all right contractions in $P$ .

Lemma 4.3 Let $P$ be a proof of $\Gamma\Rightarrow a$ (a is a propositional variable) in $LK_{arrow}^{\star}such$ that

$\bullet$ $P$ is of the form
:
:

$\frac{\Gamma\Rightarrow a,a}{\Gamma\Rightarrow a}$ right contraction
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$\bullet$ there is no nonessential right contraction in $P$ .

Then we can get a proof $Q$ of $\Gamma\Rightarrow a$ in $LK_{arrow}^{\star}such$ that

$\bullet$ $Q$ is of the form

$\frac{\Pi\Rightarrow a,AB,\Sigma\Rightarrow a:::}{\frac{Aarrow B,\Pi,\Sigma\Rightarrow a,a}{Aarrow B,\Pi,\Sigma\Rightarrow a}}1eftrightarrow contract_{i}on$

:: $(*)$

$\Gamma\Rightarrow a$

$\bullet$ there is no nght contmction in $(*)$ ;

$\bullet$ degree of $P\geq$ degree of $Q$ .

Proof See [2]. 1

Lemma 4.4 Let $P$ be a proof of $(\Gamma\Rightarrow\Delta, a^{1}, a^{2}, \ldots, a^{n})$ in $LK_{arrow}^{\star}$ (a is a propositional

variable, and $n\geq 1$) and $A$ be a formula such that the following condition holds: For any

partner $a^{0}$ of $a^{i}(1\leq i\leq n),$ $a^{0}$ occurs in the form of $(A^{\star}arrow\cdotsarrow a^{0})$ in a sub-formula
in $\Gamma,$ $\Delta$ . (We call this condition the partner condition.) Then we can get a proof $Q$ of

$\bullet$ width of $P>$ width of $Q$

$\bullet$ degree of $P\geq$ degoee of $Q$ .

Proof By induction on the length of $P$ . We distinguish cases according to the form of
$P$ , and we show only some critical cases.

(Case 1) $P$ is of the form

:: $P’$

$\frac{\Gamma\Rightarrow\Delta,a,a.’\ldots,a,B_{1},B_{2}}{\Gamma\Rightarrow\Delta,a^{1},a^{2},..,a^{n-1},S(B_{1},B_{2})}$ right contraction

where $a^{n}=S(B_{1}, B_{2})$ . In this case, both $B_{1}$ and $B_{2}$ are $a$ , or one of $B_{i}$ is $a$ and the

other is $\star$ ; and the partner condition holds for this upper sequent. Then by the induction

hypothesis, we get a proof $Q’$ of

$\Gamma^{\star}\Rightarrow\Delta^{\star},A^{\star},$

$A_{n+}\ldots,$$A^{\star} \bigvee_{1}^{\star}$
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where the width is decreased and the degree is unchanged or decreased compared with

$P$‘, and we get the required proof $Q$ as follows:

$\frac{\Gamma^{\star}\Rightarrow\triangle^{\star},A^{Q_{\star}’},..\cdot.\cdot.’ A^{\star}::}{\Gamma^{\star}\Rightarrow\Delta^{\star},A^{\star},,A,\vee^{\star}n}$ right contraction

(Note that $S(A^{\star},$ $A^{\star})$ is $A^{\star}.$ ) In spite of the fact that

length of $a.\leq$ length of $A^{\star}$ ,

the degree of this right contraction is less than that of the last right contraction in $P$ due

to the width of $Q’$ .
(Case 2) $P$ is of the form

:. $P’$

$\frac{\Gamma\Rightarrow\Pi,a,a.’..\cdots,a,B_{1},B_{2}}{\Gamma\Rightarrow\Pi,a^{1},a^{2},,a^{n},S(B_{1},B_{2})}$ right contraction

By Lemma 4.1 (1), the partner condition holds for this upper sequent. Then we get the

required proof $Q$ by using the induction hypothesis. (Note that $S(B_{1}^{\star},$ $B_{2}^{\star})\prec S(B_{1},$ $B_{2}).$ )

