goooboooogn
0 8510 19930 1-20

Some Properties of Data Types with Inequations

Hidetaka Kondoh

Advanced Research Laboratory, Hitachi, Ltd.
Hatoyama, Saitama 350-03, Japan
kondoh@harl.hitach.co.jp

Abstract

This work aims to unify two approaches to abstract data types, one from logic (using typed A-calculi) and the
other from algebra (using first-order equational theory) by giving a domain-theoretic semantics. This paper
presents a first-order type system of record types enriched with a set of inequations, as an approximated form of
equational algebraic specification, to capture the notion of structures. We propose the notion of algebraic types
by enriching the record type system with inequations and the notion of algebraic inheritances, an extension of
the multiple inheritances a la Cardelli which incorporates the richness of structures, and show that our type
system is a conservative extension of Cardelli's one by a purely syntactical way. Next we give a denotational
semantics of our type system on the basis of the complete partial equivalence relation model on a cpo and this
type system is shown to be sound with respect to this semantics. The extensions of the system to second-order
calculi are remaining important themes and we give some considerations in the last section.

1. Introduction

There are essentially two approaches to formal modeling of abstract data types (ADTs): one is from logic,
using typed A-calculi; the other is from algebra, using first-order equational logic. But neither succeeds to
fully capture our intuitions on abstract data types in computer programming. The final aim of our work is to
integrate these two approaches and give a uniform semantics for all aspects of abstract data types principally
using domain theory. This paper is the first step toward the goal, incorporating inequations as assertions
(we reserve the term aziorn for meta-theoretical usages) with the record type calculus & la Cardelli. It shows
that our calculus supports a novel inheritance mechanism based on algebra-like structures of data types,
conservatively extends the original calculus, and is sound with respect to the complete partial equivalence
relation semantics of data types.

An ADT hides two kinds of information; one is the type of the representation of the data structure to
be abstracted by that ADT, which we call the representation type; the other is a suite of implementations of
operations associated with that ADT, which are well-typed with respect to the representation type chosen for
that ADT, and we call the particular suite of types of associated operations for an ADT its implementation
type. Then the inheritances between ADTs are the order relationships based on the relative “richness” of
structures, e.g., stacks vs. dequeues, queues vs. dequeues, etc.

The algebraic approach models an ADT as a many-sorted first-order equational theory. Such theory is
specified by a set of operator symbols (signatures) and equations to define the behavior of the associated
operations (denoted by signatures) of the ADT [Ehrig and Mahr 85], but there is still disagreement about
whether an ADT should be interpreted as the class of initial algebras or that of all algebras, etc. Furthermore,
this approach has had little success in treating higher-order functions and in extending to higher-order logic
systems for polymorphism, dependent types, etc.

The logical approach uses record types as the basic tool for modeling ADTs. Recent works on this
approach can be classified into two streams; one is the modeling of inheritances in ADTs, introduced in
Cardelli’s pioneering paper, “A Semantics of Multiple Inheritances” [Cardelli 84]; the other focuses on the
formalization of the information hiding mechanism of ADTs by existentially quantified types, a concept
originated in “Abstract Data Types Have Existential Type” [Mitchell and Plotkin 85]. We summarize the
correspondence between ADTs and existentially quantified record types according to the Cardelli-Mitchell-
Plotkin modeling (Mitchell and Plotkin originally have used product types rather than record types, but we
use record types as in [Cardelli and Wegner 85]).

abstract data type existentially quantified record type
implementation type record type

associated operator symbol record field label

suite of associated operations record value

assoctated operation value bound to a record field label
inheritance relation subtype relation on record types

Note that Cardelli’s work and most works in his stream are on object-oriented programming rather
than on ADTs. But Cardelli’s idea to the method inheritances is applicable to inheritances of associated
operations of ADTs by explicit parameterizations of methods with respect to objects’ internal states, i.e.,
instance variables.

The essential difficulty in the above modeling is the ignorance of algebraic structures of ADTs in the
sense of the algebraic approach. This problem has been pointed out by Reynolds in [Reynolds 83 and 85].
Thus the logical approach is far from satisfactory. In other words, only anarchic algebras correspond to
record types, while the enriched record types of our system denote non-anarchic algebra-like structures,
hence we call those enriched record types algebraic types.

The next section briefly introduces Cardelli’s approach applied to inheritances among ADTs and point
out the problem with the Cardelli-Mitchell-Plotkin modeling of ADTs. Section 3 proposes the notions of
algebraic type and algebraic inheritance, and define a mini-language, pFinal, based on these ideas. Section 4
analyzes syntactical properties of the type system of pFinal. Section 5 gives the semantics of pFinal using
partial equivalence relation models of types, and the first-order theory for typing rules of uFinal is shown
to be sound with respect to this semantics. Finally, Section 6 summarizes relating this to other works and
suggesting the direction of future works.

