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The configuration space of 6 points in $P^{2}$ ,
the moduli space of cubic surfaces

and the Weyl group of type $E_{6}$

関口 次郎 (Jiro, SEKIGUCHI)
電気通信大学 (Univ. Elec. Commun.)

1. Introduction
My first plan of the talk is to explain my study on the hypergeometric system $E(3,6)$

of type $(3,6)$ ([8]). The system in question admits $\Sigma_{6}$-action, where $\Sigma_{6}$ is the symmetric
group on 6 letters. This follows from that $E(3,6)$ lives in the configurations space $P_{2}^{6}$ of 6
points in $P^{2}$ which admits $\Sigma_{6}$-action as permutations of the 6 points. Recently M. Yoshida
(Kyushu Univ.) pointed out that the $\Sigma_{6}$ -action on the space $P_{2}^{6}$ is naturally extended
to $W(E_{6})$-action, where $W(E_{6})$ is the Weyl group of type $E_{6}$ (cf. [3]). Moreover, he
told me that B. Hunt studied relations between the $W(E_{6})$-action in question and the
$W(E_{6})$-invariant quintic hypersurface of $P^{5}$ .

Reading his note [4], I felt that it is an interesting exercise for REDUCE user to show
whether his conjecture is true or not. For this reason, I changed the original plan and
I restrict my attention to the study on $W(E_{6})$-actions on $P^{5}$ and on $P_{2}^{6}$ , namely, to the
birational geometry related with the hypergeometric system $E(3,6)$ .

It is better for the readers who are interested in SYMBOLIC COMPUTATION to read
section 6 first.

2. The hypergeometric function of type $(3,6)$

Though I don’t treat it in this note, I begin this note with introducing the hypergeo-
metric function of type $(3,6)$ :

$E(a_{0}, a_{2}, a_{3}, a_{5}, a_{6};x_{1}, x_{2}, y_{1}, y_{2})= \sum_{m_{1}=0}^{\infty}\sum_{m_{2}=0}^{\infty}\sum_{n_{1}=0}^{\infty}\sum_{n_{2}=0}^{\infty}A_{m_{1},m_{2},n_{1},n_{2}}x_{1}^{m_{1}}x_{2}^{m_{2}}y_{1}^{n_{1}}y_{2}^{n_{2}}$

where

$A_{m_{1},m_{2},n_{1},n_{2}}=\ovalbox{\tt\small REJECT}(a_{2}, m_{1}+m_{2})(a_{3},rt_{1}+n)(1-a_{5}, m+n)(1m_{1}!m_{2}!n_{1}!n_{2}!^{2}(a_{0},m_{1}+m_{2}^{1}+rt^{1_{1}}+n_{2}^{-})^{a_{6},m_{2}+n_{2})}$ .

By definition, $E(a_{0}, a_{2}, a_{3}, a_{5}, a_{6};x_{1}, x_{2}, y_{1}, y_{2})$ has parameters $a_{j}(j=0,2,3,5,6)$ . This
function is one of 4 variables generalizations of Gaussian hypergeometric function. It
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is known that the singularities of the system of differential equations whose solution is
$E(a_{0}, a_{2}, a_{3}, a_{5}, a_{6};x_{1}, x_{2}, y_{1}, y_{2})$ is contained in the union of the 14 hypersurfaces $T_{j}$ : $p_{j}=$

$0(1\leq j\leq 14)$ , where

$p_{1}=x_{1}y_{2}-x_{2}$ Yl $-x_{1}+x_{2}+y_{1}-y_{2}$ , $p_{2}=y_{1}-1$ , $p_{3}=x_{1}-1$ ,
$p_{4}=y_{2}-1$ , $p_{5}=x_{2}-1$ , $p_{6}=y_{1}-y_{2}$ , $p_{7}=x_{1}-x_{2}$ , $p_{8}=x_{1}-y_{1}$ ,

$p_{9}=x_{2}-y_{2},$ $p_{10}=x_{1}y_{2}-x_{2}y_{1},$ $p_{11}=x_{2},$ $p_{12}=x_{1},$ $p_{13}=y_{2},$ $p_{14}=y_{1}$ .

We define birational transformations $s_{j}(1\leq j\leq 5)$ on $C^{4}$ by

$s_{1}$ : $(x_{1}, x_{2}, y_{1}, y_{2}) arrow(\frac{1}{x_{1}}, \frac{1}{x_{2}}, \frac{y_{1}}{x_{1}}, \frac{y_{2}}{x_{2}})$ ,

$s_{2}$ : $(x_{1},x_{2}, y_{1},y_{2})arrow(y_{1}, y_{2}, x_{1}, x_{2})$ ,

$s_{3}$ : $(x_{1}, x_{2}, y_{1},y_{2}) arrow(\frac{x_{1}-y_{1}}{1-y_{1}}, \frac{x_{2}-y_{2}}{1-y_{2}}, \frac{y_{1}}{y_{1}-1}, \frac{y_{2}}{y_{2}-1})$,

$s_{4}$ : $(x_{1}, x_{2}, y_{1}, y_{2}) arrow(\frac{1}{x_{1}}, \frac{x_{2}}{x_{1}}, \frac{1}{y_{1}}, \frac{y_{2}}{y_{1}})$ ,

S5: $(x_{1}, x_{2}, y_{1},y_{2})arrow(x_{2}, x_{1}, y_{2},y_{1})$ .
Then the group generated by $s_{j}(1\leq j\leq 5)$ is identified with $\Sigma_{6}$ because

$s_{j}^{2}=id$ . $(1\leq j\leq 5)$ , $s_{j}s_{k}=s_{k}s_{j}(|j-k|>1)$ ,

$s_{j}s_{k}s_{j}=s_{k^{S}j^{S}k}(|j-k|=1)$ .
Let $r$ be a birational transformation on $C^{4}$ defined by

$r:(x_{1}, x_{2}, y_{1}, y_{2})arrow(1/x_{1},1/x_{2},1/y_{1},1/y_{2})$ .

