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The configuration space of 6 points in P2,
the moduli space of cubic surfaces
and the Weyl group of type FEj;

B8 0 K B (Jiro, SEKIGUCHI)
BEEE A% (Univ. Elec. Commun.)

1. Introduction

My first plan of the talk is to explain my study on the hypergeometric system E(3,6)
of type (3,6) ([8]). The system in question admits X¢-action, where X¢ is the symmetric
group on 6 letters. This follows from that E(3,6) lives in the configurations space P$§ of 6
points in P2 which admits Yg-action as permutations of the 6 points. Recently M. Yoshida
(Kyushu Univ.) pointed out that the Yg-action on the space P$ is naturally extended
to W(FEs)-action, where W{(FEs) is the Weyl group of type Eg (cf. [3]). Moreover, he
told me that B. Hunt studied relations between the W{FEg)-action in question and the
W (Es)-invariant quintic hypersurface of P5.

Reading his note [4], I felt that it is an interesting exercise for REDUCE user to show
whether his conjecture is true or not. For this reason, I changed the original plan and
I restrict my attention to the study on W(Eg)-actions on P® and on P, namely, to the
birational geometry related with the hypergeometric system E(3,6).

It is better for the readers who are interested in SYMBOLIC COMPUTATION to read
section 6 first.

2. The hypergeometric function of type (3,6)

Though I don’t treat it in this note, I begin this note with introducing the hypergeo-
metric function of type (3,6):

o o0 o0 00
. —_— m m n n:
E(ao, az,a3,as, a6} T1, T2, Y1,Y2) = Z Z Z Z Ay a7 Ty 2 Y1 Yo
m1=0m2=0n1=0n2=0
where

(a2, my + my)(as, ny + na)(1 — as,mqy + n1)(1 — as, ma + ny)
mylmalngIng!(ag, m1 + ma + ny + ny) '

Aml m2,n1,n2 T

By definition, E(ao, ay,as, as, as; 1, T2, 1, y2) has parameters a; (j = 0,2,3,5,6). This
function is one of 4 variables generalizations of Gaussian hypergeometric function. It
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is known that the singularities of the system of differential equations whose solution is
E(ag, ay, as, as, ag; T1, T2, Y1, Y2) is contained in the union of the 14 hypersurfaces T} : p; =
0(1 <j < 14), where

PI=TiYe—Tay1—T1+T2+y1— Y2, P2=m1—1, ps=1z1—1,
pa=Y2—1, ps=x2—1, pe=Yy1 —Y2, P7 =1 — T2, Pg=Ty— Y,
DP9 = T2 — Y2, Pio= T1Y2 — T2Y1, P = T2, P12 =21, P13 = Y2, P14 = Y1.

We define birational transformations s; (1 < j < 5) on C* by

) 1 1 v oy
81 ¢ (xlax%yl’yZ) Ty T, T, ),

T 9
1 T2 T1 T2
S92t (xl’mZ,yh y2) — (yl,y2,$1,332),
L1—Y1 T2—Y2 Y1 Y2 )
l—y; " 1=y n—1y2—17
1 zo 1 w
S4 @ (mhx%yl’ y2) — (_’ T T —)’
Ty T1 1 N1

S5t (w11w23y13y2) B (3’52,{1)1, y%yl)-

S3 ¢ (931,552,?;/1,3}2) — (

Then the group generated by s; (1 < j < 5) is identified with X because

si=1id. (1<j<5), sjsp=s8; (I7—Fkl>1),

$;8kS; = SkS;Sk (I] - kl = 1)

Let r be a birational transformation on C* defined by
r: (21,72, y1,42) — (1/21,1/22,1/y1,1/y2).