2. The Cardelli-Mitchell-Plotkin Approach and Its Problem

In this section we give an introduction to the Cardelli’s work applied to the modeling of inheritances of
ADTs and show the problem of the Cardelli-Mitchell-Plotkin modeling of ADTs.

e € Exp The set of expressions:

en=zx (ordinary) variables,
| ¢ constants,
| Az:o.e abstractions,
| erez applications,
| {i=e1,...,ln=1¢es} record expressions (n > 0),
| el field selections,
| [l=¢] tagging expressions,
| caseeof l; thene,...,l, thene, tag-case expressions (n > 0),
| fix(e) recursions by fixed-points.

0,7 € Type The set of types:

o= basic types,
| 01— 02 functional types,
| {liroy, .. laton} record types {n > 0),
| [hioy, ... lnion) variant types (n > 0).

Note: We leave details of the following syntactic categories unspecified:

z € Var The set of variables;
c € Const The set of constant symbols;
! € Label The set of record field labels and variant tags;
¢ € BaseType The finite set of base types (in Section 5 we assume BaseType = {Bool, Nat}).

Figure 1. Syntax of puFun.

The syntax of the Cardelli’s mini-language, which we hereafter call pFun, is given in Fig. 1. The order of
field labels in record types and in record expressions is insignificant in the above production rules. Note that
we the term “ezpression,” rather than “(pre-)term” is used throughout this paper since it is more common
in computer science.

Cardelli introduced the subtype relation of pFun on the basis of the inclusion relation between sets of
field labels of record types. The judgment of the subtype relation is

o<iT

and the relation is defined by the following axioms and rules:

{BASE} t¢<:¢

o] <: 09 o9 <. 03

{TRANS}
o) <:03

o' <o T<T

ARROW
{ } c-T <0 -7

Oy <iT) ... Op < Tp
{RECORD)
{liioy, o lion, o lngmi Ongm} < {Liimn, oo lni e}
01 <IT] ... Op < T,
{VARIANT} 1> 1 L
[hioy, o laion] <0 [, oo dni Ty oo bnkm T

Figure 2. The Subtyping Axioms and the Rules of puFun.

Here the rule {RECORDY} is the essential rule in the modeling of inheritances as will be shown later.

The judgment of typing in pFun is of the form:

I'be:o

where I is a basis, i.e., a finite map from variables to types. We introduce notations for bases:

Notation 1.
(1) @ denotes the empty basis.

(2) Let I' be a basis, = be a variable, and o be a type. Then I'[z : o] is the basis defined by the following
finite map, [/, such that for any variable y,

vy o, (ifz=y)
F'y) = {I‘(y). (otherw?iJse)

(8) The notation, dom(T'), denotes the set of variables on which the basis I is defined.

The typing axioms and rules of uFun are as follows, where FV(e) denotes the set of free variables in e:

[VAR} Tfz:0o] > z:0

[CONST] T b cij:us

I'be:o

WEAK] ——m——— FV
WEAK] Fron ety (z ¢ FV(e))
I'be:o o<
[SUBTYPE) 8
F'pe:o
ABS Flz:o] > e:o
[ABS] I' > (Ar:oe):0—0’
APPL F'be:od' -0 '>e:o
[| I'b (e): o
RECORD F've:oy...0>e,ion
[] Lo {li=en. . m=e}:{liios,... . lnion}
Foe:{lioy,... . laion} .
<1<
[SELECT] T o el o, (1<ign)
VARIANT [pe:o
[] Lo [l=¢:[lo]
T'oe:{liior,... o] 've:op—o...0beyio,—o0
[CASE] I b (caseeof |; theney,...,l, thene,): 0o

I'beio—o

X oo o

Figure 3. The Typing Axioms and the Rules of pFun.

A concrete example demonstrates Cardelli’s modeling of multiple inheritances in ADTs. To display examples
compactly, we informally use Standard ML like syntax [MTH 90] for global definitions.

Example. Stack (of natural numbers) has as its equipped operations: new, to create a empty stack; isnew,
to check a stack of its emptiness; push, to add some number to a stack; top, to see the the top (= lastly
pushed) element; and pop, to remove the top element from a stack. On the other hand, Queue is characterized
by the following operations: new, to make a empty queue; isnew, to check emptiness of a queue; add, to
add a number at the end of a queue; first, to get the head (= the firstly added) element; and remove, to
discard the head element from a queue. And Dequeue is equipped with all of the operations of both Stack
and Queue. Then the inheritance hierarchy of these types is as in the following diagram:

Stack Queue

Dequeue

Suppose we have List as a standard type constructor, and Nat and Bool as base types in uFun, and we
select the list of natural numbers as the common representation types for these ADTs, i.e.:

type StackValRep = List[Nat];
type QueueValRep = List[Nat];.
type Dequeue ValRep = List[Nat];