(Case 3) $P$ is of the form

$\frac{\Pi\Rightarrow\Sigma,,BC,\ominus\Rightarrow\Lambda,a,a,\ldots,a:...P_{2}l}{Barrow C,\Pi,\ominus\Rightarrow\Sigma,\Lambda,a^{1},a^{2},.,a^{n}}leftarrow$

where $(n=k+l),$ $(l\geq 1)$ , and the partner condition does not hold for this right-hand

upper sequent. Since the partner condition holds for the lower sequent, the core of $C$ is

$a$ , and $B$ is $A^{\star}$ . When $k=0$ , we get the required proof $Q$ as follows:

$\Pi\Rightarrow$

:
: some $left/right$ weakenings

$(Barrow C)^{\star},$ $\Pi,$ $\Theta^{\star}\Rightarrow$

:

Obviously the width is decreased and the degree is unchanged or decreased. When $k>0$ ,

the partner condition holds for the last sequent of $P_{1}$ . Then by the induction hypothesis

for $P_{1}$ , we have the proof
:
:

$\Pi^{\star}\Rightarrow\Sigma^{\star},\frac{k}{A^{\star},A^{\star},\ldots,A^{\star}},$

$A^{\star}$
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and we can get the required proof $Q$ by applying some left/right weakenings. I

Lemma 4.5 Let $P$ be a proof of $(\Gamma\Rightarrow\triangle,\star^{1},\star^{2}, \ldots,\star^{n})$ in $LK_{arrow}^{\star}(n\geq 0)$ . Then we can

get a proof $Q$ of $\Gamma\Rightarrow\Delta$ in $LK_{arrow}^{\star}such$ that (width of $P=width$ of $Q$) and (degree of $P$

$\geq$ degree of $Q$).

Proof By induction on the length of P. 1

Lemma 4.6 Let $P$ be a proof of $(\Gamma\Rightarrow\triangle, A_{1}arrow B_{1}, A_{2}arrow B_{2}, \ldots, A_{n}arrow B_{n})$ in $LK_{arrow}^{\star}(n\geq 0)$ .
Then we can get a proof $Q$ of $(A_{1}, A_{2}, \ldots, A_{n}, \Gamma\Rightarrow\triangle, B_{1}, B_{2}, \ldots, B_{n})$ in $LK_{arrow}^{\star}such$ that

(width of $P=width$ of $Q$) and (degree of $P\geq$ degree of $Q$).

Proof By induction on the length of P. 1

Lemma 4.7 (Contraction-Elimination Lemma for $LK_{arrow}^{\star}$ ) Let $P$ be a proof of $\Gamma\Rightarrow A$

in $LK_{arrow}^{\star}such$ that

$\bullet$
$\Gamma\Rightarrow A$ satisfies the no-PNN-condition;

$\bullet$ degree of $P>0$ .

Then we can get a proof $Q$ of $\Gamma^{\star}\Rightarrow A^{\star}$ in $LK_{arrow}^{\star}$ , for some $\Gamma^{\star}\Rightarrow A^{\star}$, such that

$\bullet$ degree of $P>$ degree of $Q$ .

Proof We distinguish cases according to the number and form of nonessential right

contractions in $P$ .

(Case 1) $P$ contains a nonessential right contraction:

$\frac{\Pi\Rightarrow\Sigma,B,\star}{\Pi\Rightarrow\Sigma,B}$

Then using Lemma 4.5, we get the required proof $Q$ .