Then the group G generated by sq,- - -, s5 and r is isomorphic to the Weyl group W (Ee)
of type Eg which will be seen later (cf. [3], [4]).
We define the hypersurface T5 : pis = 0, where

Pis = 931?/2(1 - y1)(1 - 332) - $2y1(1 - xl)(l - y2)~

It follows from the definition that sq,- - -, ss, r and therefore all the elements of G are
biregular outside the union T' of the hypersurfaces T} (1 < j < 15).

3. The Weyl group W(Es)

Let Er be a Cartan subalgebra of a compact Lie algebra of type Fg, i.e. Eg >~ RS.
Let ¢t = (t1,%2,13,14,15,16) be a coordinate system of Fg such that the roots of type Eg

are:
+(ti£t;), 1<i<j<5}

1
i§(51t1 + bato + b3t5 + 84ty + bsts + ets)
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(where §; = £1 and []; §; = 1). Note that compared with the notation in [1], our variables
t; =€, =1,---,5, while our coordinate t¢ is denoted e5— €7 — €5 in [1]. We now introduce
the following linear forms on ER:

1
h= =gttt o),

hiyj=—tjo1+hy, j=2,---,6
b =tj1 —tee1, 5 k#1
hijk = —tjo1 —te—1, Jk#1
Rkt = —tj—1 —tk—r — ticr + ho, gk, 1LH#1
where .
ho = 5(t+ -+ + 15— o).

Then the totality of A, h;;, hijx forms a set of positive roots of type Eg. Let s (resp. s;j, sijk)
be the reflection on FR with respect to the hyperplane A = 0 (resp. h;; = 0,k = 0).
Then the Weyl group of type Fg which is denoted by W{Fg) in this note is the group
generated by the 36 reflections defined above.

As a system of simple roots, we take

“aq = hyg, 03 = hyg3, a3 = hy3, 04 = hay, 05 = hys5, g = hse.
Then the Dynkin diagram is:

ay Qa3 — Qg 0y Qg

(45]

Let g; be the reflection on Fg with respect to the root ¢ (j = 1,:-+,6). Then, from
the definition,

g1 = 512, g2 = S123, g3 = 823, G4 = S34, g5 = 545, g6 — Sss.

Let E be the complexification of Fr and we extend the action of W(FEs) on Eg to
that on E in a natural manner. Moreover let P° be the projective space associated to E.
Then the W(Es)-action on E induces a projective linear action of W(Eg) on P3.

4. The configuration space of 6 points in P?

We have already defined a birational action of W(FEs) on C* in section 2. In this
section, we explain that the birational transformations s, -, 85, naturally arise from
the study of the configuration space of 6 points in P2.

For this purpose, we first introduce the linear space W of 3 x 6 matrices :
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ZTi1 T12 Tiz T4 Ti15 Tie
W={X= (3321 T2 Tz T4 Tas 9326) ;25 €C(1<i<3,1<5<6)}.

T3t T32 T3z T34 T3z T36
Then W admits a left GL(3,C)-action and a right GL(6, C)-action in a natural way. For
a moment, we identify (C*)® with the maximal torus of GL(6,C) consisting of diagonal
matrices and consider the action of GL(3,C) x (C*)® on W instead of that of GL(3,C) x
GL(6,C). ,

For simplicity, we write X = (X;, X3) for the matrix X € W, where both X;, X, are

3 x 3 matrices. For any 3 x 3 matrix Y = (¥i;)1<i,j<s with the condition y;; # 0 (1 <
t,7 < 3), we define a 3 x 3 matrix

o(Y) = (i) .
Yi5/ 1<i.5<3

following a suggestion of M. Yoshida. Moreover, we put

T1iy L1, Tisg
D(i1,t0,t3) = det | 22, T2, T2,
T3iy L3, T3ig

for a given matrix X € W.
Using these notation, we define subsets W', W, of W by

W' ={X € W; D(i1,12,13) # 0 (1 <4y < iy <13 < 6)},

WO = {(Xl,Xg) € W’; (13, COf(X{_1X2)), (Ig,O’(Xl—lX2)) € W, },

where Cof(Y) = (det Y)Y ~! is the cofactor matrix of a given square matrix Y.