Then we can define their implementation types:

type StackOplmpl = {new: StackValRep,
isnew: StackValRep — Bool,
push: Nat — StackValRep — StackValRep,
top: StackValRep — Nat,
pop: StackValRep — StackValRep};

type QueueOpImpl = {new: Queue ValRep,
isnew: Queue ValRep — Bool,
add: Nat — Queue ValRep — Queue ValRep,
first: QueueValRep — Nat,
remove: Queue ValRep — QueueValRep};

type DequeueOplmpl = {new: Dequeue ValRep,
isnew: Dequeue ValRep — Bool,
push: Nat — Dequeue ValRep — Dequeue ValRep,
top: Dequeue ValRep — Nat,
pop: Dequeue ValRep — Dequeue ValRep,
add: Nat — Dequeue ValRep — Dequeue ValRep,
first: Dequeue ValRep — Nat,
remove: Dequeue ValRep — Dequeue ValRep};

Now we can give a suite of implementations of equipped operations of the type Stack as a record
expression as follows:

val aStackOpImpl = {new = nil,
isnew = As: Stack ValRep.isnull(s),
push = X\i: Nat.)\s: StackValRep.cons(3)(s),
pop = As: StackValRep.tail(s),
top = Ms: StackValRep.head(s)};

This behaves in the last-in first-out manner as expected for stacks. By this mechanism, for example,

aStackOplmpl.top(.
aStackOplmpl.pop(aStackOpImpl.push(2)(aStackOpImpl.push(1)(aStackOp Impl.new))))

yields 1. On the other hand, with the following suite of implementations

val anotherStackOpImpl = {new = nil,
isnew = As: StackValRep.isnull(s),
push = Mi: Nat.\s: StackValRep.cons(i)(s),
pop = fix(Ap: StackValRep — StackValRep.As: StackValRep.
if length(s) <1 then nil else cons(head(s))(p(tail(s)))),
top = fix(At: StackValRep — Nat.)s: Stack ValRep.
if length(s) < 1 then head(s) else t(tail(s)))};

where length is the usual length function for lists, the value of the expression

anotherStackOplImpl.top(anotherStackOplmpl.pop(
anotherStackOplmpl.push(2)(anotherStackOpImpl.push(1)(anotherStackOpImpl.new))))

is 2, since the anotherStackOpImpl acts in the first-in first-out fashion. In fact, anotherStackOpImpl is an
implementation suite adequate for queues rather than for stacks but still has the type StackOpImpl.

From this example, we can see that the Cardelli-Mitchell-Plotkin modeling cannot distinguish between
behaviors of stacks and of queues, and treats identically stacks and queues having the same type. This
limitation of their approach is the problem which this work attempts to solve.

3. Algebraic Types and Algebraic Inheritances

In the last section, we saw that record types cannot capture all of the aspects of the implementation types
of abstract data types. In order to overcome this difficulty, we extend the type system of pFun with
inequational assertions for record types and construct a new language uFinal (uFun with Inheritances
between Algebraic types). We call such augmented record types algebraic types because of the analogy to
algebras with equational specifications.

The syntax of gFinal is an extension of that of pFun with the following production rules.

e € Exp) The set of expressions:
en=r implementation variables.
o,7 € Type The set of types:
ou=prit{dy, ..., Pk} algebraic types (7 is a record type, k > 0).
¢, € Assertion The set of assertions:
pi=e Le:0 atomic assertions,
| forall z:0.¢ quantified assertions.

Note: We leave details of the following syntactic category unspecified:
r € IVar The set of implementation variables.

Figure 4. The Characteristic Syntax Rules of pFinal.

In the above rules, the order of occurrences of assertions in an algebraic type is insignificant as is the case
for the order of field labels, and the change of implementation variables in p-binding is also insignificant
like in the ususal A-binding. Before stating syntactical constraints to pFinal, we need a definition, which is
analogous to the notion of active subezpression in [Plotkin 77].

Definition 2. Let ¢, ¢’ be expressions of uFinal. Then e’ strictly occurs in e iff one of the following
conditions holds:

(1) e=zand ¢ =z,

(2) e=rande =r,

(3) e=¢€".l and ¢’ strictly occurs in €”,

(4) e= e”e" and €’ strictly occurs in e”,

(5) e=casee” |y thene,,...,l, then e, and €' strictly occurs in e”, or

(6) e = fix(e”) and €’ strictly occurs in e”.

Then the syntactical constraints to pFinal are:

(a) each assertion of an algebraic type must be closed by forall quantification except for free occurrences
of the implementation variable bound by the algebraic type containing that assertion; and

(b) the implementation variable of an algebraic type must strictly occur in the left-hand expression of
each assertion of the algebraic type.

The first constraint is necessary for giving semantics for the proof theory of uFinal, while the second one is
essential for constructing semantics of uFinal.

Notation 3. We identify each record type with an algebraic type with null assertion, e.g.
Alyioy, .. larony=pri{liioy, . o b

and we sometimes write algebraic types in more intuitive form, e.g.

priliioy .. G laion | 1y Ok} abbrev pri{lizoy, .. laion} {1, ..., bk}

We often abbreviate symmetrical pairs of inequations as an equation, e.g.

bb
forall z,:0y.---.forall z,:0,.e =€ : 7 * ="

forall z;:0,.-- - .forall z,:0,.e < € : 7, forall z,: ;.- - forall z,:0,.’ <e: 7.
We also omit implementation variables in assertions and write [for 7. when there is no danger of confusion.
For the type system of uFinal, we introduce a first-order theory of uFinal.