(Case 2) $P$ contains a nonessential right contraction:

$\frac{\Pi\Rightarrow\Sigma,Barrow C,Darrow E}{\Pi\Rightarrow\Sigma,S(Barrow C,Darrow E)}$

Then using Lemma 4.6, we get the required proof $Q$ .
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(Case 3) There is no nonessential right contraction in $P$ . Then consider the lower-most

right contraction in $P$ , say
$\frac{\triangle\Rightarrow\Delta’,a,a}{\Delta\Rightarrow\triangle^{J},a}$

(a is a propositional variable). The sequence $\triangle^{J}$ is empty because other inference rules

than right contraction do not decrease the number of the occurrences of the formulas in

the right-hand side of a sequent. Then, by Lemma 4.3, we get a proof $P’$ as

$\frac{\Pi\Rightarrow:_{a^{1},B’C’,\Sigma^{:}\Rightarrow^{2}a}^{P_{1}..P}:}{\frac{B’arrow C’,\Pi,\Sigma\Rightarrow a,a}{B’arrow C’,\prod_{:},\Sigma\Rightarrow a}}1eftarrow rightcontraction$

:
$\Gamma\Rightarrow A$

where there is no right contraction below $(B’arrow C’, \Pi, \Sigma\Rightarrow a)$ , and (degree of $P\geq degree$

of $P’$ ). Let $B$ and $C$ be the descendants of, respectively, $B’$ and $C’$ , in $\Gamma\Rightarrow A$ . Now by

applying Lemma 4.2 to $P_{2}$ , we know that there is a formula $F$ in $\{C’, \Sigma\}$ such that the

core of $F$ is $a$ . Then we consider the following cases.

(Sub-case 3-1) The core of $C’$ is $a$ . In this case, $P’$ is of the form

:: $P_{1}$ :: $P_{2}$

$\Pi\Rightarrow a^{1},B^{\star}C_{m}^{\star}arrow C_{m-1}^{\star}arrow\cdotsarrow C_{1}^{\star}arrow a^{2},\Sigma\Rightarrow a_{1eftarrow}\frac{\ovalbox{\tt\small REJECT} B^{\star}arrow C_{m}^{\star}arrow\cdot\cdot.\cdot.arrow C_{1}^{\star}arrow a,\Pi,\Sigma\Rightarrow a,a}{B^{\star}arrow C_{m}^{\star}arrow\cdotarrow C_{1}^{\star}arrow a,\Pi,\Sigma\Rightarrow a}rightcontraction$

::
$\Gamma\Rightarrow A$

where
$C=C_{m}arrow C_{m-1}arrow\cdotsarrow C_{1}arrow a$ $(m\geq 0)$ .

Let $a^{0}$ be a partner of $a^{1}$ . By the no-PNN-condition for $\Gamma\Rightarrow A$ , the descendant of $a^{0}$ in
$\Gamma\Rightarrow A$ is also the descendant of $a^{2}$ . Now we consider the following cases.

(Sub-sub-case 3-1-1) Any partner $a^{0}$ of $a^{1}$ occurs in the form of

$(B^{\star}arrow C_{m}^{\star}arrow C_{m-1^{arrow}}^{\star}\cdotsarrow C_{1}^{\star}arrow a^{0})$

in a sub-formula in the last sequent of $P_{1}$ . In this case, we apply Lemma 4.4 to $P_{1}$ , and

get a proof $Q_{1}$ of $(\Pi^{\star}\Rightarrow B^{\star}, B^{\star})$ such that (width of $P_{1}>width$ of $Q_{1}$ ) and (degree of $P_{1}$
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$\geq degree$ of $Q_{1}$ ). Then we get the proof $Q$ as follows:

$\frac{\frac{\Pi^{\star}}{}\Pi^{\Rightarrow_{\Rightarrow}}\star rightcontraction:_{B_{B^{1_{\star}}}^{\star}B^{\star}}^{Q}:}{B^{\star}arrow C^{\star},\prod_{::}\star,\Sigma\Rightarrow}$

a
$C^{\star},$

$\Sigma\Rightarrow^{2}aPleftarrow$

$\Gamma^{\star}\Rightarrow A^{\star}$

Lemma 2.12 guarantees that this is the required proof.