It is clear that the action of GL(3,C) x (C*)® on W naturally induces that on each
of W', Wy. In the sequel, we mainly consider the quotient space of W, unde the action
of GL(3,C) x (C*)%, that is,

W = GL(3,C) \ Wo/(C*)".

It is clear from the definition that for any element X € W, there are (g,h) €
GL(3,C) x (C*)® and (z1,z2,¥1,y2) € C* such that

1 001 1 1
gXh={0 1 0 1 z; z2{.
0 01 1 y1 9

In particular (x1,Z2,y1,¥2) is uniquely determined for X € W,. In this sense, Wy =
GL(3,C) \ Wp/(C*)° is identified with an open subset of C*. Note that (z,z;,y1,¥s) is
the variables (z1, %2, y1,y2) of section 2. Then Wy = C* - T.
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Changes of column vectors of X € W, induce birational transformations on C* with
coordinate system (z1,%2,y1,y2). The action s; (1 < j < 5) introduced in section 2 is
nothing but the birational transformation on C* corresponding to the change of the j-th
column vector and (j + 1)-column vector of X € W,. Moreover W admits an involution
induced from the action on Wy defined by

F 1 (X1, Xa) — (I, 0( X1 X))

for any (X1,X;) € Wy. The involution r defined in section 2 is equal to that induced
from 7.

The followiﬂg theorem which seems known shows a concrete correspondence between
W (Eg) and the group G introduced in section 2.

Theorem 4.1. The correspondence
91— 81, G2 —>T, g3 —>82, G4 —83 Qg5 —*34, Ge6— 355

induces a group isomorphism of W (Es) to the group G.
Remark. In [3], it is stated that there is a W{Es)-action on Wy. See also [4].

5. W(Eg)-equivariant maps

We first define rational functions on F by

z1(t) = ha4 - hasa - hus - hags 23(t) = hos - hoss - hig - hiss
hig - higq - hos - hass’ hia - Riag - hos * hose’

vi(t) = haq - hoza - his - hags ys(t) = h3s - hasa - hie - hase
his - b1z - has - hass’ ’ Pig - Piag - hag - hase’

At) = hsq - haas - hag - hase ) hi3 * hisg - hog - hogs
hos - hass - hag - hase  hiz - higs - has hasg’

y,(t) — h456 . h235 . h134 . h126 ] h16 . h136 . h24 . h234
h - his - hog - hss hig - hiaq - hog - hasg’

0=

_ h24 ) h245 ) h36 ) h356 h14 ) h146 ) h23 * h236
p(t) - h23 '

) h235 ) h46 ' h346 . h15 : h156 ) h24 ) h246

: h234 ' h56 : h356 h14 : h146 ) h25 ) h256,

“haas * hag - huse b1z - hise - hog - hasg’

~ where h, h;;, hijr denote linear functions on E introduced in section 3. Since all the
rational functions above are homogeneous of degree zero, they are regarded as functions
on P®. Therefore defining

Fl(t) = (ml(t)a 372(t)’ yl(t)’ y2(t)), F(t) = (A(?), F‘(t)a V(t)v p(t))a

we obtain two maps Fi, F; from P® to C%. The roles of Fy, F, will become clear in
Theorem 5.1 which will be given later. To define F;, F3, I am indebted to [4]. We are
going to explain the meaning of z;(t), y;(t) following [4].
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We begin with defining the cross ratio. Let & = [€1s : &2 @ &s:] (1 < @ < 5) be five
points of P2 and let [ : qiu; + qous + gsus = 0 be a generic line in P2. We denote by
[1: 2 : w;] the intersection of [ and the line passing through the points £ and &;. Then
we put

(1) CR(Ea, b, 0,63 1) = 22020 — 25)

(72 — 25)(23 — 24)

which is in fact a cross ratio of z,, 23, 24, 25.
Now we consider a matrix of the form