Then the group $\tilde{G}$ generated by $s_{1},$ $\cdots$ , $s_{5}$ and $r$ is isomorphic to the Weyl group $W(E_{6})$

of type $E_{6}$ which will be seen later (cf. [3], [4]).
We define the hypersurface $T_{15}$ : $p_{15}=0$ , where

$p_{15}=x_{1}y_{2}(1-y_{1})(1-x_{2})-x_{2}y_{1}(1-x_{1})(1-y_{2})$ .

It follows from the definition that $s_{1},$ $\cdots$ , $s_{5},$ $r$ and therefore all the elements of $\tilde{G}$ are
biregular outside the union $T$ of the hypersurfaces $T_{j}(1\leq j\leq 15)$ .

3. The Weyl group $W(E_{6})$

Let $E_{R}$ be a Cartan subalgebra of a compact Lie algebra of type $E_{6}$ , i.e. $E_{R}\simeq R^{6}$ .
Let $t=(t_{1},t_{2},t_{3}, t_{4}, t_{5},t_{6})$ be a coordinate system of $E_{R}$ such that the roots of type $E_{6}$

are:
$\pm(t_{i}\pm t_{j})$ , $1\leq i<j\leq 5$

$\pm\frac{1}{2}(\delta_{1}t_{1}+\delta_{2}t_{2}+\delta_{3}t_{3}+\delta_{4}t_{4}+\delta_{5}t_{5}+\delta_{6}t_{6})$
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(where $\delta_{j}=\pm 1$ and $\Pi_{j}\delta_{j}=1$ ). Note that compared with the notation in [1], our variables
$t_{i}=\epsilon_{i},$ $i=1,$ $\cdots$ , 5, while our coordinate $t_{6}$ is denoted $\epsilon_{6}-\epsilon_{7}-\epsilon_{8}$ in [1]. We now introduce
the following linear forms on $E_{R}$ :

$h=- \frac{1}{2}(t_{1}+\cdots+t_{6})$ ,

$h_{1j}=-t_{j-1}+h_{0}$ , $j=2,$ $\cdots,$
$6$

$h_{jk}=t_{j-1}-t_{k-1}$ , $j,$ $k\neq 1$

$h_{1jk}=-t_{j-1}-t_{k-1}$ , $j,$ $k\neq 1$

$h_{jkl}=-t_{j-1}-t_{k-1}-t_{l-1}+h_{0}$ , $j,$ $k,$ $l\neq 1$

where
$h_{0}= \frac{1}{2}(t_{1}+\cdots+t_{5}-t_{6})$ .

Then the totality of $h,$ $h_{ij},$ $h_{ijk}$ forms a set of positive roots of type $E_{6}$ . Let $s$ (resp. $s_{ij},$ $s_{ijk}$ )
be the reflection on $E_{R}$ with respect to the hyperplane $h=0$ (resp. $h_{ij}=0,$ $h_{ijk}=0$ ).
Then the Weyl group of type $E_{6}$ which is denoted by $W(E_{6})$ in this note is the group
generated by the 36 reflections defined above.

As a system of simple roots, we take

$\alpha_{1}=h_{12},$ $\alpha_{2}=h_{123},$ $\alpha_{3}=h_{23},$ $\alpha_{4}=h_{34},$ $\alpha_{5}=h_{45},$ $\alpha_{6}=h_{56}$ .

Then the Dynkin diagram is:

$\alpha_{1}$
–

$\alpha_{3}$ $\alpha_{4}$ $\alpha_{5}$ $\alpha_{6}$

$1$

$\alpha_{2}$

Let $g_{j}$ be the reflection on $E_{R}$ with respect to the root $\alpha_{j}$ $(j=1, \cdots , 6)$ . Then, from
the definition,

$g_{1}=s_{12},$ $g_{2}=s_{123},$ $g_{3}=s_{23},$ $g_{4}=s_{34},$ $g_{5}=s_{45},$ $g_{6}=s_{56}$ .

Let $E$ be the complexification of $E_{R}$ and we extend the action of $W(E_{6})$ on $E_{R}$ to
that on $E$ in a natural manner. Moreover let $P^{5}$ be the projective space associated to $E$ .
Then the $W(E_{6})$ -action on $E$ induces a projective linear action of $W(E_{6})$ on $P^{5}$ .

4. The configuration space of 6 points in $P^{2}$

We have already defined a birational action of $W(E_{6})$ on $C^{4}$ in section 2. In this
section, we explain that the birational transformations $s_{1},$ $\cdots$ , $s_{5},$ $r$ naturally arise from
the study of the configuration space of 6 points in $P^{2}$ .

For this purpose, we first introduce the linear space $W$ of $3\cross 6$ matrices :
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$W=\{X=(\begin{array}{llllll}x_{11} x_{12} x_{13} x_{14} x_{15} x_{16}x_{21} x_{22} x_{23} x_{24} x_{25} x_{26}x_{31} x_{32} x_{33} x_{34} x_{35} x_{36}\end{array}) ; x_{\dot{\epsilon}j}\in C(1\leq i\leq 3,1\leq j\leq 6)\}$ .