Definition 4.
(1) wFINAL is the first-order theory with axioms and rules which will be described in this section and
with the following three forms of judgments as sentences:

e o <: 7 for subtyping,
e I' A b e:o for typing,
e ' A b ¢ for assertions,
where A is a basis for implementation variables. The deducibility in uFINAL is shown by },riNAL-
(2) For the type system of uFun, uFUN is defined in the same way, and +,run denotes its deducibility.
Note: We usually omit the subscripts and simply write |- when there is no danger of confusion.

First we define the subtype relation on yFinal. The {RECORD} rule of pFun is generalized to handle
assertions.

~.

!
(@,{r:0} v ¢i[r1 :==r]) urINAL /\(G, {rir} o Piroi=r)) o1 <iT ... 0pn < Tn
j=1

i=1

1l

{ALGEBRA} (m >0)

pric{liion . lhimiOngm}Ad1, . bk} <o opror{liTy, L bW, W) -
where
1
(@, {r: o} v ¢ir1 :=7]) FuriNaL /\(z, {r:i7} o 9, [T2‘3= 7]) is a short-hand notation

~.

i=1 j=1
meaning that for each 1 < j </,
g, {r:a} > ¢i[ry:=7},...,0,{r:0} b @il :=7] FurinaL @, {71 T} b Y2 =1
7 is a fresh implementation variable;
o={li:o1, .. s lntm: Onsm};
T={lim,.. e}

Figure 5. The Characteristic Subtyping Rule of pFinal.

Intuitively speaking, this {ALGEBRA} rule states that if an algebraic type is a subtype of another one in
the sense of record types (i.e. o <: 7) and the set of assertions of the subtype, {1, ..., ¢}, is stronger than
that of the other, {¢1,...,4:}, then it is a subtype of the other as algebraic types. Owing to this rule, the
subtype relation in pFinal becomes a preorder but not a partial order as in the case of uFun. We call the
multiple inheritances based on this subtype relation algebraic inheritances, since they reflect the richness of
algebra-like structures of data types.

For typing in pFinal, we replace each judgment of the form I' & e: o in the typing axioms and rules of
#Fun by one of the form I' A b e : 0 augmented with a basis for implementation variables. Furthermore,
we have to add an axiom and two rules:

(IVAR] T A[fr:7j>or:7

LAve:o

DAbv e:pri{liio,...,lniop}{d1,..., Pk} LA b dpgir =]
DLAb e:pr:i{litoy,.. . lnion} {1, .., dPrt1}

Figure 6. The Characteristic Typing Axiom and the Rules of puFinal.

[EXTEND]

The [EXTEND] rule means that if the expression e satisfies the assertion ¢, then we can add this assertion
to the algebraic type of e.

(VAR) Tz:o),Abz<z:0
(IVAR) T, Alr:7]prgr:7

(CONST) TLAv <Gyl

I'NAve<e:o INAbe<es:o

TRANS
{) [Abve<es:o

INAve <ey:o

[:0,Abe<e:o (@ ¢ FV(er) UFV(e2))

(WEAK) =

NMAbve<e:o

DAfr:7] > er<exto (r ¢ FV(e1) UFV(e2))

(IWEAK)

DLLAve Le:o o <o
I''Abve <ey:o

(SUBTYPE)
I'A v forallz:0.¢ NNApve:o
DA b ¢z = ¢

Plz:o],A > ¢
I'A v forall z:0.¢

(forall-E)

{forall.I) (z ¢ dom(I))

Iz:ol,Abe:o IAbe:o
VA b (Azioe)e =efz:=¢€]:0’

(.Bfunc>

Mz:o,Apege o

(ABS) LA > (Azioe) < (Azioe) 0 >0

IApbe<e:o -0 TLAbey<ey:o

['VA b (ereg) < (eley) i o

(APPL)

I'N'Abve:oy... A b ey:on

<1<
T,Ab (h=en. o ln=en)bh=c o (1<is<n)

(Brecord)

[Abe <eliop...NADb ey, <epion
Ao {li=e,. . h=e}<{h=¢),. .., ln=cr}: {lizo1,...,lnion}

(RECORD)
LLAvege {liio1,..,lnion}
A v el;<el:o;

TAv e:pri{liion,. .., o} {d1,..., bk}
[LA > ¢ifri=¢]

(SELECT) (1<i<n)

(ASSERT) (1<i<k)

Ao e:o; TLApbe:op—o ...T,Ab>e,:00—0
[A > (case [l; =¢] of |y theney,..., !, thene,) = (ei€) : o

(ﬁva{iant) (1 S 1 S n)

LAve<ge:o
FAb [l=e[l=¢]:[ld]

(VARIANT)

LLAvege {lion, ... lhion) IMAvegelior—o ...TAbe,<e, 0,00
I' A > (case eof I thene,,... I, thene,) < (case e’ of |; thene),...,l, thene,): o’

(CASE)

INApbe:o—oo
T A o fix(e) = e(fix(e)) : o

(ﬁﬁx)

PL'Avege:o-0o
LA b fix(e) < fix(e') : o

(FIX)

Figure 7. The Axioms and the Rules for Assertions of uFinal.

