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Large Set Principles and Well-founded Principles

Mamoru SHIMODA * 下田 守

Introduction
Paris and Harrington presented in 1977 a new combinatorial statement which is true but
not provable in Peano arithmetic PA. After the discovery of Paris-Harrington principle
PH, not a few similar works for undecidable finite combinatorial principles have been
reported, most of those are model theoretic. Among few proof theoretic ones Kurata [4]
presented extensions of $PH$ and their equivalents, by studying Ketonen and Solovay [3] in
detail. In addition, relating to reflection principles in fragments of PA, Ono [7] obtained
refinements of some results of [4].

There are two series of extensions of PH, namely $PH_{n}(n=1,2, \ldots)$ and PH,
$n$

$(n=1,2, \ldots)$ . These are confused and identffied in [4], so the main result of [4] should
be divided into the following two theorems.

Theorem 1 For every positive integer $n_{f}PH_{n},$ $LSP_{\Sigma_{n}}[\epsilon_{0}]_{f}WFP_{\Sigma_{n}}[\epsilon_{0}]$ , and $TI_{\Pi_{n}}[\epsilon_{0}]$

are mutually equivalent in PA.

Proof. PA $\vdash LSp_{\Sigma_{n}}[\epsilon_{0}]rightarrow WFp_{\Sigma_{n}}[\epsilon_{0}]rightarrow TI\Pi_{n}[\epsilon_{0}]$ follows from Theorem 5.1 of [7],
which is a refinement of Theorems 2.5.5 and 2.5.6 of [4]. The equivalence to $PH_{n}$ in PA
follows from Theorems 2.6.2 and 2.7.4 of [4].

Notice that the results of [3] are fully used in the proof of the equivalence to $PH_{n}$ , i.e.
for proving Theorems 2.6.2 and 2.7.4 of [4].

Theorem 2 For each positive integer n, PH:, $RFN\Sigma_{n}(PA),$ $LSP_{\Sigma_{n}}^{*}[\epsilon_{0}]_{f}$ and $WFP_{\Sigma_{n}}^{*}[\epsilon_{0}]$

are mutually equivalent in PA.

Proof. $PA\vdash PH_{n}^{*}rightarrow RFN_{\Sigma_{n}}(PA)$ is shown in Theorem 1.4.6 of [4].
$PA\vdash RFN_{\Sigma_{n}}(PA)rightarrow LSP_{\Sigma_{n}}^{*}[\epsilon_{0}]rightarrow WFP_{\Sigma_{n}}^{*}[\epsilon_{0}]$ follows from Theorem 5.7 of [7].

Now $RFN_{\Sigma_{n}}(PA)$ is the uniform $\Sigma_{n}$-reflection principle of PA (cf. e.g. [7]). The
definitions of $PH_{n}$ and $PH_{n}^{*}$ are described in [6]. Other principles in the theorems will be
explained later for $\Gamma_{o}$-versions.
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The distinction of the two series is essentially due to Ono [7]. We follow the notations
of [7] (and [4]) with a few changes. Here the well-ordering principle of [4] and [7] is called
the well-founded principle, so we write $WFP_{\Sigma_{n}}[\epsilon_{0}]$ for $WOP_{\Sigma_{n}}[\epsilon_{0}]$ , and so on.1

Relating to Friedman-McAloon-Simpson principle FMS (cf. [1]), another undecidable
combinatorial principle much stronger than PH, we obtained partial extensions of the
above theorems by replacing $\epsilon_{0}$ with $\Gamma_{o}$ . The extensions are described as Theorem 3 and
Theorem 4 in the last section.

The present paper is expanded from part of [6] with some additions and improvements.
Unlike its title, [6] is a brief survey about extensions of PH and those of FMS, including
some corrections of [4] and some conjectures. Theorem 4 is the proof of a conjecture in
[6]. Another part of [6] is treated in [5]. This paper also includes a summary of [9], which
is neccesary to prove the main theorems. The constructive properties of the system of
fundamental sequences for $\Gamma_{o}$ are extensions of the corresponding properties of the system
for $\epsilon_{0}$ in [4], which are proved by using transfinite inductions in [2] or [3].