Then $W$ admits a left $GL(3, C)$-action and a right $GL(6, C)$-action in a natural way. For
a moment, we identify $(C^{*})^{6}$ with the maximal torus of $GL(6, C)$ consisting of diagonal
matrices and consider the action of $GL(3, C)\cross(C^{*})^{6}$ on $W$ instead of that of $GL(3, C)\cross$

$GL(6, C)$ .
For simplicity, we write $X=(X_{1}, X_{2})$ for the matrix $X\in W$ , where both $X_{1},$ $X_{2}$ are

3 $\cross 3$ matrices. For any 3 $\cross 3$ matrix $Y=(y_{ij})_{1\leq i,j\leq 3}$ with the condition $y_{ij}\neq 0(1\leq$

$i,j\leq 3)$ , we define a 3 $\cross 3$ matrix

$\sigma(Y)=(\frac{1}{y_{ij}}I_{1\leq i,j\leq 3}$

following a suggestion of M. Yoshida. Moreover, we put

$D(i_{1}, i_{2}, i_{3})=\det(\begin{array}{lll}x_{1i_{1}} x_{1i_{2}} x_{1i_{3}}x_{2i_{1}} x_{2i_{2}} x_{2i_{3}}x_{3i_{1}} x_{3i_{2}} x_{3i_{3}}\end{array})$

for a given matrix $X\in W$ .
Using these notation, we define subsets $W’,$ $W_{0}$ of $W$ by

$W’=\{X\in W;D(i_{1}, i_{2}, i_{3})\neq 0(1\leq i_{1}<i_{2}<i_{3}\leq 6)\}$ ,

$W_{0}=\{(X_{1}, X_{2})\in W’;(I_{3}, Cof(X_{1}^{-1}X_{2})), (I_{3}, \sigma(X_{1}^{-1}X_{2}))\in W’\}$ ,

where $Cof(Y)=(\det Y)^{t}Y^{-1}$ is the cofactor matrix of a given square matrix $Y$ .
It is clear that the action of $GL(3, C)\cross(C^{*})^{6}$ on $W$ naturally induces that on each

of $W’,$ $W_{0}$ . In the sequel, we mainly consider the quotient space of $W_{0}$ unde the action
of $GL(3, C)\cross(C^{*})^{6}$ , that is,

$W_{Q}=GL(3, C)\backslash W_{0}/(C^{*})^{6}$ .

It is clear from the definition that for any element $X\in W_{0}$ , there are $(g, h)\in$

$GL(3, C)\cross(C^{*})^{6}$ and $(x_{1}, x_{2}, y_{1}, y_{2})\in C^{4}$ such that

$gXh=(\begin{array}{llllll}1 0 0 1 1 10 1 0 1 x_{1} x_{2}0 0 1 1 y_{1} y_{2}\end{array})$ .

In particular $(x_{1}, x_{2}, y_{1}, y_{2})$ is uniquely determined for $X\in W_{0}$ . In this sense, $W_{Q}=$

$GL(3, C)\backslash W_{0}/(C^{*})^{6}$ is identified with an open subset of $C^{4}$ . Note that $(x_{1}, x_{2}, y_{1}, y_{2})$ is
the variables $(x_{1}, x_{2}, y_{1}, y_{2})$ of section 2. Then $W_{Q}=C^{4}-T$ .
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Changes of column vectors of $X\in W_{0}$ induce birational transformations on $C^{4}$ with
coordinate system $(x_{1}, x_{2}, y_{1}, y_{2})$ . The action $s_{j}(1\leq j\leq 5)$ introduced in section 2 is
nothing but the birational transformation on $C^{4}$ corresponding to the change of the j-th
column vector and $(j+1)$-column vector of $X\in W_{0}$ . Moreover $W_{Q}$ admits an involution
induced from the action on $W_{0}$ defined by

$\tilde{r}$ : $(X_{1},X_{2})arrow(I_{3}, \sigma(X_{1}^{-1}X_{2}))$

for any $(X_{1},X_{2})\in W_{0}$ . The involution $r$ defined in section 2 is equal to that induced
from $\tilde{r}$ .

The following theorem which seems known shows a concrete correspondence between
$W(E_{6})$ and $tbe$ group $\tilde{G}$ introduced in section 2.

Theorem 4.1. The correspondence

$g_{1}arrow s_{1}$ , $g_{2}arrow r$ , $g_{3}arrow s_{2}$ , $g_{4}arrow s_{3}$ , $g_{5}arrow s_{4}$ , $g_{6}arrow s_{5}$

induces a group isomorphism of $W(E_{6})$ to the group $\tilde{G}$ .
Remark. In [3], it is stated that there is a $W(E_{6})$ -action on $W_{Q}$ . See also [4].

5. $W(E_{6})$-equivariant maps

We first define rational functions on $E$ by

$x_{1}(t)= \frac{h_{24}\cdot h_{234}\cdot h_{15}\cdot h_{135}}{h_{14}\cdot h_{134}\cdot h_{25}\cdot h_{235}}$ , $x_{2}(t)= \frac{h_{24}\cdot h_{234}\cdot.h_{16}\cdot h_{136}}{h_{14}\cdot h_{134}h_{26}\cdot h_{236}}$ ,

$y_{1}(t)= \frac{h_{34}\cdot h_{234}\cdot h_{15}\cdot h_{125}}{h_{14}\cdot h_{124}\cdot h_{35}\cdot h_{235}}$ , $y_{2}(t)= \frac{h_{34}\cdot h_{234}\cdot.h_{16}\cdot.h_{126}}{h_{14}\cdot h_{124}h_{36}h_{236}}$ ,

$\lambda(t)=\frac{h_{34}\cdot h_{345}\cdot h_{26}\cdot.h_{256}}{h_{24}\cdot h_{245}\cdot h_{36}h_{356}}\cdot\frac{h_{13}\cdot h_{136}\cdot.h_{24}\cdot h_{246}}{h_{12}\cdot h_{126}h_{34}\cdot h_{346}}$ ,

$\mu(t)=\frac{h_{456}\cdot h_{235}.\cdot h_{134}\cdot h_{126}}{h\cdot h_{15}h_{24}\cdot h_{36}}\cdot\frac{h_{16}\cdot h_{136}\cdot.h_{24}\cdot h_{234}}{h_{14}\cdot h_{134}h_{26}\cdot h_{236}}$,

$\nu(t)=\frac{h_{25}\cdot.h_{235}\cdot.h_{46}\cdot.h_{346}}{h_{24}h_{234}h_{56}h_{356}}\cdot\frac{h_{15}\cdot.h_{156}\cdot.h_{24}\cdot.h_{246}}{h_{14}h_{146}h_{25}h_{256}}$,