1 001 1 1
X=101 01 z zo|.
11y g
From the matrix X, we define six points & (: = 1,---,6) in P? in a usual manner, that is,
41=[1:0:0]a €2=[0:1:0]7 €3=[0:0:1]3
Ca=[l:1:1], &=[1:a1:y], & =[1:z2:ya

Then we can compute CR(&;,, &y, &iy, i3 &y ) explicitly for various 21,22, 23, 04,75
On the other hand, we put

(2) 'CR'(iz,is,iz;, is;il) =

i2ta h‘i1 i214 higis hil 1315
h

h
hi3i4 i1i3i4h52i5hi1i2i5.
By definition, CR'(3, 3,24, 5541 ) is a function on P°. Then from the equation
(3) CR(éiw &3 ’ €i41 52'5; fil) = CR,(iz, i3, i4, 25, il)a
we obtain various equalities. In particular, by computing the cases
(ila i?s Z.33 i47 Z5) = (3’ 23 194, 5)’ (33 2’ 1a 43 6)’ (27 11 33 43 5)’ (23 13 31 43 6)a

we have the definition of z,(t), z2(¢), y1(t), y2(t) at the beginning of this section.
Let F3 be the birational transformation on C* defined by F3(z1, z2, y1,¥2) = (A, pt, v, p),

where
3 = Z2e = Dy — 92)(y2 — 1)
y2(-'131 — 332)(’.'172 — 1)(y1 — 1)’

_ {(y1 — 1)(z2 — y2) — (y2 — D)(z1 — y1)} 2292
T1ToY1 — T1T2Y2 — T1Y1Ya + T1Y2 + Tay1Ys — Toyy

_ (Z1y2 — x2y1)(z2 — 1)(y2 — 1)
(z1 — z2)(22 — y2) (11 — Y2) ’
p= (zy — 502)(372 — y2)(y1 — 1)
{(z1 = 1)(z2 — y2) — (21— y1) (w2 — 1)}y — 2o’
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It is easy to show that F3 is birational, because its inverse is given by

. _(Qe=D)Qurp—1) QAp—Du (pre—D(p—1) (p—1p
F O 0) = (R = 10wp = 1) Mep =1 (ap ~Divp =1 sr—1 )’

By the map F3, the action of W(Fg) on the (1,2, y1, y2)-space implies that on the
(X, p, v, p)-space. In fact, we define the following six birational transformations on the

(X, g, v, p)-space (cf.[T]):
A — drp*(l = X)/(Apvp® — 1)
p— (up—1)(Apvp —1)/(u(Xp — 1)(Avp — 1))

DYy — Qwp—1)wwp — 1)/ (v(hp = D)(Ap — 1))
p— (Ap—1)(Apvp? = 1)/(p(A = 1)(Apvp — 1))

g2t (A psv,p) — (A 1/, v, pp)

g3: (/\s/"’ V’p) - (I/A,u,u,)\p)

§4 : (Aa H, Vv, P) - ()‘pa mp,vp, 1/P)

§5 : (Aaﬂ'ayap) — ()\,,LL,]./V,VP)
A— (Avp—1)(Apvp —1)/(Mvp — 1)(prp — 1))
P Land (pvp — D)(Apvp — 1)/ (u(vp — 1)(Avp — 1))

v— Auvp*(l —v)/(Apvp® — 1)
p— (vp—1)(durp? —1)/(p(v = 1)(Auvp — 1))
Let G, be the group generated by §; (j =1,---,6). Then the correspondence

gj_)gj .7=1736

is an isomorphism between W(FEg) and G;.
Needless to say, F} (resp. Fy) is regarded as a map from P® to the (1, z2,y1, y2)-space

(resp. the (A, p,v, p)-space.) Moreover, Fj is regarded as a map from the (z,22,y1, y2)-
space to the (X, p, v, p)-space.