(Sub-sub-case 3-1-2) Not the case (3-1-1). In this case, Lemma 4.1 (2) tells us that $P’$

is of the form
:. $P_{1}$ I $P_{2}$

$\frac{\Pi\Rightarrow a^{1},B^{\star}C^{\star\Sigma\Rightarrow}}{\frac{B^{\star}arrow C^{\star},\Pi,\Sigma\Rightarrow a}{B^{\star}arrow C^{\star},\Pi,\Sigma\Rightarrow a}}$a $a_{rightcontraction}1eftarrow$

:: $P_{3}$ :: $(*)$

$\frac{\ominus\Rightarrow B^{\star}C_{m}^{\star}arrow\cdotsarrow C_{1}^{\star}arrow a^{0},\Lambda\Rightarrow D}{B^{\star}arrow C_{m}^{\star}arrow\cdotsarrow C_{1}^{\star}arrow a,\ominus,\Lambda\Rightarrow D}leftarrow$

:: $(**)$

$\Gamma\Rightarrow A$

where $a^{0}$ is a descendant of a partner of $a^{1}$ . Then we get the proof $Q$ as follows:

$C^{\star\Sigma}I\Rightarrow^{2}som^{a}eP$

left weakenings
$C^{\star},$ $(Barrow C)^{\star},$ $\Pi^{\star},$ $\Sigma\Rightarrow a$

: $(*)$ ( $C^{\star}$ is untouched)

$\frac{\ominus\Rightarrow B:.P_{3_{\star}}\frac{C^{\star},.(C_{m}arrow.\cdot.\cdot\cdotarrow C_{1}arrow a)^{\star},\Lambda^{\star}\Rightarrow D^{\star}}{C_{m}^{\star}arrow\cdotarrow C_{1}^{\star}arrow a,\Lambda^{\star}\Rightarrow D^{\star}}}{B^{\star}arrow C_{m}^{\star}arrow\cdot\cdotarrow C_{1}^{\star}arrow a,\Theta,\Lambda^{\star}\Rightarrow D^{\star}}1eftarrow 1eft$

contraction

:: $(**)$

$\Gamma^{\star}\Rightarrow A^{\star}$

Lemma 2.12 guarantees that this is the required proof.

(Sub-case 3-2) Not the case (3-1). In this case, there is a formula $E’$ in $\Sigma$ such that

the core of $E’$ is $a$ . Let $E$ be the descendant of $E’$ in $\Gamma\Rightarrow A$ , and let

$E=E_{n}arrow E_{n-1}arrow\cdotsarrow E_{1}arrow a$ $(n\geq 0)$ ,

$\Sigma=E’,$ $\Sigma_{0}$ .
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Then $P’$ is of the form

:: $P_{1}$ :: $P_{2}$

$\frac{\Pi\Rightarrow a^{1},B^{\star}C^{\star},E_{n}^{\star}.arrow..\cdot.\cdot\cdotarrow E_{1}^{\star}arrow a^{2},\Sigma_{0}\Rightarrow}{\frac{B^{\star}arrow C^{\star},\Pi,E_{n}^{\star}arrow\cdot.arrow E_{1}^{\star}arrow a,\Sigma 0\Rightarrow a}{B^{\star}arrow C^{\star},\Pi,E_{n}^{\star}arrowarrow E_{1}^{\star}arrow a,\Sigma_{0}\Rightarrow a}}$a $a_{rig^{1eftarrow}htcontraction}^{3}$

:
:

$\Gamma\Rightarrow A$

Let $a^{0}$ be a partner of $a^{1}$ or a partner of $a^{3}$ . By the no-PNN-condition for $\Gamma\Rightarrow A$ , the

descendant of $a^{0}$ in $\Gamma\Rightarrow A$ is also the descendant of $a^{2}$ . Now, let $p(1\leq p\leq n)$ be the

maximal number such that the following condition holds: For any occurrence $a^{0}$ , if $a^{0}$ is

a partner of $a^{1}$ or a partner of $a^{3}$ , then $a^{0}$ occurs in the form of

$(E_{p}^{\star}arrow E_{p-1^{arrow}}^{\star}\cdotsarrow E_{1}^{\star}arrow a^{0})$

in a sub-formula in the last sequent of $P_{1}$ or in that of $P_{2}$ . If such $p$ does not exist, we

define $p=0$ . Then we distinguish cases according to $p$ and $n$ .