Finally, we must give the rules for inferring assertions. These rules are shown in Fig. 7. Note that rules,
(Bunc)s (Brecord), (Bvariant) and (Bax), whose conclusions have an equational form, actually denote a pair of
rules each by the notational convention as stated before, and the meaning of each rule is apparent except for
(ASSERT). This rule states that if an expression e has an algebraic type with assertions ¢, ..., ¢ in which
the representation variable r denotes e, then we can use an instance of each assertion ¢; by substituting that
expression e for r. :

We end this section by giving an example of algebraic inheritances. We can define the implementation
type of stack in the last section as an algebraic type.

type StackOpImpl = paStackOpImpl.{ new: StackValRep,
isnew: StackValRep — Bool,
push: Nat — StackValRep — StackValRep,
top: StackValRep — Nat,
pop: StackValRep — StackValRep
(*push-pop*) | forall i: Nat.forall s: StackValRep.
pop(push(i)(s)) < s : StackValRep,
forall i: Nat.forall s: StackValRep.top(push(i)(s)) < i: Nat,
forall 1: Nat.forall s: StackValRep.isnew(push(i)(s)) < false : Bool,
isnew(new) < true : Bool};

Now consider another type StackoidOplmpl:

type StackoidOpImpl = paStackoidOplmpl.{new: Stack ValRep,

isnew: StackValRep — Bool,

push: Nat — StackValRep — StackValRep,

top: StackValRep — Nat,

pop: StackValRep — StackValRep

(*push?-pop?x) | forall i: Nat.forall j: Nat.forall s: StackValRep.

pop(pop(push(i)(push(j)(s)))) < s : StackValRep,

forall ¢: Nat.forall s: StackValRep.top(push(i)(s)) < i: Nat,

forall i: Nat.forall s: StackValRep.
isnew (push(i)(s)) < false : Bool,

wsnew(new) £ true : Bool};

Clearly the assertion (*push-pop*) in StackOpImpl is stronger than (*push?-pop?#) in StackoidOpImpl;
hence, any stack can be used as a stackoid. Therefore, StackOpImpl inherits the structure of StackoidOpImpl,
and this fact is expressed in uFinal as the subtype relationship: StackOpImpl <: StackoidOplImpl.

Compare the definition of the type QueueOpImpl with the same signature as StackOplmpl:

type QueueOplmpl = paQueueOpImpl.{new: StackValRep,
isnew: StackValRep — Bool,
push: Nat — StackValRep — StackValRep,
top: StackValRep — Nat,
pop: StackValRep — StackValRep
| forall ¢: Nat.forall s: StackValRep.
pop(push(i)(s)) < if isnew(s) then s
else push(i)(pop(s)) : StackValRep,
forall i: Nat.forall s: StackValRep.
top(push(i)(s)) < if isnew(s) then i else top(s) : Nat,
forall i: Nat.forall s: StackValRep.isnew(push(i)(s)) < false : Bool,

isnew(new) < true : Bool};

10

Then clearly StackOpImpl £: QueueOpImpl and QueueOpImpl £:StackOpImpl. Moreover, for aStackOpImpl
and anotherStackOpImpl in Section 2, we can show |- rinaL @, @ > aStackOpImpl : StackOpImpl and
- LFINAL 2,2 b anotherStackOpImpl : QueueOpImpl as we have pointed out in Section 2 (assuming as-
sertions on list operations are given).

4. Proof Theoretical Investigations of Algebraic Types

In this section we investigate the proof theoretical properties of the type system puFINAL. Especially we
show the system is a conservative extension of uFUN.

First, we define classes of types, expressions, bases and sentences of pFinal having correspondences in
uFun.

Definition 5.
(1) A type, o, of pFinal is said to be assertion-free iff one of the following conditions holds:

(a) o=y

(b) 6 =01 — 03, where each o; (i = 1,2) is assertion-free;

(c) o ={li:o1,...,ln:0n}, where each o; (1 <1 < n) is assertion-free; or
(d) o =[lito1, ..., a1 0], where each o; (1 < i < n) is assertion-free.

(2) An expression, e, of uFinal is said to be assertion-free iff both of the following conditions hold:

(a) e does not contain any implementation variable; and
(b) each A-abstraction occurring in e binds a variable with an assertion-free type.

(3) A basis, I', is assertion-free iff " assigns assertion-free types to each variable.
(4) A sentence, I, of uFINAL is assertion-free iff £ has either one of the following forms:

(a) 2=T,9 b e:0, where I', e and ¢ are all assertion-free; or
(b) ¥ =0 <: 7, where ¢ and 7 are assertion-free.