Much of this work was suggested by R. Kurata, to whom the author owe thanks for
valuable comments. It should be mentioned that the precise work of H. Ono [7] was of
much help for developing the arguments in our case.

1 Definition of the principles
In this section we give the precise definitions of the principles. We assume that our system
PA contains the function symbols for primitive recursive functions and their defining
equations as axioms. For the representation of the ordinals below $\Gamma_{o}$ , we adopt the
notation system of Sch\"utte [8]. So we assume that the reader is familiar with the basic
concepts in Chapter V of [8]. Accordingly, there is a primitive recursive well-ordering
$\prec$ on the set of all natural numbers of order type $\Gamma_{o}$ . Henceforth we consider only the
ordinals below $\Gamma_{o}$ (the ordinal terms of the set OT in [8]). Throughout this paper small
roman letters denote the natural numbers, while small greek letters denote the ordinals
below $\Gamma_{o}$ , which we occasionally identify with the corresponding natural numbers.

In the following the definitions of the principles are modifications of those in [7]. The
transfinite induction up to $\Gamma_{o}$ for $\Pi_{n}$ -formulas $(TI_{\Pi_{n}}[\Gamma_{o}])$ is the schema

$\forall x[\forall y(\forall z(z\prec yarrow\psi(z))arrow\psi(y))arrow\psi(x)]$

for every $\Pi_{n}$-formula $\psi(x)$ .
Suppose that $\theta$ is a formula containing at least two free variables. Let $F(\theta)$ denote

the formula $\forall x\exists!y\theta(x, y)$ , which means that $\theta$ is the graph of a function. Then let $SIF(\theta)$

be the formula
$F(\theta)\wedge\forall x\forall y\forall z(\theta(x, y)\wedge\theta(x+1, z)arrow y<z)$ ,

which means that $\theta$ is the graph of a strictly increasing function.

1In [6] $WFp_{\Sigma_{n}}[\epsilon_{0}]$ is denoted as $WFP_{\Delta_{n}}[\epsilon_{0}]$ etc., but here we adopt a little more formal point of view.
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The well-founded principle of $\Gamma_{o}$ for $\Sigma_{n}$ -formulas $(WFP_{\Sigma_{n}}[\Gamma_{o}])$ is the schema

$F(\theta)arrow\exists x\exists y\exists z(\theta(x,y)\wedge\theta(x+1, z)\wedge\neg(z\prec y))$

where $\theta$ is a $\Sigma_{n}$-formula containing at least two free variables. It means that there is
no strictly descending infinite $\Sigma_{n}$-sequence with respect to the well-ordering $\prec$ . Here a
$\Sigma_{n}$ -sequence (resp. a $\Sigma_{n}$-function) is an abbreviation for a sequence (resp. a function)
represented by a $\Sigma_{n}$ -formula.

To define the large set principle the notion of a system of fundamental sequences for
$\Gamma_{o}$ is required.

We define the system by using the notation system for ordinals below $\Gamma_{o}$ . For $\gamma>0$ ,
the normal form of $\gamma$ is $\gamma_{1}+\cdots+\gamma_{k}$ , where each $\gamma_{j}$ is of the form $\phi\alpha_{j}\beta_{j},$ $\beta_{j}<\phi\alpha_{j}\beta_{j}$ ,
and $\gamma_{j}\geq\gamma_{j+1}$ . Every ordinal $\gamma>0$ has a unique normal form (cf. [8, Theorem 14.8]).
Define $\omega_{m}\alpha\beta$ by induction as:

$\omega_{0}\alpha\beta=\beta$ , and $\omega_{m+1}\alpha\beta=\phi(\alpha,\omega_{m}\alpha\beta)$ .