$\rho(t)=\frac{h_{24}\cdot h_{245}\cdot h_{36}\cdot h_{356}}{h_{23}\cdot h_{235}\cdot h_{46}\cdot h_{456}}\cdot\frac{h_{14}\cdot h_{146}\cdot h_{23}\cdot h_{236}}{h_{13}\cdot h_{\dot{1}36}\cdot h_{24}\cdot h_{246}}$ ,

where $h,$ $h_{ij},$ $h_{ijk}$ denote linear functions on $E$ introduced in section 3. Since all the
rational functions above are homogeneous of degree zero, they are regarded as functions
on $P^{5}$ . Therefore defining

$F_{1}(t)=(x_{1}(t), x_{2}(t),$ $y_{1}(t),$ $y_{2}(t))$ , $F_{2}(t)=(\lambda(t), \mu(t),$ $\nu(t),$ $\rho(t))$ ,

we obtain two maps $F_{1},$ $F_{2}$ from $P^{5}$ to $C^{4}$ . The roles of $F_{1},$ $F_{2}$ will become clear in
Theorem 5.1 which will be given later. To define $F_{1},$ $F_{2}$ , I am indebted to [4]. We are
going to explain the meaning of $x_{j}(t),$ $y_{j}(t)$ following [4].
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We begin with defining the cross ratio. Let $\xi_{i}=[\xi_{1i} : \xi_{2i} : \xi_{3i}](1\leq i\leq 5)$ be five
points of $pz$ and let $l$ : $q_{1}u_{1}+q_{2}u_{2}+q_{3}u_{3}=0$ be a generic line in $P^{2}$ . We denote by

$[$ 1 : $z_{i}$ : $w_{i}]$ the intersection of $l$ and the line passing through the points $\xi_{1}$ and $\xi_{i}$ . Then
we put

(1) $CR( \xi_{2}, \xi_{3},\xi_{4},\xi_{5};\xi_{1})=\frac{(z_{2}-z_{4})(z_{3}-z_{5})}{(z_{2}-z_{5})(z_{3}-z_{4})}$

which is in fact a cross ratio of $z_{2},$ $z_{3},$ $z_{4},$ $z_{5}$ .
Now we consider a matrix of the form

$X=(\begin{array}{llllll}l 0 0 1 1 10 1 0 1 x_{1} x_{2}0 0 1 1 y_{1} y_{2}\end{array})$ .

From the matrix $X$ , we define six points $\xi_{i}(i=1, \cdots, 6)$ in $P^{2}$ in a usual manner, that is,

$\xi_{1}=[1 : 0 : 0]$ , $\xi_{2}=[0$ : 1 : $0]$ , $\xi_{3}=[0$ : $0$ : 1 $]$ ,

$\xi_{4}=[1;1:1]$ , $\xi_{5}=[1:x_{1} : y_{1}]$ , $\xi_{6}=[1:x_{2} : y_{2}]$ .
Then we can compute $CR(\xi_{i_{2}},\xi_{i_{3}},\xi_{i_{4}}, \xi_{i_{5}} ; \xi_{i_{1}})$ explicitly for various $i_{1},$ $i_{2},$ $i_{3},$ $i_{4},$ $i_{5}$ .

On the other hand, we put

(2) $CR’(i_{2}, i_{3}, i_{4}, i_{5};i_{1})= \frac{h_{i_{2}i_{4}}h_{i_{1}i_{2}i_{4}}h_{i_{3}i_{5}}h_{i_{1}i_{3}i_{5}}}{h_{i_{3}i_{4}}h_{i_{1}i_{3}i_{4}}h_{i_{2}i_{5}}h_{i_{1}i_{2}i_{5}}}$ .

By definition, $CR’(i_{2}, i_{3}, i_{4}, i_{5};i_{1})$ is a function on $P^{5}$ . Then from the equation

(3) $CR(\xi_{i_{2}},\xi_{i_{3}},\xi_{i_{4}}, \xi_{i_{5}} ; \xi_{i_{1}})=CR’(i_{2}, i_{3}, i_{4}, i_{5};i_{1})$ ,

we obtain various equalities. In particular, by computing the cases

$(i_{1}, i_{2}, i_{3}, i_{4}, i_{5})=(3,2,1,4,5),$ $(3,2,1,4,6),$ $(2,1,3,4,5),$ $(2,1,3,4,6)$ ,

we have the definition of $x_{1}(t),$ $x_{2}(t),$ $y_{1}(t),$ $y_{2}(t)$ at the beginning of this section.
Let $F_{3}$ be the birational transformation on $C^{4}$ defined by $F_{3}(x_{1}, x_{2}, y_{1}, y_{2})=(\lambda, \mu, \nu, \rho)$ ,

where
$\lambda=\frac{x_{2}(x_{1}-1)(y_{1}-y_{2})(y_{2}-1)}{y_{2}(x_{1}-x_{2})(x_{2}-1)(y_{1}-1)}$,

$\mu=\ovalbox{\tt\small REJECT} x_{1}x_{2}y-x_{1}x_{2}y_{2}-xy_{1}^{-}y_{2}+x_{1}y_{2}+^{1}x_{2}y_{1}^{1}y_{2}-\{(y_{1^{1}}-1)(x_{2}-y_{2})_{1}(y_{2}-1)(x-y)\}x_{2}y_{x_{2}^{2}y_{1}}$

$\nu=-\frac{(x_{1}y_{2}-x_{2}y_{1})(x_{2}-1)(y_{2}-1)}{(x_{1}-x_{2})(x_{2}-y_{2})(y_{1}-y_{2})}$,

$\rho=\ovalbox{\tt\small REJECT}\{(x_{1}-1)(x_{2}-y_{2})-(x-y_{1}^{2})(x^{1_{2}}-(x_{1}-x_{2})(x_{2_{1}}-y)(y-1_{1})_{)\}(y_{2}-1)x_{2}}$ .
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It is easy to show that $F_{3}$ is birational, because its inverse is given by

$F_{3^{-1}}( \lambda, \mu, \nu, \rho)=(\frac{(\lambda\rho-1)(\lambda\mu\nu\rho-1)}{(\lambda\mu\rho-1)(\lambda\nu\rho-1)},$ $\frac{(\lambda p-1)\mu}{\lambda\mu p-1},$ $\frac{(\mu\nu\rho-1)(\rho-1)}{(\mu p-1)(\nu p-1)}\frac{(p-1)\mu}{\mu\rho-1})$ .