For each assertion-free sentence of uFINAL, we define the correspondence in uFUN.

Definition 6. Let ¥ be an assertion-free sentence of uFINAL. Then its corresponding sentence in uFUN
(notation: uFUN(Z)) is defined as follows:

(1) whenX=T,@ v e:o, uyFUN(Z)=T » e:0;

(2) when X =0 <7, uFUN(E) = 2.

Next we define a function which removes all assertions from types.

Definition 7. The function aft : Type — Type is defined such that
(1) aft(e) =,
(2) aft(o — 7) = aft(c) — aft(r),
(3) aft({li:01,...,lnion}) = {lL:aft(o1), ..., la: aft(on)},
(4) aft([lizo1,...,lhion]) = L1z aft(oy), ..., lnaft(e,)],
(5) aft(pr:r.{¢1,...,¢k}) = aft(r).

This aft is extended on Exp, Assertion, bases and sentences of uFINAL in the obvious way.

Then the following lemmas clearly hold:

Lemma 8. Let 7 be a type of uFinal. Then
(1) aft(r) is assertion-free; and
(2) if T is assertion-free, then aft(r) =7. 1

Lemma 9. Let 0 and 7 be types of pFinal such that o <: 7. Then either one of the following cases holds:
(1) o=7=y;
(2) 0 =01 — 09 and 7 =1, — 7, where T, <: 01 and g9 <: Ty,
(3) o={liior,...,lniop} and T={li:71, ..., lm:Tm}, where m < nand o; <: 7 forall 1 <i < n;
(4) o =[hioy, ..., lnion) and T={l:m, ... i T, where m > noand oy <: 7 for all 1 <i < m; or
(5) o=prio’ {¢1,...,¢x} and 7= pr': 7' {¢1,..., ¥}, where o’ < 7. |

"

Lemma 10.
(1) If z € Var is not free in e, then

FLz:7,Ape:o = FTLADe:o.
(2) If r € IVar is not free in e, then

FLLAfr:T]be:o = FL,Abe:o.

Proof. (1), (2) By induction on the number of steps of the proof. 1
Lemma 11. Let 0 and 7 be assertion-free types of uFinal. Then in uFINAL

Fo<iT = - aft{o) <:aft(7).

Proof. By induction on the structure of o using Lemma 9. §

Lemma 12. Let T and e be assertion-free. Then

FT,Apbe:o = FT,2 > e:aft(o).

Proof. By induction on the number of steps of the proof of I', A b e : o, we have to show that - T",A b e:
aft(o) holds. Then we can obtain the desired result by repeated applications of Lemma 10. On induction,
we show only non-trivial cases, i.e., the last step of the proof is either [SUBTYPE] or [EXTEND]. Other
cases are obvious, since, in other rules, each expression in the premise is a subexpression of the expression
in the conclusion.

Case 1: the [SUBTYPE] rule. I',A b e:o0 is deduced from I' A > e:¢’ and ¢’ <:o. Hence
')A b e: aft(o’) by the induction hypothesis and aft(c’) <: aft(c) by Lemma 11. Therefore, by applying
[SUBTYPE], we obtain [, A > e : aft(o).

Case 2: the [EXTEND] rule. From the assumption, o has the form pr: {ly: 01, ..., lhion} {1, ..., P41}
and I'A b e: o is deduced from A v e:pri{liior,...,lnion}{é1,..., 0} and T' A b ¢ppalr:i=e].
Hence we conclude ', A > e : o', where

o aft(pr: {li:o1, ..., lnion} {1, ..., k})

= {l1:aft(oy),..., s aft{on)}
=aft(o). 1§

Finally we can show the desired result.

Theorem 13. If an assertion-free sentence % is provable in uFINAL, then there is a proof of £ comprising
only assertion-free sentences.

Proof. To prove this, we have to check that if the conclusion is assertion-free then any premises are also
assertion-free and do not need types of implementation variables for each rule. This is obvious for most
rules; we only need to show it for {TRANS}, [SUBTYPE] and [APPL]. (Note that under the assumption
of the assertion-freeness of the conclusion, {ALGEBRA} becomes the same as {RECORD} of uFUN, and
[IVAR] and [EXTEND] are excluded.) '

Case 1: the {TRANS} rule. By Lemma 9 and induction on the structure of types.

Case 2: the [SUBTYPE] rule. We must show that for any assertion-free I', A, e and o, there is some
assertion-free o’ such that I', @ > e:¢” and o” <: o, under the assumption that I', A > e¢: o and o <: ¢’
for some (possibly non-assertion-free) type o.

Applying Lemmas 11, 8, and 12 to the assumption, we obtain I', @ > e : aft(c) and aft(o) <: ¢’. There-
fore we can choose aft{o) as the assertion-free o”.

Case 8: the [APPL] rule. Similar to the above case using Lemma 12. 1§

12

As stated before, any assertion-free sentence ¥ of uFINAL corresponds to some sentence of uFUN.