Definition 1.1 (cf. [2, \S 3]).
For $\gamma$ and $n$ , define $\gamma[n]$ by induction on $L\gamma$ , the length of $\gamma$ .
(1) If $\gamma=0$ , then $\gamma[n]=0$ .
(2) If $\gamma=\phi 00=1$ , then $\gamma[n]=0$ .
(3) If $\gamma=\phi(\delta+1,0)$ , then $\gamma[n]=\omega_{n+1}\delta 0$ .
(4) If $\gamma=\phi\alpha 0,$ $\alpha$ is limit, then $\gamma[n]=\phi(\alpha[n], 0)$ .
(5) If $\gamma=\phi(0,\eta+1)$ , then $\gamma[n]=\phi 0\eta\cdot(n+1)$ .
(6) If $\gamma=\phi(\delta+1, \eta+1)$ , then $\gamma[n]=\omega_{n}(\delta, \phi(\delta+1, \eta)+1)$ .
(7) If $\gamma=\phi(\alpha,\eta+1),$ $\alpha$ is limit, then $\gamma[n]=\phi(\alpha[n], \phi\alpha\eta)+1)$ .
(8) If $\gamma=\phi\alpha\beta,$ $\beta$ is limit, then $\gamma[n]=\phi(\alpha, \beta[n])$ .
(9) If $\gamma=\gamma_{1}+\cdots+\gamma_{k}$ (normal form), then $\gamma[n]=\gamma_{1}+\cdots+\gamma_{k-1}+\gamma_{k}[n]$ .

We write $\alphaarrow\beta n$ if $\alpha=\gamma_{1},\gamma_{1}[n]=\gamma_{2},$ $\ldots,\gamma_{k}[n]=\beta$ for some $\gamma_{1},$
$\ldots,\gamma_{k^{2}}$. We write

$\alpha\Rightarrow\beta n$ if either $\alphaarrow\beta n$ or $\alpha=\beta$ . Obviously, $\alphaarrow\beta n$ implies $\alpha[n]\Rightarrow\beta n$

Definition 1.2 (cf. [3, 4.1] and [4, Definition 2.3.1]).
For $\gamma$ and $n_{1},$ $\ldots,$

$n_{k}$ , define $\gamma[n_{1}, \ldots, n_{k}]=\gamma[n_{1}][n_{2}, \ldots, n_{k}]$ by induction on $k$ .
For a finite subset $X$ of $\omega$ and an ordinal $\alpha,$

$X$ is $\alpha$ -large if $\alpha[x_{1}, \ldots, x_{k}]=0$ , where
$X=\{x_{1}, \ldots, x_{k}\}(x_{1}<x_{2}<\cdots<x_{k}<\omega)$ . For a function $f$ : $\omegaarrow\omega,$ $X$ is $(\alpha, f)$ -large
if $f(X)$ is $\alpha$-large.

In the following $(x)_{i}=y$ means that $y$ is the i-th element of the sequence coded by $x$ .
Now for each ordinal $\alpha$ and each formula $\theta$ , let $\theta^{*}(s, v)$ denote the following formula:

$\exists z$ [$(z)_{0}=\alpha\wedge(\forall w<s)\exists u\exists t\{(z)_{w}=u\wedge\theta(x+w,t)\wedge(z)_{w+1}=u[t]\}$ A $(z)_{s}=v$ ].

2Definition 2.3 of [9] should be corrected as above.
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We write $[x, y]$ is $(\alpha, \theta)$ -large instead of $\theta^{*}(y-x, 0)$ . Then the large set principle of $\Gamma_{o}$

for $\Sigma_{n}$ -formulas $(LSP_{\Sigma_{n}}[\Gamma_{o}])$ is the schema

$SIF(\theta)arrow\forall\alpha\forall x\exists y$ ( $[x,$ $y]$ is $(\alpha,$ $\theta)$-large)

where $\theta$ is a $\Sigma_{n}$-formula containing at least two free variables. $LSP_{\Sigma_{n}}[\Gamma_{o}]$ means that for
every strictly increasing $\Sigma_{n}$-function $f$ , for any $\alpha$ and $m$ , there exists a number $k$ such
that $[m, k]$ is $(\alpha, f)$-large.

