gooooooogn
O 8480 19930 177-187

177

The algorithms for deciding some properties of
finite convergent string rewriting systems

Guo Mingchao, Li Lian

Lanzhou University, Gansu, China

Abstract. The following problems are decidable in O(mn?) time for con-
vergent system R on alphabet A, where m = |A|, n is the length of R, i.e.,
the sum of all length of words appeared in R.

(1) Is the monoid presented by R finite ?
(2) How many elements in the monoid presented by R if it is finite ?

and a sofyware is given to decide these properties and some other properties
for such monoid.

1. String rewriting systems

Let A be an alphabet, R a subset of A* x A* which is called the set pf string rewriting
rules. Elements in R has the the form of (z,y). Let > be an order which satisfies that if
z >y, then for arbitrary strings w,z € R, wzz > wyz. A string rewriting system RS is a
double (A, R) where A is an alphabet and R is a set of rewriting rules. An oriented RS
is triple (A, R, >), for each rule (z,y) in R, we have z > y and denote as z — y.

Some reduction relation on A* is defined as follows:

(a) wy; — wy iff there exists 21,2y, (7,y) € R, such that wy; = 21225, wy = z1y2,.
(b) —* is the reflexive transitive closure of —.

(c) +* is the symmetric closure of —*.

A word w is called irreducible if there is no word z such that w — 2.
An ORS is Noetherian if there is no infinite chain w; — wy — -+« — w, — - -

An ORS is confluent iff for arbitrary words wy, wy, wy +* ws,, there exists a ward z
such that w; —* z, wy —* 2.

An ORS is convergent iff it is Noetherian and confluent.

G is a generating relation of a monoid on alphabet A. Let p be the minimum congru-

ence containing GG, then
M= A*/p.

p =" when G is reviewed as a set of rules, so we call A*/ «++* is the monoid defined by
ORS. When ORS is convergent, the following properties are decidable [2].

178

(1) Is the monoid presented by R finite ?

(2) How many elements are there the monoid presented by R if it is finite ?
(3) How is the multiplication table of the monoid presented by R created ?
(4) Is it a trivial monoid ?

(5) Is it a group ?

(6) Is it commutative ?

(7) Is it a free monoid ?

Whether an ORS is convergent is decidable [2]. If the ORS is not convergent, we
can use the Knuth-Bendix convergent procedure to get an equivalent one in most case
(But there indeed exists some ORS that has no convergent system). In the following
discussion, we always suppose that ORS is convergent. About the properties of (4), (5),
(6) and (7), F. Otto has given some algorithms in polynomial time [2, 4]. Now we turn
our attention to the properties of (1), (2) and (3).

2. The decision of Properties (1), (2) and (3).

The number of equivalent classes is the number of elements in monoid when the ORS is
convergent. And every class has exactly one irreducible element. The set of all irreducible
words TRR(R) is a regular language which can be accepted by a finite state automaton.
The cardinal of ITRR(R) is equal to get the cardinal of monoid defined by the rewriting

system. So we can count the cardinal to get the cardinal of the monoid. Some details are
as follows.

Denote suffix(z) := {v|z = uv,u,v € A*}
dom(R) := {z|(z,y) € R}
prefix(R) := {z|l = zy,y € A¥,l € dom(R)}.

We construct the automaton FSA recognizing I RR(R). The states of F'SA are those
words which are proper prefixs of the left-side of the rules in R where e is the start state.
All the states are final states. We denote the state set as F. The transitive function 6 is
constructed by following way.

undefined suffix(wa) N dom(R) # 0
d(w,a) =) s € L = {z|z € suffix(wa) N prefix(R)},
and y € L — {s},[s| > |y|

Lemma 1: IRR(R) = L(FSA) [5].

179

Theorem 2: Let FSA(Q, A,é,e, F) be the automaton on alphabet A constructed as
above, Then for the state w € F and a € A, to determine the next state §(w,a) needs
O(n) time, where n = |R|.

Proof : The key to determine the next state §(w,a) is to find the suffix of wa such
that wa is exactly a prefix of the left-side of a rule in R.