Corollary 14 Conservative Extension Theorem. The theory uFINAL is a conservative extension of
uFUN. That is, for any assertion-free sentence ¥ of uFINAL,

FurinaL S <= |-urun kFUN(T). 1

The type system of pFinal is clearly undecidable since it has a power to specify a kind of partial
correctness of functional programs. But the system restores decidability by forgetting all assertions, hence
our system uFINAL can be viewed as a type system for specification/verification while uFUN is its decidable
subsystem for compile-time type-checking. Then the following theorem states that “all correct programs pass
compilers.”

Theorem 15. For any ', A, o, and any e without tmplementation variables,

I_pFINAL I'N'Abve:o = I_#FUN aft(I‘) > aft(e) : aft(a).

Proof. Similar to the proof of Theorem 13. §

5. Semantics of Algebraic Types and Algebraic Inheritances

In this section, we give a denotational semantics of pFinal and show that the theory uFINAL in Section 4
is sound with respect to this semantics. First we give a semantics for expressions using the type-free inter-
pretation of expressions. The semantic domain D for the interpretation is the complete partially ordered set
(cpo) satisfying the following domain equation (we can find such D in the universal domain T | “ by the well
known techniques [Plotkin 78] after appropriate encoding of truth values, natural numbers and labels/tags,
and we usually omit the isomorphisms between D and the right-hand sum cpo). For details on cpos, we
follow [Plotkin 83] and [Barendregt 81].

veED=Asp Ao FOoROUBW
where
e Ag =T, the flat (pointed) cpo of truth values;
e A; = N, the flat (pointed) cpo of natural numbers;
f € F=[D — D] is for function values;

¢ € R = [Label; — D] is for record values;

u € U = [Label; x D] is for variant (tagged union) values;
o« W {7},
where
? is the value modeling run-time type errors
T . def .
and we write its image as wrong, i.e. wrong = inw(7?);

@ indicates the coalesced sum construction of cpos;

— is the domain constructor of function space.

— is the domain constructor of strict function space.

We also need a few auxiliary domains for environments:

€ € Env = EEnv x IEnv the domain of environments;
(€ EEnv=Var;, -, D the domain of valuations for ordinary variables;
£€lEnv=IVar, —; D the domain of valuations for implementation variables.

We interpret each expression of yFinal via its erasure, in other words, we give uFinala type-free inter-
pretation. The semantic equations for expressions are shown in Fig. 8 (here we assume a semantic function
K; for each base type «; for the interpretation of its constants) where inx, outx and isx are usual primitive
operations for sum domains. :

13

£ : Exp — (Env — D)

Elzle = let (¢, &) = € in {[z] end,
Efrle = let ((,€) = € in &[] end,;
Eleijle = ina (Kiles])
EfAz:o.€)e = let ((,€) =€ ininp(Av € D.E[e]({{[z — v],£)) end,;
Elee' e = if isp(Efe]e) then outp(E]e]e)(Ee’e) else wrong;
El{ti =e1,...,ln =en}]e = inp(Al € Label, .if | =1, then E[e;]e
elseif ...
elseif | =1, then Efe,JJe
else wrong);
Elel]e = if isn(E[e]e) then outr(E[e]e)(l) else wrong;
Elll = e]fe = imnu(l, Ele]e);
E[case e of I; then ey, ..., I, then e,]e = if isy(E[e]e) then
let (I, v) = outy(Efe]e) in
if =1, then
if wsp(Efer]e) then outp(Efe]e)(v) else wrong
elseif ...
elseif | = ,, then
if isp(Efen]e) then outp(Efen]e)(v) else wrong

else wrong

i

end

else wrong;
Elfix(e)]e = if isp(E[e]e) then let [= outp(E[e]e) in Uf”(J_D) end

else wrong.
Figure 8. The Semantic Equations for Expressions of pFinal.

Next we give a semantics for types based on a kind of partial equivalence relation models.

Definition 16. Let X be a set.
(1) A partial equivalence relation (per for short) on X is a symmetric and transitive binary relation on

X.
(2) Let P be a per on X. Then define the domain of P, |P|, by:
IP|€ {ve X | (v,v) € P}.
(3) Let P and Q be pers on X. Then define the function space per, P — @, by:

(f) e P>Q & vu,v' € X.[(v,v) € P= (f(v),g(v)) € Q).

(4) Let P and Q be pers on X. Then define the product per, P x Q, by:

(w,w), W' w)) e PxQ €% (v,v') € Pand (w,w') € Q.

(5) Let P be a per on X and z € |P|. Then define
[z]p € {y € X | (z,3) € P}.
(6) Let P be a per on X and S C X. Then define the restriction of P on S, P[S, by:
P[SE {(u,v) e Plue Sandve S}

14

In order to interpret types as pers on D, we require the domain of each per corresponding to a type to
be a sub-cpo of D.

Definition 17.
(1) Let P be a per on the cpo D. Then P is complete iff P satisfies both of the following conditions:
(a) {(Lp,Llp) € P;and
(b) P is closed under lubs of w-chains, i.e.,
Vi€ w.(vi,w;) € R = (l_l v, U w;) € P.
1€w I€w
(2) CPER denotes the collection of complete pers (cpers for short) on D.