Next we present the definition of the two principles for definable functions. Let $Pr(x)$

be a canonical representation of the provability predicate for PA. So for a formula $\psi$ ,
$Pr(\lceil\psi^{\rceil})$ means the provability of $\psi$ in PA, where $r\psi 1$ is the G\"odel number of $\psi$ .

The large set principle of $\Gamma_{o}$ for $\Sigma_{n}$ -definable functions $(LSP_{\Sigma_{n}}^{*}[\Gamma_{o}])$ is the schema

$Pr(\lceil SIF(\theta)^{\rceil})arrow\forall\alpha\forall x\exists y$ ( $[x,$ $y]$ is $(\alpha,$ $\theta)$-large)

where $\theta$ is a $\Sigma_{n}$ -formula containing at least two free variables. It means that for all strictly
increasing $\Sigma_{n}$-definable function $f$ , for any $\alpha$ and $m$ , there exists a number $k$ such that
$[m, k]$ is $(\alpha, f)$-large. For $\Sigma_{n}$-definable functions, see [7, \S 5].

Similarly, the well-founded principle of $\Gamma_{o}$ for $\Sigma_{n}$ -definable functions $(WFP_{\Sigma_{n}}^{*}[\Gamma_{o}])$ is
the schema

$Pr(\lceil F(\theta)^{\rceil})arrow\exists x\exists y\exists z(\theta(x, y)\wedge\theta(x+1, z)\wedge\neg(z\prec y))$

where $\theta$ is a $\Sigma_{n}$-formula containing at least two free variables. It means that there is no
strictly descending infinite $\Sigma_{n}$-definable sequence with respect to the $well- ordering\prec$ .

2 Constructive properties of the system of funda-
mental sequences

Here we are going to show the outline of the constructive properties of the system, details
are described in [9].

Lemma 2.1 For each limit ordinal $\gamma_{f}\{\gamma[n]\}_{n<1d}$ is a fundamental sequence for $\gamma,$ $i.e.$ ,
(1) $\gamma[n]<\gamma[n+1]<\gamma$ for all $n$ ,
(2) $\lim_{n<(v}\gamma[n]=\gamma$ .

Proof. By induction on length.

Hence Definition 1.1 induces a system of fundamental sequences for $\Gamma_{o}$ . Consequently,
$\gamma[n]<\gamma$ for $\gamma>0$ .

For a function $f$ : $\omegaarrow\omega,$ $f^{n}$ means n-times iteration of $f$ . For each number $m$ ,
define $f_{k}=f_{k}\langle m\rangle$ : $\omegaarrow\omega(k<\omega)$ inductively;

$f_{0}(x)=m^{x},$ $f_{k+1}(x)=f_{k}^{mx+m}(1)$ .
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Lemma 2.2 Let $m\geq 2$ and $f_{k}=f_{k}(m\rangle$ . Then for all $x$ and $k$ , the followings hold.
(1) $x<f_{k}(x)<f_{k}(x+1)$ .
(2) $k<f_{k}(x)<f_{k+1}(x)$ .
(3) If $n<m$ , then $f_{k^{n}}(f_{k}(0))<f_{k+1}(0)$ .
(4) If $n<m$ , then $f_{k^{n}}(f_{k+1}(x)+1)<f_{k+1}(x+1)$ .

Proof. By induction on $kand/or$ on $x$ .

Let $n$ be a fixed number and $f_{k}=f_{k}(n+2\rangle$ $(ky<\omega)$ . For each $\gamma$ , the number
$r(\gamma)=r_{n}(\gamma)$ is defined by induction on $L\gamma$ as follows.