Suppose the word u is the left-side of a rule, S(u) = { The longest word in prefix of
u and suffix of wa }; obviously, S(u) # 0.

If u itself is a suffix of wa, then é(w, a) is undefined, otherwise for arbitrary u in the
left-side of the rule, the problem to find the longest word S(u) is a substring recognizing
problem [1]. It takes O(|u|) time. When u runs all the left of the rule in R, it needs O(n)
time. ‘ ‘

Theorem 3: FSA as above can be constructed in O(mn?) time, where m = |A|,
n = |R)|.

Proof : The automaton has been constructed if we have the transitive function. For
every state w and a-€ A, the next state 6(w,a) can be determined in O(n) steps. The
number of states is less than n, so for all states and some a € A, to determine the next
states needs O(n?) time. When a runs through A, it takes O(mn?).

Theorem 4: The monoid presented by R is infinite iff the automaton F'SA recognizing
IRR(R) has a circle.

Proof : If the monoid is infinite, then there is an element w € TRR(R), |w| > n, where
n is the number of the states of F'SA. For F'SA has only n states, so w must pass some
state twice at least, i.e., F'SA contains a circle. Conversely, if FSA has a circle, there
exist states q,r and a word w = zyz, which satisfies

6(e,z)=4¢q, O6(q,y)=4q, 6(¢,2)=r.

Then FSA accepts all the words like zy*z. The monoid presented by R is infinite.
Algorithm 5:
INPUT: A finite automaton recognizing I RR(R) on alphabet A.

begin s; := {e};
for::=1ton do

begin S, := {;
Sy = U 6(1’7 a);
PpES1,a€A
Sy := Sy
end;

If S, = 0 then OUTPUT : The monoid is finite
else OUTPUT : The monoid is infinite
end.

180

Theorem 6: The algorithm above needs O(mn) time to determine the existence of
circle, where m = |R| and n is the number of states in automaton FSA.

Proof : clearly.

If the monoid presented by R is finite, then F'SA recognizing /RR(R) has no circle,
denote the number of words accepted by state ¢ as N(g), obviously, N(e) = 1.

R(q) ={p|3a € A:6(p,a) = q}.
T(q,p) = |{a € A|é(p,a) = q}|.
Theorem 7: Let FSA(Q, A, é, e, F) be a automaton recognizing I RR(R) which has no

circle. Then it satisfies

(a) For each ¢

1 g=ce
N(g)=
Y71 T NI are
pER(q)
(b) IIRR =2 N9
qEF

Proof: (a). denote L(q) as the path length from start state to the state ¢. Now let us
induce on L(q).
L(q) = 0, then q is start state. It is obviously that N(q) = 1.
If L(q) < t, the result is true. Let L(q) = t, every path from e to ¢ must pass uniquely
a state p in R(q), by the induction, the number of word from e to p is N (p) So the
number of words passing p from e to ¢ is N(p)T'(p,q), i-e., N(¢) = Y. N(p

p€ER(g)
(b) is clear.
Now we give the algorithm for calculating the order of the monoid.

Algorithm 8:
INPUT : Automaton FSA(Q, A,é, e, F') accepting I RR(R).

begin U := {e};
N{e}:=1;
S:={q|Ipe€lU,ac A:é(p,a) = q};
While S # 0§ do
begin T := {;
for each ¢ € S do
if R(¢) C U then
begin U := U U {¢};

N(g):== > N(®T(pq);
peR(q),

181

end.

OUTPUT : order := Y N(q).
qeF

Theorem 9: The algorithm 8 takes O(mn?) time where m = |A|, n is the number of
states of the automaton.

For constructing the multiplication table from a monoid, we can calculate the irre-
ducible words of monoid at first. Denote W(p) := {z|é(e,z) := p}. The algorithm is
similar with algorithm 8 and given as follows:

Algorithm 10:
INPUT : A automaton FSA(Q, A, ¥é,e, F') recognizing IRR(R),
where IRR(R) is finite.

beginW(e) := {1};
U = {e}; |
S:={q|IpeU,ac A:ép,a)=q};
While S # 0 do
begin T := 0;
for each p € S do
if R(p) CU then
begin U := U U {p};

Wp)= | {zaz € W(q),8(¢q,a) = p};
pER(p),a€A
T :=TuU{p}
end;
S:=1T;

end;
end.