Theorem 5.1. The three maps F; (j = 1, 2,3) are W{(Es)-equivariant and

Fyo Fi(g(t)) = Fy(g(t)) (Vt € P?,Vg € W(Eq)).

The W ( Eg)-equivariances of Fy, F are stated in [4] implicitly.
We now mention the meaning of the (A, u, v, p)-space. In [2], A. Cayley defined a 4-
dimensional family of cubic surfaces. Modifying his family, we introduce a family of cubic

surfaces of P2 with homogeneous coordinate (X : Y : Z : W) depending on parameters
(A, p, v, p) as follows (cf. [7]):

pWAX2 + uY? +vZ2% + (p— 1)*(Auvp — 1)°W?

+pv+1)YZ + A +1)ZX + (A +1)XY
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~(p=D)Aprp—-1W{A+1)X+(p+1)Y +(v+1)Z}|+ XYZ =0.

The family of cubic surfaces above admits a W( Eg)-action as givenin [7]. In particular,
the W (Es)-action in [7] preserves the parameter space. For this reason, we obtain a
W (Es)-action on the (A, p, v, p)-space which actually coincides with the W(Eg)-action on
the (A, i, v, p)-space explained before Theorem 5.1.

6. A Conjecture of B. Hunt

It is known (cf.[1]) that there is a unique W{Eg)-invariant homogeneous polynomial
of t = (t1,---,16) of degree 5 up to a constant factor. For example, we take Qs(t) below
as such a polynomial (cf. [4]):

5 5 5
Q5(t)= —I—O—S-tg + 1—8_01t2 + Z(O’% — 40’2)t6 + 30\/0’5,
where o; = 0;(t2,---,12) is the i-th elementary symmetric polynomial in #2,-.-,¢2 and

VO =1 s

Let I5s be the hypersurface in P® defined by @s(t) = 0. Since Qs(¢) is W(Eg)-invariant,
so is Is. Moreover, since dim I5 = 4, the restrictions F;|I5, F3|I5 are generically finite maps
from I5 to C*. In [4], B. Hunt stated conjectures on these maps which turn out to be one
conjecture below.

Conjecture 6.1.([4]) Both Fi|I5, F3|I5 are generically bijective.

How to attack Conjecture 6.1 with the help of REDUCE? In virtue of Theorem 5.1,
it suffices to show Conjecture 6.1 for one of Fy|I5, F3|I5. Noting the definition of Fy(2),
we find that Conjecture 6.1 is rewritten as follows:

Problem 6.2. Let x1,22,y1,y2 be constants. At least assume that (zy, z2,y1,y2) is
outside the set T'. Using z1, Z3,¥1, y2, we define four polynomials of ¢ by

fl = h24 : h234 ) h15 ) h135 — 1 h14 ) h134 ) h25 . h2357

f2 = h24 : h234 . h16 ’ h136 — T2 h14 ) h134 ) h26 : h236a
91 = h34 : h234 . h15 * h125 — Ui h14 ) h124 : k35 : h2357
g2 = h34 * h234 ) h16 : h126 — Y2 h14 : h124 ) h36 : h2367

where h, h;j, hij, are linear functions of ¢ defined in section 3. Then how many solutions
are there for the simultaneous equations of ¢ defined by

(4) fi=fhi=g=g=Qs=0
under the condition Fi(t) &€ T ?

Needles to say, there is a gap between Conjecture 6.1 and Problem 6.2, that is, Conjec-
ture 6.1 claims that for generic z;, 23, y1, y2, equation (4) has a unique projective solution.
Since I don’t know whether Conjecture 6.1 is true or not, I reformulate it as a problem.
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I tried to solve Problem 6.2 directly by using REDUCE3.4 on TOSHIBA J3100 once
and at last abondaned to do because of out of capacity.