(1) If $\gamma=0$ , then $r(\gamma)=0$ .
(2) If $\gamma=\phi\alpha\beta(\beta<\gamma)$ , then $r(\gamma)=f_{r(\alpha)}(r(\beta))$ .
(3) If $\gamma=\gamma_{1}+\cdots+\gamma_{k}$ (normal form), then $r(\gamma)=r(\gamma_{1})+\cdots+r(\gamma_{k})$ .

Proposition 2.3 Let $r=r_{n}$ . If $\gamma>0$ , then $r(\gamma[n])<r(\gamma)$ .

Proof. By induction on $L\gamma$ . Use Lemma 2.2.

For $\alpha$ and $n$ , let $T(\alpha, n)=\{\beta;\alphaarrow\beta\}n$ The cardinality of a set $A$ is denoted by $|A|$ .

Proposition 2.4 Let $r=r_{n}$ . If $\gamma>0$ , then $|T(\gamma, n)|\leq r(\gamma)$ . Hence for all $\gamma$ and $n$ ,
$T(\gamma, n)$ is finite and $\gammaarrow 0n$

Proof. By induction on $r(\gamma)$ . Use Proposition 2.3.

We call $\beta$ is $\alpha$ -normal if $\beta<\phi\alpha\beta$ . We write $\betaarrow^{\alpha}\gamma$ if for some $\beta_{1},$

$\ldots,$
$\beta_{k}$ , each $\beta_{i}$ is

$\alpha$-normal $(i=1, \ldots, k)$ and $\beta=\beta_{1},$ $\beta_{1}[n]=\beta_{2},$
$\ldots,\beta^{n_{k}}[n]=\gamma$ .

Lemma 2.5 (1) $\phi\alpha 0arrow 0\alpha n$

(2) If $\betaarrow\gamma\alpha n$ and $\alpha\leq\tau$ , then $\beta\div\gamma$ .
(3) If $\betaarrow\gamma\alpha n$ and $\gammaarrow\delta\alpha n$ then $\betaarrow\delta\alpha n$

Lemma 2.6 Let $n\geq 1$ and $\beta>0$ .
(1) If $\betaarrow\gamma\alpha n$ then $\omega_{k}\alpha\betaarrow\omega_{k}\alpha\gamma\alpha n$ for all $k$ .

(2) If $\phi\alpha\betaarrow\beta\alpha n$ then $\omega_{k+1}\alpha\betaarrow\omega_{k}\alpha\beta\alpha narrow\beta\alpha n$ for all $k$ .

Proof. By induction on $r(\alpha),$ $r=r_{n}$ . Use Propositions 2.3, 2.4, and Lemma 2.5.
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Lemma 2.7 Let $n\geq 1$ . Then $\phi(\alpha,\beta+1)arrow\phi\alpha\beta\alpha n(n+1)arrow\phi\alpha\beta\alpha n+1$ .

Proof. By induction on $r(\alpha),$ $r=r_{n}$ . Use Lemmas 2.5 and 2.6.

Lemma 2.8 Let $n\geq 1$ and $\alpha>0$ .
(1) If $\alphaarrow\beta_{f}\alpha n$ then $\phi\alpha 0arrow\phi\beta 0\alpha n$

(2) If $\alphaarrow\beta\alpha n$ and $\phi\alpha\gamma=\gamma$ , then $\phi(\alpha,\gamma+1)arrow\alpha\phi(\beta,\gamma n+1)$ .

Proof. Use Lemmas 2.5 to 2.7.

Proposition 2.9 (cf. [2, theorem 3.1], [3, Theorem 2.4], and [4, Proposition 2.2.6]).
Let $n\geq 1$ . If $\gamma$ is limit and $\alpha$-normal, then $\gamma[i+1]arrow\alpha\gamma[i]n$ for all $i<\omega$ . Hence

the system is $(n)- built- up$ .