OUTPUT : IRR(R) := |] W(p).
peF
Theorem 11: If monoid presented by R is finite, we can calculating TRR(R) in poly-
nomial O(mn?t) time, where m = |al, n is the number of states of F'SA, ¢t = |IRR(R)|.

If the order of elements is ¢ and the length of longest element is n, to calculate the
irreducible words for all production of pairwise elements needs O(n) time. For there is a
linear time algorithm to get the irreducible word from a given word with length 2n [2].
So we can create the multiplication table in O(n#?) time.

182

If the order of the monoid to large, or it is infinite, to construct yhe whole multiplica-
tion table is impossible. But we can create a finite block of the table when the concrete
elements is given. The following algorithm give finite elements which lengths are less than
K in a monoid.

Algorithm 12:
INPUT : FSA(Q, A,¥,e, F) recognizing I RR(R), an integer k& > 0.

begin$:= {e};
W= {1}
While (S # 0) and (loop < k) do
begin T := {;

loop = loop + 1;
For each (z,¢q) € S do
begin M) := {(za,p) |é6(¢,a) = p,a € A}
If M(;,) # 0 then
begin W:=WwWu {y I (yap) € M(x,q)}1
T :=TUMg,g;

OUTPUT : If S = () then IRR(R) :=W
else W is a irreducible words set whose element’s length is less than k.

When |R| = 1, then algorithm 12 takes O(k) time. When |A| > 1, then it takes
O(’—";;_l;—l) time.

3. Some examples about monoid presented by rewriting systems

Based on the discussion above and (2, 4]. A software is designed and works well. It
can get a convergent system from a generated relation and decide the properties of 1 to
7. The following are examples running on the software.

1.

Gererated relation :

R = {aaaab="ba bbb=1 babb= aaaa aaaba =b baa = ab aaaaaa = babab
bbab = aa ababa = bb aabb = bba aabab = baba}
Lexicographical order
Convergent system : ‘
R = {aabab = baba aabb= bba ababa = bb bbab=aa aaaaca = babab

baa = ab aaaba = b babb = aaaa bbb=1 aaaab= ba}

Properties :

trivial:
finite:
order:

commutative:

free monoid:

group:

NO
YES
21
NO
NO
YES

A finite multiplication table as following:

aaab abba abab aaaaa
b abab aaaaa babab aaba
ba bba. aa aaa aaab
bb babab aaba aaab abba
aa aba abab bb 1
ab baba babab 1 b
aba abba aaa aaaa ba
abb 1 b - ba bab
aaa aaba baba abb a
aab bb 1 a ab
bba a ab aba abab
bab aaa aaab b bb
baba | aaaaa aba aab bba
aaba | bab aaaa aaaaa aba
aaaa |b bb bba aa
aaab | abb a aa aab
abba | aa aab aaba baba
abab | aaaa ba ab abb
aaaaa | ab abb abba aaa

aab bba bab aaaa

babab

183

184

2.
Generated relation :
R = {abb = aa abababababab="> ab= ba}
Lexicographical order
Convergent system :

R = {ba = ab aaaaaaaa =b abb=aa bbb= ab}

Properties:
trivial: NO
finite: YES
order: 19
commutative: YES
free monoid: NO
group: NO

A finite multiplication table as following:

1 b a ab
1 1 b a ab
b b bb ab aa
a a ab aa aab
ab ab aa .aab aaa
aa aa aab aaa aaab
bb bb ab aa aab
aab aab aaa aaab aaaa
aaa aaa aaab aaaa aaaab
aaab aaab aaaa aaaab aaaaa
aaaa aaaa aaaab aaaaa aaaaab
aaaab aaaab aaaaa aaaaab aaaaaab
aaaaa aaaaa aaaaab aaaaaa aaaaaaa
aaaaab aaaaab aaaaaa aaaaaab aaaaaaab
aaaaaa aaaaaa aaaaaab aaaaaaa aaaaaaaa
aaaaaab aaaaaab 22222aa aaaaaaab aaaaaaaab
aaaaaaa aaaaaaa aaaaaaab aaaaaaaa aaaaaaaaa
aaaaaaab | aaaaaaab aaaaaaaa aaaaaaaab b
aaaaaaaa | aaaaaaaa aaaaaaaab b bb
aaaaaaaab | aaaaaaaab b bb ab

3.