By the map $F_{3}$ , the action of $W(E_{6})$ on the $(x_{1}, x_{2}, y_{1}, y_{2})$-space implies that on the
$(\lambda, \mu, \nu, \rho)$ -space. In fact, we define the following six birational transformations on the
$(\lambda, \mu, \nu, \rho)$ -space (cf.[7]):

$\tilde{g}_{1}$ : $\{\begin{array}{l}\lambdaarrow\lambda\mu\nu\rho^{2}(1-\lambda)/(\lambda\mu\nu\rho^{2}-l)\muarrow(\lambda\mu\rho-1)(\lambda\mu\nu\rho-1)/(\mu(\lambda\rho-l)(\lambda\nu p-1))\nuarrow(\lambda\nu p-1)(\lambda\mu\nu\rho-1)/(\nu(\lambda\rho-l)(\lambda\mu\rho-l))parrow(\lambda\rho-1)(\lambda\mu\nu\rho^{2}-l)/(\rho(\lambda-1)(\lambda\mu\nu p-1))\end{array}$

$\tilde{g}_{2}$ : $(\lambda, \mu, \nu, p)arrow(\lambda, 1/\mu, \nu, \mu p)$

$\tilde{g}_{3}$ : $(\lambda,\mu, \nu, \rho)arrow(1/\lambda, \mu, \nu, \lambda\rho)$

$\tilde{g}_{4}$ : $(\lambda, \mu, \nu, \rho)arrow(\lambda\rho, \mu\rho, \nu\rho, 1/\rho)$

$\tilde{g}_{5}$ : $(\lambda, \mu, \nu, \rho)arrow(\lambda, \mu, 1/\nu, \nu\rho)$

$\tilde{g}_{6}$ : $\{\begin{array}{l}\lambdaarrow(\lambda\nu\rho-1)(\lambda\mu\nu\rho-1)/(\lambda(\nu\rho-1)(\mu\nu p-1))\muarrow(\mu\nu\rho-l)(\lambda\mu\nu\rho-1)/(\mu(\nu\rho-l)(\lambda\nu p-1))\nuarrow\lambda\mu\nu p^{2}(l-\nu)/(\lambda\mu\nu p^{2}-l)\rhoarrow(\nu\rho-1)(\lambda\mu\nu\rho^{2}-1)/(p(\nu-l)(\lambda\mu\nu p-1))\end{array}$

Let $G_{1}$ be the group generated by $\tilde{g}_{j}$ $(j=1, \cdots , 6)$ . Then the correspondence

$g_{j}arrow\tilde{g}_{j}$ $j=1,$ $\cdots,$
$6$

is an isomorphism between $W(E_{6})$ and $G_{1}$ .
Needless to say, $F_{1}$ (resp. $F_{2}$ ) is regarded as a map from $P^{5}$ to the $(x_{1}, x_{2}, y_{1}, y_{2})$-space

(resp. the $(\lambda,$
$\mu,$ $\nu,$ $p)$-space.) Moreover, $F_{3}$ is regarded as a map from the $(x_{1}, x_{2}, y_{1}, y_{2})-$

space to the $(\lambda, \mu, \nu, \rho)$-space.

Theorem 5.1. The three maps $F_{j}(j=1,2,3)$ are $W(E_{6})$-equivariant and

$F_{3}oF_{1}(g(t))=F_{2}(g(t))$ $(\forall t\in P^{5},\forall g\in W(E_{6}))$ .

The $W(E_{6})$-equivariances of $F_{1},$ $F_{2}$ are stated in [4] implicitly.
We now mention the meaning of the $(\lambda, \mu, \nu, p)$ -space. In [2], A. Cayley defined a 4-

dimensional family of cubic surfaces. Modifying his family, we introduce a family of cubic
surfaces of $P^{3}$ with homogeneous coordinate (X : $Y:Z$ : $W$ ) depending on parameters
$(\lambda, \mu, \nu, \rho)$ as follows (cf. [7]):

$pW[\lambda X^{2}+\mu Y^{2}+\nu Z^{2}+(\rho-1)^{2}(\lambda\mu\nu p-1)^{2}W^{2}$

$+(\mu\nu+1)YZ+(\lambda\nu+1)ZX+(\lambda\mu+1)XY$
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$-(p-1)(\lambda\mu\nu\rho-1)W\{(\lambda+1)X+(\mu+1)Y+(\nu+1)Z\}]+XYZ=0$ .
The family of cubic surfaces above admits a $W(E_{6})$-action as given in [7]. In particular,

the $W(E_{6})$-action in [7] preserves the parameter space. For this reason, we obtain a
$W(E_{6})$-action on the $(\lambda,\mu, \nu, \rho)$ -space which actually coincides with the $W(E_{6})$-action on
the $(\lambda, \mu, \nu, p)$-space explained before Theorem 5.1.

6. A Conjecture of B. Hunt

It is known (cf.[l]) that there is a unique $W(E_{6})$-invariant homogeneous polynomial
of $t=$ $(t_{1}, \cdots , t_{6})$ of degree 5 up to a constant factor. For example, we take $Q_{5}(t)$ below
as such a polynomial (cf. [4]):

$Q_{5}(t)=- \frac{5}{108}t_{6}^{5}+\frac{5}{18}\sigma_{1}t_{6}^{3}+\frac{5}{4}(\sigma_{1}^{2}-4\sigma_{2})t_{6}+30\sqrt{\sigma_{5}}$,

where $\sigma_{i}=\sigma_{i}(t_{1}^{2}, \cdots , t_{5}^{2})$ is the i-th elementary symmetric polynomial in $t_{1}^{2},$ $\cdots,t_{5}^{2}$ and
$\sqrt{\sigma_{5}}=t_{1}\cdots t_{5}$ .