Proof. By induction on $L\gamma$ . Use Proposition 2.4 and Lemmas 2.5 to 2.8.

Proposition 2.10 (cf. [2, Proposition 1.1]).
If $\alphaarrow\beta m$ and $m<n$ , then $\alphaarrow\beta n$

Proof. Use the previous proposition.

Proposition 2.11 Let $n\geq 1$ and $\alpha>0$ . If $\alphaarrow\mu n$ and $\phi\alpha\betaarrow\nu n$ then $\phi\alpha\betaarrow\phi\mu\nu n+1$

Proof. By induction on $r(\gamma),$ $r=r_{n+1}$ . Use Lemmas 2.5 to 2.8, Propositions 2.9 and
2.10.

The height of $\gamma$ , denoted by $h(\gamma)$ , is defined by induction on $L\gamma$ :
(1) If $\gamma=0$ , then $h(O)=0$ .
(2) If $\phi\alpha_{1}\beta_{1}+\cdots+\phi\alpha_{k}\beta_{k}$ is the normal form of $\gamma$ , then

$h( \gamma)=\max\{h(\alpha_{i})+1, h(\beta_{i}) ; i=1, \ldots , k\}$ .

Lemma 2.12 If $\gamma<\lambda$ , then $h(\gamma)\leq h(\lambda)$ .

Proof. By induction on $L\gamma$ and on $L\lambda$ .

Lemma 2.13 $h(\gamma)\leq k$ if and only if $\gamma<\zeta_{k}$ .
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Proof. By induction on $k$ and on $L\gamma$ .

The number $c(\gamma)$ is defined by induction on $L\gamma$ :
(1) If $\gamma=0$ , then $c(0)=0$ .
(2) If $\gamma=\phi\alpha_{1}\beta_{1}\cdot n_{1}+\cdots+\phi\alpha_{k}\beta_{k}\cdot n_{k}+m,$ $\beta_{i}<\phi\alpha_{i}\beta_{i},$ $\phi\alpha_{1}\beta_{1}>\cdots>\phi\alpha_{k}\beta_{k}>1$ , then

$c( \gamma)=\max\{c(\alpha_{i})+1, c(\beta_{i}+1)+1, n_{i}, m;i=1, \ldots, k\}$ .

Proposition 2.14 (cf. [3, Corollary 2.2.8]).
If $h(\gamma)\leq k$ and $c(\gamma)\leq n$ , then $(karrow\gamma n$

Proof. By induction on $k$ and on $L\gamma$ . Use Lemmas 2.7, 2.12, and Proposition 2.11.

Proposition 2.15 (cf. [2, \S 4], [3, Proposition 2.8.1], and [4, Lemma 2.2.9]).
There exists a primitive recursive function $g(\alpha, \beta)$ such that if $\alpha>\beta$ and $n=g(\alpha, \beta)$ ,

then $\alphaarrow\beta n$

Proof. Let $n=g( \alpha, \beta)=\max\{c(\alpha), c(\beta)\}$ . It is obvious that $g(\alpha, \beta)$ is primitive
recursive. (Recall that $\alpha$ and $\beta$ are identified with the corresponding natural numbers.)
Put $k= \max\{h(\alpha), h(\beta)\}$ and apply Proposition 2.14.

Notice that all the statements in this section can be proved in PA. In [2] and [3], the
corresponding properties for $\epsilon_{0}$-versions are proved by transfinite inductions, but we can
prove those for $\Gamma_{o}$-versions only by using mathematical inductions.

3 Equivalent principles
By the constrctive properties of the system of fundamental sequences, shown in the pre-
vious section, partial extensions of Theorems 1 and 2 are to be proved.