(Sub-sub-case 3-2-1) $p=n>0$ . In this case, we apply Lemma 4.4 to $P_{1}$ and $P_{2}$ , and

get the proofs $Q_{1,t}$ of $(\Pi^{\star}\Rightarrow E_{t}^{\star}, B^{\star})$ and $Q_{2,t}$ of $(C^{\star}, \Sigma^{\star}\Rightarrow E_{t}^{\star})$ for any $t(1\leq t\leq p)$ .

Then we define proofs $R_{t}(1\leq t\leq p)$ as

$\frac{\Pi^{\star}\Rightarrow E_{t}^{\star},B^{\star}C^{\star},\Sigma^{*}\Rightarrow E_{t}^{\star}::_{Q_{1,t}:.Q_{2,t}}}{\frac{B^{\star}arrow C^{\star},\Pi\star,\Sigma\star\Rightarrow E_{t}^{\star},E_{t}^{\star}}{B^{\star}arrow C^{\star},\Pi\star,\Sigma^{\star}\Rightarrow E_{t}^{\star}}}1eftrightarrow contraction$

Let $\alpha_{t}$ be the degree of $R_{t}(1\leq t\leq p)$ , and $\beta$ be the degree of

$\frac{\Pi^{\star}\Rightarrow a,B^{\star}C^{\star},\Sigma^{*}\Rightarrow a:^{P_{1}\cdot..P_{2}}:}{\frac{B^{\star}arrow C^{\star},\Pi\star,\Sigma\star\Rightarrow a,a}{B^{\star}arrow C^{\star},\Pi^{\star},\Sigma^{\star}\Rightarrow a}}1eftrightarrow contraction$

Due to the width and degree of $Q_{i,t}$ , we have

$\beta>\alpha_{1}\#\alpha_{2}\#\cdots\#\alpha_{p}$ .
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Now let $\Psi=(Barrow C, \Pi, \Sigma)$ , and let $S$ be the proof

$\frac{\Psi^{\star}\Rightarrow E_{2}^{2_{\star}}:.\cdot R\frac{\Psi^{\star}\Rightarrow E_{1}^{1_{\star}}a\Rightarrow a:.R}{a,.\Psi^{\star},\Psi^{\star}\Rightarrow aE_{1}^{\star}arrow a,\Psi^{\star}\Rightarrow a}}{E_{2}^{\star}arrow E_{1}^{\star}arrow}1eft1eft_{arrow}arrow$

$\ovalbox{\tt\small REJECT}\Psi^{\star}\Rightarrow E_{p}^{\star}E_{p-1}^{\star}arrow\cdotsarrow E_{1}^{\star}arrow a,$
$\Psi^{\star}.’..\cdots,$$\Psi^{\star}E_{p}^{\star}arrow E_{p-1}arrow\cdotsarrow E_{1}^{\star}arrow a,\Psi^{\star},$

$\Psi^{\star},,$

$\Psi^{\star}\Rightarrow^{\Rightarrow}a^{a}:$
.
$R_{p_{\star}:}\cdot leftarrow$

: some left contractions
$E_{p}^{\star}arrow\cdotsarrow E_{1}^{\star}arrow a,$

$\Psi^{\star}:\Rightarrow a$

Then we get the proof $Q$ as

$\ovalbox{\tt\small REJECT} E_{p}^{\star}arrow\cdotsarrow E_{1}^{\star}arrow a,B_{\star}^{\star}arrow C_{arrow}^{\star},$

$\prod_{}^{:}..’ E_{n}^{\star}arrow\cdotsarrow E_{1}^{\star}arrow a,$
$\Sigma_{0}^{\star}\Rightarrow aB^{\star}arrow C^{\star},\Pi,E_{n}^{\star}\cdot:_{\star}S_{arrow E_{1}^{\star}arrow a,\Sigma_{0}^{\star}\Rightarrow a}$

left contraction

:
$\Gamma^{\star}\Rightarrow A^{\star}$

where $p=n$ . Lemma 2.12 guarantees that this is the required proof.