Let $I_{5}$ be the hypersurface in $P^{5}$ defined by $Q_{5}(t)=0$ . Since $Q_{5}(t)$ is $W(E_{6})$-invariant,
so is $I_{5}$ . Moreover, since $\dim I_{5}=4$ , the restrictions $F_{1}|I_{5},$ $F_{2}|I_{5}$ are generically finite maps
from $I_{5}$ to $C^{4}$ . In [4], B. Hunt stated conjectures on these maps which tum out to be one
conjecture below.

Conjecture 6.1.([4]) Both $F_{1}|I_{5},$ $F_{2}|I_{5}$ are generically bijective.

How to attack Conjecture 6.1 with the help of REDUCE? In virtue of Theorem 5.1,
it suffices to show Conjecture 6.1 for one of $F_{1}|I_{5},$ $F_{2}|I_{5}$ . Noting the definition of $F_{1}(t)$ ,
we find that Conjecture 6.1 is rewritten as follows:

Problem 6.2. Let $x_{1},$ $x_{2},$ $y_{1},$ $y_{2}$ be constants. At least assume that $(x_{1}, x_{2}, y_{1}, y_{2})$ is
outside the set $T$ . Usin$gx_{1},$ $x_{2},$ $y_{1},$ $y_{2}$ , we define four polynomials of $t$ by

$f_{1}=h_{24}\cdot h_{234}\cdot h_{15}\cdot h_{135}-x_{1}\cdot h_{14}\cdot h_{134}\cdot h_{25}\cdot h_{235}$ ,

$f_{2}=h_{24}\cdot h_{234}\cdot h_{16}\cdot h_{136}-x_{2}\cdot h_{14}\cdot h_{134}\cdot h_{26}\cdot h_{236}$ ,
$g_{1}=h_{34}\cdot h_{234}\cdot h_{15}\cdot h_{125}-y_{1}\cdot h_{14}\cdot h_{124}\cdot h_{35}\cdot h_{235}$,

$g_{2}=h_{34}\cdot h_{234}\cdot h_{16}\cdot h_{126}-y_{2}\cdot h_{14}\cdot h_{124}\cdot h_{36}\cdot h_{236}$,

where $h,$ $h_{ij},$ $h_{ijk}$ are linear functions of $t$ defined in section 3. Then how many solutions
are there for the simultaneous equations of $t$ defined by

(4) $fi=f_{2}=g_{1}=g_{2}=Q_{5}=0$

under the condition $F_{1}(t)\not\in T$ ?

Needles to say, there is a gap between Conjecture 6.1 and Problem 6.2, that is, Conjec-
ture 6.1 claims that for generic $x_{1},$ $x_{2},$ $y_{1},$ $y_{2}$ , equation (4) has a unique projective solution.
Since I don’t know whether Conjecture 6.1 is true or not, I reformulate it as a problem.
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I tried to solve Problem 6.2 directly by using REDUCE3.4 on TOSHIBA J3100 once
and at last abondaned to do because of out of capacity.

From now on, I am going to explain results related with Problem 6.2 and the moduli
of cubic surfaces. We consider the hypersurface $H$ in $P^{5}$ defined by $\lambda(t)-1=0$ , that is,

(5) $P(t)=h_{345}\cdot h_{26}\cdot h_{256}\cdot h_{13}\cdot h_{136}\cdot h_{246}-h_{245}\cdot h_{36}\cdot h_{356}\cdot h_{12}\cdot h_{126}\cdot h_{346}=0$ .

Then it is easy to show that the polynomial $P(t)$ of equation (4) is decomposed into two

factors (up to a constant):
$P(t)=h_{23}\cdot P_{5}(t)$ ,

where $P_{5}(t)!s$ homogeneous of degree 5. Moreover $P_{5}$ is so taken that

$P_{5}(t_{1}, t_{2},t_{3},t_{4},t_{5},t_{6})=const.Q_{5}(t_{1}, t_{2},t_{3},t_{4},t_{6}, -3t_{5})$ .

From this remarkable relation, we easily imply the following (cf. [4], [6]).

Proposition 6.3.
(i) There are 45 hypersurfaces in $P^{5}$ as the $W(E_{6})$-orbit of $H$ . Moreover, the isotropy

subgroup of $H$ in $W(E_{6})$ is isomorphic to the Weyl group of type $F_{4}$ .
(ii) The intersection $H\cap I_{5}$ is decomposed into two irreducible components. One is

defined by $t_{5}=t_{6}=0$ therefore is isomorphic to $P^{3}$ . The other is defined by an equation
of degree 24.

(iii) If $t\in H$ , then $F_{2}(t)=(1,1,1,1)$ , that is, $\lambda(t)=\mu(t)=\nu(t)=\rho(t)=1$ . The
corresponding cubic surface has Eckard points.

It follows from Proposition 6.3 (i) that there is a natural 1-1 correspondence between
the $W(E_{6})$-orbit of $H$ and the 45 exceptional divisors of Naruki’s cross ratio variety [6].

We mention Proposition 6.3 (ii) in detail. We first introduce symmetric polynomials
of $t_{1},t_{2},t_{3},$ $t_{4}$ by

$s_{2}=t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+t_{4}^{2}$ ,

$s_{4}=t_{1}^{2}(t_{2}^{2}+t_{3}^{2}+t_{4}^{2})+t_{2}^{2}(t_{3}^{2}+t_{4}^{2})+t_{3}^{2}t_{4}^{2}$ ,

$s_{4}’=t_{1}t_{2}t_{3}t_{4}$ .