Theorem 3 (cf. [6, Theorem 5.1]).
Let $n$ be a positive integer. Then the following three schemata are mutually equivalent

$in$ PA:
(1) $LSP_{\Sigma_{n}}[\Gamma_{o}]$ , (2) $WFP_{\Sigma_{n}}[\Gamma_{o}]$ , (3) $TI_{\Pi_{n}}[\Gamma_{o}]$ .

Proof. Since $PA\vdash(2)arrow(3)arrow(1)$ is proved in the same way as in Theorem 5.1 of [7]
(cf. [3, Theorems 2.5.5 and 2.5.6]), it suffices to prove $PA\vdash(1)arrow(2)$ .

Assume $WFP_{\Sigma_{n}}[\Gamma_{o}]$ does not hold. Then there is a strictly descending $\Sigma_{n}$ -sequence
$\{\alpha_{i}\}_{i<1d}$ of ordinals. Let $g(\alpha, \beta)$ be the primitive recursive function of Proposition 2.15,
so $\alpha>\beta$ and $n=g(\alpha, \beta)$ implies $\alphaarrow\beta n$ For each $i<\omega$ , let $m_{i}=g(\alpha_{i}, \alpha_{i+1})$ , then
$\alpha_{i}arrow\alpha_{i+1}m$. Define $\{n_{i}\}_{i<\omega}$ by $n_{0}=m_{0}+1$ and $n_{i+1}= \max(m_{i+1}, n_{i})+1$ . Since $m_{i}<n_{i}$ ,
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$\alpha_{i}arrow\alpha_{i+1}$ by Proposition 2.10. Define $f$ : $\omegaarrow\omega$ by $f(i)=n_{i}(i<\omega)$ . Since $g$ is
$prim$itive

$n$

recursive, $f$ is a strictly increasing $\Sigma_{n}$-function, i.e. there is a $\Sigma_{n}$ -formula $\psi$

such that $SIF(\psi)$ holds and $\psi$ represents the graph of $f$ .
Define $\{\beta_{i}\}_{i<\omega}$ by $\beta_{0}=\alpha_{0}$ and $\beta_{i+1}=\beta_{i}[n_{i}]$ . By induction on $i,$

$\beta_{i+1}\Rightarrow_{1}\alpha_{i+1}n$ holds for
all $i<\omega$ . Let $\alpha=\alpha_{0}$ , then for every $i$ ,

$\alpha[f(0), \ldots, f(i)]=\alpha[n_{0}, \ldots, n_{i}]=\beta_{i+1}\geq\alpha_{i+1}>0$ .

So for all number $i,$ $[0, i]$ is not $(\alpha, f)$ -large, in other words, $[0, i]$ is not $(\alpha, \psi)$-large. Since
$\psi$ is a $\Sigma_{n}$-formula satisfying $SIF(\psi),$ $LSP_{\Sigma_{n}}[\Gamma_{o}]$ fails.

To see that the above argument can be done in PA, we will show only the first step of
the formalizing process. Recall that Propositions 2.15 and 2.10 are provable in PA. Let
$T$ be a theory obtained from PA by adding the formula $F(\theta)$ and the following formula

$\forall x\forall y\forall z(\theta(x, y)\wedge\theta(x+1, z)arrow z\prec y)$

as additional axioms, where $\theta$ is a $\Sigma_{n}$-formula. Then $\theta$ represents the graph of a strictly
descending $\Sigma_{n}$-sequence $\{\alpha_{i}\}_{i<\omega}$ . Define the formulas $\tau(x, s)$ and $\psi(x, t)$ by

$\tau(x, s)\equiv\exists y\exists z(\theta(x, y)\wedge\theta(x+1, z)\wedge g(y, z)=s)$

and

$\psi(x, t)\equiv\exists z[\exists y((z)_{0}=y+1\wedge\tau(0,y))\wedge(\forall u<x)\exists v\exists w\exists s\{(z)_{u}=v$

$\wedge w=\max(s, v)+1\wedge\tau(x+1, s)\wedge(z)_{u+1}=w)\}\wedge(z)_{x}=t]$ .