From now on, ] am going to explain results related with Problem 6.2 and the moduli
of cubic surfaces. We consider the hypersurface H in P° defined by A(t) — 1 = 0, that is,

(5) P(t) = h345 * h26 ) h256 ' h13 : h136 ) h246 - h245 ' h36 ) h356 ) h12 * h126 : vh346 = 0.

Then it is easy to show that the polynomial P(t) of equation (4) is decomposed into two
factors (up to a constant):
P(t) = h23 . P5(t).,

where P;(t) js homogeneous of degree 5. Moreover P; is so taken that
Ps(t1, 12, t3, tas 5, ) = const.Qs(t1, 12, 3, 14, 26, —3s).

From this remarkable relation, we easily imply the following (cf. [4], [6]).

Proposition 6.3.

(i) There are 45 hypersurfaces in P® as the W (Eg)-orbit of H. Moreover, the isotropy
subgroup of H in W (Es) is isomorphic to the Weyl group of type. Fj.

(ii) The intersection H N I5 is decomposed into two irreducible components. One is
defined by t5 = t¢ = 0 therefore is isomorphic to P2. The other is defined by an equation
of degree 24.

(i) If t € H, then Fy(t) = (1,1,1,1), that is, A(z) = u(t) = v(t) = p(t) = 1. The
corresponding cubic surface has Eckard points.

It follows from Proposition 6.3 (i) that there is a natural 1-1 correspondence between
the W (FEg)-orbit of H and the 45 exceptional divisors of Naruki’s cross ratio variety [6].
We mention Proposition 6.3 (ii) in detail. We first introduce symmetric polynomials
of t1,13,13,44 by
sy =1+t + 85+ 1,
sq = 13(5 + 13 + 15) + 5(5 + ¢1) + 1385,

8y = titataty.

Using s3, 84, 84, we define the polynomial A of degree 24 by
h = ciot2 + cots® + cgti® + crtit + ceti? + cst + cqts + cats + cots + art? + o,

where

Clo = 17283%,

co = 432s5(—21s2 + 20s,4),
cs = 27(4800s/2 4 76155 — 17365254 + 400s3),
c7 = 882(—4665657 — 321755 + 12852525, — 10368s3),



ce = 2(—190080s/252 — 336960575, + 92515 — 559555354
4913685252 — 28080s3),
cs = 23,(825360s72s2 — 15828485754 — 325655 + 271435554
—7249652s2 + 6177653,
ca = —59833728s% — 1370994554 + 580968057 5254 — 47321285755 — 19355
+305455s, — 1298153582 + 10120s3s3 + 21168s],
c3 = 255(—2191104s} + 1994765755 — 12630243533334 + 19900805752
+49655 — 73275554 + 404435355 — 988245353 + 90160s7),
ca = —907200s} 52 + 24917765} s, — 5471435333 + 554274572584
1854576525252 + 205161657255 — 256530 + 46405554 — 335055557
+120460s%s3 — 215600355 + 15366455,
c1 = 652s5(—496852s2 + 146885754 — 2655 + 2855354 — 10325555 + 123253),
co = 27571(1925 + s5 — 8s3s4 + 1653).

Moreover,
N = —2{(5s5 — 16025412 — 345354 + 4134s3t5 + 10037535415 — 30055545

+565552 — 12820754t + 8285515 — 15764552 + 19805415 — 36015°)t;
—(82 + 1645412 — 434 + T36815)s7 }sts,
= —{3(313 + 650522 — 92555, + 2320s,t5 — 1752s4t7 + 564815) 5712
+2(246452 — 20555414 + 187t3)s2ts — 4(1687s] — 415s4t5 + 1215) 215
— (146554 — 10448%)s3t2 + 15(269s4 — 61t3)s3ts — 1654 + 14455t
5995518 — 5488535 + 2072535 — 120s4t3}.
Then from the equations
=Qs =0,
we obtain

te= N/D, h=0.
The equation k = 0 is the one stated in Proposition 6.3 (ii).