(Sub-sub-case 3-2-2) $n>p>0$ . In this case, Lemma 4.1 (2) tells us that $P’$ is of the

form :.$\cdot$

$P_{1}$ :: $P_{2}$

$\frac{\Pi\Rightarrow a^{1},B^{\star}C^{\star},\Sigma\Rightarrow a^{3}}{\frac{B^{\star}arrow C^{\star},\Pi,\Sigma\Rightarrow a,a}{B^{\star}arrow C^{\star},\Pi,\Sigma\Rightarrow a}}1eftarrow rightcontraction$

I $P_{3}$ :. $(*)$

$\frac{\Theta\Rightarrow E_{p+1}^{\star}E_{p}^{\star}arrow\cdotsarrow E_{1}^{\star}arrow a^{0},\Lambda\Rightarrow D}{E_{p+1}^{\star}arrow E_{p}^{\star}arrow\cdotsarrow E_{1}^{\star}arrow a,\ominus,\Lambda\Rightarrow D}leftarrow$

:: $(**)$

$\Gamma\Rightarrow A$

where $a^{0}$ is a descendant of a partner of $a^{1}$ or that of $a^{3}$ . Then by using the proof $S$ in

Sub-sub-case 3-2-1, we get the proof $Q$ as

$E_{p}^{\star}arrow\cdotsarrow E_{1}^{\star}arrow a,\dot{B}^{\star}arrow C^{\star},$ $\Pi^{\star},$

$\Sigma^{\star}:S\Rightarrow a$

:: $(*)$ ( $E_{p}^{\star}arrow\cdotsarrow E_{1}arrow a$ is untouched)

$\ovalbox{\tt\small REJECT}\ominus\Rightarrow:_{E^{\star}arrow E^{\star_{\star}}arrowarrow E^{\star_{\star}}arrow a,\ominus^{\star},\Lambda^{\star}\Rightarrow D^{\star_{\star}}}^{P_{p^{3}}^{E_{p_{p}}arrow\cdot.\cdot.\cdot.arrow E_{1_{1}}arrow.a,E_{p}arrow\cdotsarrow E_{1}^{\star}arrow a\Lambda_{1eft}^{\star}\Rightarrow_{arrow}D^{\star}}}:_{EE_{p}^{\star}arrow\cdot\cdotarrow E_{1}^{\star}arrow a,\Lambda\Rightarrow D^{\star}p_{\star}+_{+^{1_{1}^{\ovalbox{\tt\small REJECT}}}}}$

,
left contraction

:: $(**)$

$\Gamma^{\star}\Rightarrow A^{\star}$
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Lemma 2.12 guarantees that this is the required proof.

(Sub-sub-case 3-2-3) $n=0$ or $p=0$ . In this case, there is the formula $a$ in $\{\Pi, \Sigma\}$ .
Then we can get the required proof $Q$ as

$(B’arrow C’)a_{\star}\Rightarrow a:_{\Pi^{\star},\Sigma^{\star}}:\Rightarrow a$some left weakenings

::
$\Gamma^{\star}\Rightarrow A^{\star}$

This completes the proof of Lemma 4.7. 1

Now we can prove the contraction-elimination theorem for LK$\stararrow$ ;

Proof of Theorem 2.8 (1) By Lemma 4.7, Lemma 2.7, transitivity $of\prec$ , and induction

on the degree of the proof. 1
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