Clearly $\tau$ and $\psi$ represents the graphs of the sequences $\{m_{i}\}_{i<\{v}$ and $\{n_{i}\}_{i<\omega}$ respectively,
so $\psi$ represents the graph of the function $f$ . Since $\theta$ is a $\Sigma_{n}$-formula and $g$ is primitive
recursive, $\tau$ and $\psi$ are also $\Sigma_{n}$ -formulas. It is easy to prove in PA that $F(\theta)$ implies
$SIF(\psi)$ , so $T\vdash SIF(\psi)$ .

Through similar process of formalization, we can show that

$T\vdash[0, i]$ is not $(\alpha, \psi)$ -large for every $i<\omega$ .

Therefore
$\exists\alpha\exists x\exists y$ ( $[x,$ $y]$ is not $(\alpha,$ $\psi)$ -large)

is provable in T. $\square$

Next we consider the other two principles for $\Sigma_{n}$ -definable functions.

Theorem 4 (cf. [6, Lemma 5.3]).
Let $n$ be a positive integer. Then the following two schemata are mutually equivalent

$in$ PA:
(1) $LSP_{\Sigma_{n}}^{*}[\Gamma_{o}]$ , (2) $WFP_{\Sigma_{n}}^{*}[\Gamma_{o}]$ .



76

Proof. By a quite similar argument as in the proof of Theorem 3, we can show that
(1) $arrow(2)$ is provable in PA. For since $F(\theta)arrow SIF(\psi)$ is provable in PA, $Pr(\lceil F(\theta)^{\rceil})$

implies $Pr(\lceil SIF(\psi)^{\rceil})$ in PA. Hence it suffices to prove the inverse, i.e. $PA\vdash(2)arrow(1)$ .
Let $T$ be the theory obtained from PA with $WFP_{\Sigma_{n}}^{*}[\Gamma_{o}]$ and $Pr(\lceil SIF(\theta)^{\rceil})$ as addi-

tional axioms, where $\theta$ is a $\Sigma_{n}$ -formula. Suppose an ordinal $\alpha$ and a number $x$ are given.
We may assume $\alpha>0$ . Here we write $\zeta$ for $\theta^{*}$ , so $\zeta(s, v)$ is the following $\Sigma_{n}$ -formula:

$\exists z[(z)_{0}=\alpha\wedge(\forall w<s)\exists u\exists t\{(z)_{w}=u\wedge\theta(x+w, t)\wedge(z)_{w+1}=u[t]\}\wedge(z)_{s}=v]$.

Since $SIF(\theta)arrow F(\theta)$ and $F(\theta)arrow F(\zeta)$ are provable in PA,

$T\vdash Pr(\lceil F(\zeta)^{\rceil})$ .

Hence by $WFP_{\Sigma_{n}}^{*}[\Gamma_{o}]$ ,

$T\vdash\exists s\exists v\exists w(\zeta(s, v)\wedge\zeta(s+1, w)\wedge\neg(w\prec v))$ .

But by a property of fundamental sequences,

$T\vdash\forall s\forall v\forall w(\zeta(s, v)\wedge\zeta(s+1, w)\wedge O\prec varrow w\prec v)$.

Hence $T\vdash\exists s\zeta(s, 0)$ . Therefore

$\forall\alpha\forall x\exists y$( $[x,$ $y]$ is $(\alpha,$ $\zeta)$-large)

is provable in T. 口

We conjecture that the equivalent principles in Theorem 3 are also equivalent to $FMS_{n}$ ,
which is an extension of FMS [1]. We also conjecture that the equivalent ones in Theorem4
are equivalent to $FMS_{n}^{*}$ , which is another extension of FMS and is proved to be equivalent
to $RFN_{\Sigma_{n}}(ATR_{0})$ in [5]. The definitions of $FMS_{n}$ and $FMS_{n}^{*}$ can be found in [6].
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