Using $s_{2},$ $s_{4},$ $s_{4}’$ , we define the polynomial $h$ of degree 24 by

$h=c_{10}t_{5}^{20}+c_{9}t_{5}^{18}+c_{8}t_{5}^{16}+c_{7}t_{5}^{14}+c_{6}t_{5}^{12}+c_{5}t_{5}^{10}+c_{4}t_{5}^{8}+c_{3}t_{5}^{6}+c_{2}t_{5}^{4}+c_{1}t_{5}^{2}+c_{0}$,

where
$c_{10}=1728s_{2}^{2}$ ,

$c_{9}=432s_{2}(-21s_{2}^{2}+20s_{4})$ ,

$c_{8}=27(4800s_{4^{2}}’+761s_{2}^{4}-1736s_{2}^{2}s_{4}+400s_{4}^{2})$ ,

$c_{7}=8s_{2}(-46656s_{4^{2}}’-3217s_{2}^{4}+12852s_{2}^{2}s_{4}-10368s_{4}^{2})$,
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$c_{6}=2(-190080s_{4^{2}}’s_{2}^{2}-336960s_{4^{2}}’s_{4}+9251s_{2}^{6}-55955s_{2}^{4}s_{4}$

$+91368s_{2}^{2}s_{4}^{2}-28080s_{4}^{3})$ ,

$c_{5}=2s_{2}(825360s_{4^{2}}’s_{2}^{2}-1582848s_{4}^{;2}s_{4}-3256s_{2}^{6}+27143s_{2}^{4}s_{4}$

$-72496s_{2}^{2}s_{4}^{2}+61776s_{4}^{3})$ ,

$c_{4}=-59833728s_{4^{4}}’-1370994s_{4^{2}}’s_{2}^{4}+5809680s_{4^{2}}’s_{2}^{2}s_{4}-4732128s_{4^{2}}’s_{4}^{2}-193s_{2}^{8}$

$+3054s_{2}^{6}s_{4}-12981s_{2}^{4}s_{4}^{2}+10120s_{2}^{2}s_{4}^{3}+21168s_{4}^{4}$,

$c_{3}=2s_{2}(-2191104s_{4^{4}}’+199476s_{4^{2}}’s_{2}^{4}-1263024s_{4^{2}}’s_{2}^{2}s_{4}+1990080s_{4^{2}}’s_{4}^{2}$

$+496s_{2}^{8}-7327s_{2}^{6}s_{4}+40443s_{2}^{4}s_{4}^{2}-98824s_{2}^{2}s_{4}^{3}+90160s_{4}^{4})$ ,

$c_{2}=-907200s_{4^{4}}’s_{2}^{2}+2491776s_{4^{4}}’s_{4}-54714s_{4^{2}}’s_{2}^{6}+554274s_{4^{2}}’s_{2}^{4}s_{4}$

$-1854576s_{4^{2}}’s_{2}^{2}s_{4}^{2}+2051616s_{4}^{J2}s_{4}^{3}-256s_{2}^{1}0+4640s_{2}^{8}s_{4}-33505s_{2}^{6}s_{4}^{2}$

$+120460s_{2}^{4}s_{4}^{3}-215600s_{2}^{2}s_{4}^{4}+153664s_{4}^{5}$ ,

$c_{1}=6s_{4^{2}}’s_{2}(-4968s_{4^{2}}’s_{2}^{2}+14688s_{4^{2}}’s_{4}-26s_{2}^{6}+285s_{2}^{4}s_{4}-1032s_{2}^{2}s_{4}^{2}+1232s_{4}^{3})$ ,

$c_{0}=27s_{4^{4}}’(192s_{4^{2}}’+s_{2}^{4}-8s_{2}^{2}s_{4}+16s_{4}^{2})$ .

Moreover,

$N=-2\{(5s_{2}^{5}-1602s_{2}^{4}t_{5}^{2}-34s_{2}^{3}s_{4}+4134s_{2}^{3}t_{5}^{4}+10037s_{2}^{2}s_{4}t_{5}^{2}-3005s_{2}^{2}t_{5}^{6}$

$+56s_{2}s_{4}^{2}-12820s_{2}s_{4}t_{5}^{4}+828s_{2}t_{5}^{8}-15764s_{4}^{2}t_{5}^{2}+1980s_{4}t_{5}^{6}-360t_{5}^{10})t_{5}^{2}$

$-(s_{2}^{2}+164s_{2}t_{5}^{2}-4s_{4}+7368t_{5}^{4})s_{4^{2}}’\}s_{4}’t_{5}$ ,

$D=-\{3(31s_{2}^{3}+650s_{2}^{2}t_{5}^{2}-92s_{2}s_{4}+2320s_{2}t_{5}^{4}-1752s_{4}t_{5}^{2}+5648t_{5}^{6})s_{4^{2}}’t_{5}^{2}$

$+2(2464s_{4}^{2}-2055s_{4}t_{5}^{4}+1S7t_{5}^{8})s_{2}^{2}t_{5}^{4}-4(1687s_{4}^{2}-415s_{4}t_{5}^{4}+12t_{5}^{8})s_{2}t_{5}^{6}$

$-(1465s_{4}-1044t_{5}^{4})s_{2}^{4}t_{5}^{4}+15(269s_{4}-61t_{5}^{4})s_{2}^{3}t_{5}^{6}-16s_{4^{4}}’+144s_{2}^{6}t_{5}^{4}$

$-599s_{2}^{5}t_{5}^{6}-5488s_{4}^{3}t_{5}^{4}+2072s_{4}^{2}t_{5}^{8}-120s_{4}t_{5}^{12}\}$ .
Then from the equations

$P_{5}=Q_{5}=0$ ,

we obtain
$t_{6}=N/D$ , $h=0$ .