If we consider the equation A — 1 = 0 in the (z, Z2,91, y2)-space, we obtain a hyper-

surface Hy defined by

(6) za(z1 — 1)(y1 — y2)(y2 — 1) — y2(z1 — z2)(z2 — 1)(y1 —~ 1)=0.

83
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Now we formulate a problem simplified from Problem 6.2, noting Proposition 6.3 (ii).
Namely, we consider Problem 6.2 in the case t5 = tg = 0 and ¢{; = 1 . (The condition
t; = 1 is not essential. From the homogeneity, we may assume ¢; = 1 for some j.)

Problem 6.2’. Define four polynomials of ¢5, 3,4 by
fro=(ta+ 13 —ts + 1)2(ty + t4)(t3 — 1) — @y (ta + t3) (B2 — t3 + b + 1)2(ts — 1),

fao=(a+ta+ta+ D)t +tz3—tg+1)(t3 — 1)1,
+xa(ts +t3)(t2 —ts +ta + 1)(t2 — ts — ta + 1),
910 = (t2 +ts — ta + 1)* (8 — t3)(ta + 1) — ya(ts — ta + ta + 1)*(t2 — ta)(ta + 1),
g0 =2+ 1ts+ts+ 1)t +1t3—ts+ 1)(t2 — t3)
—y2lta —ts +ts+ 1)(ts — t3 — ta + 1)(Ea + 1)t
where z3, z3,¥1,y2 are constants with the condition (6) and (il, T2,Y1,y2) € T. (In
particular, we assume that z; is a rational function of x5, y;,y2.) Then how many solutions
are there for the equations (7) of 3,15, t4 below
(7) fio=fo=g10=g20=0
under the condition t ¢ T' ? |

It is possible to give an answer to Problem 6.2°. In fact, erasing t3,t4 from (7), we
obtain an equation for ¢, defined by

(8) > bity =0,
=0
where
by = (229192 — 202 — 251y2 + Y1 + v3)*(T2y2 — 292 + L)y,
bs = 3(z2y1y2 — T2y2 — 20192 + Y1 + y3) (T2y2 — 272 + 1)y;,
be = —4(z3y192 — T3z + T2yl + Tay1y3 — 4Tay1y2 + Tayr + T2y — Y1Y2 + V1Y)
X(T2y192 — T2Y2 — 2512 + 91 + ¥3)(Tay2 — 272 + 1)33,
bs = —6(za31y2 — T2¥2 — 2012 + 1 + ¥3)(T2y1 + T2y5 — 2222 — Y12 + ¥2)
X(z2y2 — 2y2 + 1)z23193,
by = 6(z2y1y2 — Tay2 — 2y1y2 + Y1 + Y3 )(T2y1 + T2¥s — 2T2ys — Y1y + ¥2)
X (a2 — 2z2 + 1)T2y193,
bs = 4(z3y1y2 — T3y2 + ToyP + Tay1y3 — 4T2yr1Y2 + Tays + 25 — Y1y2 + Y192)
X(Zay1 + 2297 — 2T2y2 — Y1y + ¥2)(T2y2 — 2y2 + 1)Toy1ys,
b = —3(z2y1 + T2y; — 22292 — 1¥2 + ¥2) (T2y2 — 242 + 1)2dy],
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bo = —(Zay1 + T2y3 — 222Y2 — N1y2 + ¥2)*(T2y2 — 225 + 1)23y7,
b7 _ b2 == 0.
Moreover, if ¢, is a solution of (8), t3,%4 are uniquely determined by (7).

I checked that equation (8) for £ is irreducible of degree 9 and that for generic z3, y1, y2,
(8) has no multiple factor. As a consequence, we obtain the following.

"Theorem 6.4. The restriction of F; to the subspace t5 = tg = 0 is generically 9 to 1.

I'am not sure whether Theorem 6.4 induces the invalidity of Conjecture 6.1 or not.
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