Generated relation :
R = {baba = abab cbacbab = bcbacha
Lexicographical order

Convergent system :

R is convergent.

Properties:

trivial:

finite:
commutative:
free monoid:
group:

NO
NO
NO
NO
YES

A finite multiplication table as following:

cbeb=bcbe ca=ac aa=1 bb=1

bab bcb abc aba
acbab ac acbach cbac cb
acbabc | acbabcbab acbacbce cbabcbe cbabcba
acbacb | abcbc acbab abcbacbac abcbach
abacbc | ababcbacb ababc abacbacbc abacbacba
abacba | abcba abacbabcb aba abc
ababcb | babcb aba ababcbabc babcbab
abcbac | acbacba abcbabcbe acb acbac
abcbab | abc abcbacb abacbac abacb
bcbabe | bebabebab bebache bacbabcbc bacbabcba
bcbach | cbe bcbab cbacbac cbacb
babcbc | bacbacb bac babcbacbc babcbacba
babcba | ababcba babcbabcb bab ababc
bacbac | babcbacba bacbabcbce babcb babcbac
bacbab | bac bacbacb bcbac bcb
cbacbc | cbabcbach cbabce cbacbacbc cbacbacba
cbacba | bcbac bcbacbach cba cbe
cbabch | acbabcb cba cbabcbabc acbabcbab
cbabcbe | cbacbach cbac cbabcbacbc cbabcbacba
cbabcba | acbabcba bcbabcbabeb cbab acbabc

185

cc=1}

186

4.

Generated relation :

R={{cc=1 bb=1
bebeb cbebac = bebeba

Lexicographical order

Convergent system :

R 1s convergent.

Properties :

trivial:

finite:

order:
commutative:
free monoid:

group:

A finite multiplication table as following:

NO
YES
120
NO
NO
YES

aag =1

ca = ac bab = aba cbacbacbch = bcbacbacbe

cbacbacbacba = beabacbacbach}

cb cbc cba bac
bacbcba | abacbacba abacbacbac abacbach bacbacbc
bacbacb | bacbacbcb bcbachceb bacbacbcba bacb
bcbacbe | bebac bcba bcbe bacbacbcba
bcbacba | bebacbacb bcbacbacbe bebacbacba cbeb
abcbcba | acbacba acbacbac acbacb abcbacbe
abcbacb | abcbacbcb abacbacbechb abcbacbcba abceb
abacbac | abcba abcbac abcb abacbacbac
abacbcb | bacbc bach bacbac abacba
acbacbac | acbcba abcbcba acbcb acbacbacbac
acbacbcb | cbacbce cbacb cbacbac acbacba
abacbcba | bacbacba bacbacbac bacbacb abacbacbc
abacbacb | abacbacbcb abcbacbcb abacbacbcba abacb
abcbacbc | abcbac abcba abcbce abacbacbcba
abcbacba | abcbacbacb abcbacbacbe abcbacbacba acbceb
bcbacbac | bebeba cbcba bcbeb bcbacbacbac
bcbacbceb | bacbacbe bacbacb bacbacbac bcbacba
bacbacbc | bacbac bacba bacbc bcbacbceba

cbebe =

187

References
[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of computer algorithms.
Addison Wesley, 1974.

[2] B. Benninghofen, S. Kemmerich, and M. Richter. Systems of Reductions. Spring-Verlag,
1987.

[3] J. E. Hopcroft, and J. D. Ullman. Introduction to automate theory, language and computa-
tion. Addison Wesley, 1979.

[4] Paliath Narendran, and Friedrich Otto. Elements of finite order for finite weight-reducing
and confluent thue systems. Acta Informatica, 25:573-591, 1988.

[5] Wang Shuiting. Construction of the multiplication table of the semigroup and its complex
degree. J. of Lanzhou University, 28:38-42, 1992.