The equation $h=0$ is the one stated in Proposition 6.3 (ii).
If we consider the equation $\lambda-1=0$ in the $(x_{1}, x_{2}, y_{1}, y_{2})$-space, we obtain a hyper-

surface $H_{0}$ defined by

(6) $x_{2}(x_{1}-1)(y_{1}-y_{2})(y_{2}-1)-y_{2}(x_{1}-x_{2})(x_{2}-1)(y_{1}-1)=0$ .
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Now we formulate a problem simplified from Problem 6.2, noting Proposition 6.3 (ii).
Namely, we consider Problem 6.2 in the case $t_{5}=t_{6}=0$ and $t_{1}=1$ (The condition
$t_{1}=1$ is not essential. From the homogeneity, we may assume $t_{j}=1$ for some $j.$ )

Problem 6.2’. Define four polynomials of $t_{2},t_{3},$ $t_{4}$ by

$f_{10}=(t_{2}+t_{3}-t_{4}+1)^{2}(t_{2}+t_{4})(t_{3}-1)-x_{1}(t_{2}+t_{3})(t_{2}-t_{3}+t_{4}+1)^{2}(t_{4}-1)$ ,

$f_{20}=(t_{2}+t_{3}+t_{4}+1)(t_{2}+t_{3}-t_{4}+1)(t_{3}-1)t_{2}$

$+x_{2}(t_{2}+t_{3})(t_{2}-t_{3}+t_{4}+1)(t_{2}-t_{3}-t_{4}+1)$ ,

$g_{10}=(t_{2}+t_{3}-t_{4}+1)^{2}(t_{2}-t_{3})(t_{4}+1)-y_{1}(t_{2}-t_{3}+t_{4}+1)^{2}(t_{2}-t_{4})(t_{3}+1)$,

$g_{20}=(t_{2}+t_{3}+t_{4}+1)(t_{2}+t_{3}-t_{4}+1)(t_{2}-t_{3})$

$-y_{2}(t_{2}-t_{3}+t_{4}+1)(t_{2}-t_{3}-t_{4}+1)(t_{3}+1)t_{2}$ ,

where $x_{1},$ $x_{2},$ $y_{1},$ $y_{2}$ are constants with the condition (6) and $(x_{1}, x_{2}, y_{1}, y_{2})\not\in T.$ (In
particular, we assume that $x_{1}$ is a rational function of $x_{2},$ $y_{1},$ $y_{2}.$ ) Then how many solutions
are there for the equations (7) of $t_{2},$ $t_{3},$ $t_{4}$ below

(7) $f10=f_{20}=g_{10}=g_{20}=0$

under the condition $t\not\in T$ ?

It is possible to give an answer to Problem 6.2’. In fact, erasing $t_{3},$ $t_{4}$ from (7), we
obtain an equation for $t_{2}$ defined by

(8) $\sum_{j=0}^{9}b_{j}d_{2}=0$ ,

where
$b_{9}=(x_{2}y_{1}y_{2}-x_{2}y_{2}-2y_{1}y_{2}+y_{1}+y_{2}^{2})^{2}(x_{2}y_{2}-2y_{2}+1)y_{2}^{4}$ ,

$b_{8}=3(x_{2}y_{1}y_{2}-x_{2}y_{2}-2y_{1}y_{2}+y_{1}+y_{2}^{2})^{2}(x_{2}y_{2}-2x_{2}+1)y_{2}^{4}$ ,

$b_{6}=-4(x_{2}^{2}y_{1}y_{2}-x_{2}^{2}y_{2}+x_{2}y_{1}^{2}+x_{2}y_{1}y_{2}^{2}-4x_{2}y_{1}y_{2}+x_{2}y_{1}+x_{2}y_{2}^{2}-y_{1}^{2}y_{2}+y_{1}y_{2})$

$\cross(x_{2}y_{1}y_{2}-x_{2}y_{2}-2y_{1}y_{2}+y_{1}+y_{2}^{2})(x_{2}y_{2}-2x_{2}+1)y_{2}^{3}$ ,

$b_{5}=-6(x_{2}y_{1}y_{2}-x_{2}y_{2}-2y_{1}y_{2}+y_{1}+y_{2}^{2})(x_{2}y_{1}+x_{2}y_{2}^{2}-2x_{2}y_{2}-y_{1}y_{2}+y_{2})$

$\cross(x_{2}y_{2}-2y_{2}+1)x_{2}y_{1}y_{2}^{2}$ ,

$b_{4}=6(x_{2}y_{1}y_{2}-x_{2}y_{2}-2y_{1}y_{2}+y_{1}+y_{2}^{2})(x_{2}y_{1}+x_{2}y_{2}^{2}-2x_{2}y_{2}-y_{1}y_{2}+y_{2})$

$\cross(x_{2}y_{2}-2x_{2}+1)x_{2}y_{1}y_{2}^{2}$ ,

$b_{3}=4(x_{2}^{2}y_{1}y_{2}-x_{2}^{2}y_{2}+x_{2}y_{1}^{2}+x_{2}y_{1}y_{2}^{2}-4x_{2}y_{1}y_{2}+x_{2}y_{1}+x_{2}y_{2}^{2}-y_{1}^{2}y_{2}+y_{1}y_{2})$

$\cross(x_{2}y_{1}+x_{2}y_{2}^{2}-2x_{2}y_{2}-y_{1}y_{2}+y_{2})(x_{2}y_{2}-2y_{2}+1)x_{2}y_{1}y_{2}$ ,

$h=-3(x_{2}y_{1}+x_{2}y_{2}^{2}-2x_{2}y_{2}-y_{1}y_{2}+y_{2})^{2}(x_{2}y_{2}-2y_{2}+1)x_{2}^{2}y_{1}^{2}$ ,
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$b_{0}=-(x_{2}y_{1}+x_{2}y_{2}^{2}-2x_{2}y_{2}-y_{1}y_{2}+y_{2})^{2}(x_{2}y_{2}-2x_{2}+1)x_{2}^{2}y_{1}^{2}$ ,

$b_{7}=b_{2}=0$ .
Moreover, if $t_{2}$ is a solution of (8), $t_{3},t_{4}$ are uniquely determined by (7).

I checked that equation (8) for $t_{2}$ is irreducible of degree 9 and that for generic $x_{2},$ $y_{1},$ $y_{2}$ ,
(8) has no multiple factor. As a consequence, we obtain the following.

Theorem 6.4. The restriction of $F_{1}$ to the subspace $t_{5}=t_{6}=0$ is generically 9 to 1.

I am not sure whether Theorem 6.4 induces the invalidity of Conjecture 6.1 or not.
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