It is easily shown that (CPER, C) is a complete lattice and has greatest lower bounds as intersections. Note
that least upper bounds in CPER are not simple unions in general.

The semantic equations for types are as follows:

7 : Type - CPER

T{Bool] = {(d,d) | de B.};
T[int] = {{d,d) |de N_};
Tloy = 02] = T[o1] — Tloz2];

T[{h:oy, ..., lnion}] = [{{g,4) | 9,¢" € R and (g(Li), ¢' (1)) € Te:]};

i=1

Tﬂ[llidl, e ,ln:an]]] = U{((l,‘,,’(}), (l,‘,’U’)) | <l,‘, ’U), (l,’,U’) € U and <’U,‘U,> € TIIO’,]]}
i=1

Tler:7{¢1,...,0c}) =let R=T[7]

k
andS={veD| /\ Al#;1{LEEnv, [r — v])}

=1

in R[S end.

Figure 9. The Semantic Equations for Types of pFinal.

We interpret each assertion as an element of non-pointed T, since an assertion must be always either true
or false even if evaluation of some of the expressions contained in it would not terminate.

A: Assertion — (Env — T)

Aler < e2: ofe = (Ees]e T Efex]e);
Alforall z:0.¢Je = let (,£) =€ inVv € |T[o]]. A[¢]{{[z — v],€) end.

Figure 10. The Semantic Equations for Assertions of pyFinal.

We must check the well-definedness of the semantic function 7. For this purpose we need a lemma. Its
proof shows why we imposed syntactical constraint (a) to uFinal in Section 3.

Lemma 18.

(1) Let e be closed except for free occurrences of r and at least one of the occurrences of r be strict in e.
Then

Elel(¢, &fr — Lp)) = Lp.
(2) Let ¢ be a well-formed closed assertion except for free occurrences of r. Then

Al¢J(¢, €lr — Lp]) = true.

Proof. (1) By induction on the structure of e.

(2) By (1) and the syntactical constraint (a) in Section 3, the denotation of the left-hand subexpression
of the atomic assertion in ¢ is L, hence the statement holds. §

Lemma 19.
(1) Let P € CPER and S C D be pointed and closed under lubs of w-chains. Then P[S € CPER.
(2) Let P,Q € CPER. Then P x Q,P — @ € CPER.
Proof. (1) Simple calculation.
(2) Proved by Amadio in [Amadio 91|, §1.4 (1). 1§

Theorem 20 Well-definedness of 7. T s well-defined. That is, for each T € Type,

(1) T[] € CPER;

(2) (wrong, wrong) & T[r].
Proof. (1) As in [Cardone 91], it can be shown that each semantic clause in Fig. 9 except for the algebraic-
type one is well-defined and that 7 preserves completeness, hence we only have to show the well-definedness
of the algebraic-type clause. We show this fact by induction on the nesting level of algebraic types. Following
is the induction step. (The base case is obvious.)

Let pr:7.{¢1,...,¢x} be algebraic and suppose T[] is complete, then we only have to show that the
set .

k
SE {weD| A Alg){LeEav, [— o))}

j=1

is pointed and closed under the lubs of w-chains, then the well-definedness of algebraic-type clause follows
by Lemma 19.

Pointedness: By Lemma 18 (2), Lp € S.
Closedness under lubs: Suppose for all 7 € w, v; € S. Then for each 1 < 7 <k,
Al#;l{LEEnv, [r — v:]) = true,

hence we have to show

Alg;)(Legnv, [r — | | vi) = true. (a)
i€w
Suppose ¢; = Vz;1:0;1. ... NVTjm;: Om;.€Lj < eRry ¢ 75. and define
fu def Avy, ... ,v;n’,,v € D.Efer)z — v1, .. o Ty v;nj], [r—),
£
fr & Ay, v € D€ ers{[zs1 = vl Tim, U,), [+),

then fi, and fgr are continuous with each argument. Hence, for each i € w,
Aﬂ¢j]](lEEnV) [7' — 'Ui])
=i € [Tlojulll. ... Yo, € [Tlojm,]l Aler; < ery : 751([zj1 = V1, -, Zjmy = V7,], [r e i)

=W € |T[o;]l.Vu:,,j € |T[ojm;]l-[fL(v1) ...(v;,,j)(vi) C fr(v}) ...('u;,,j)(vi)]
Therefore, by the continuity of fi, and fgr,
Yoy € [Tos]lVv;n’. € |T [ojm;]|.(fL{v]) (v;n])(l_l vi) C fr(v})... (U;J)(U v;)] = true
1€w i€Cw
so (a) holds.
(2) By induction on the structure of types. ¥

Intuitively speaking, our notion of type is a collection of values satisfying at least some particular
properties (the set of operation actable to the value, constraints on the value which can be specified by a set
of inequations).

Hence it is natural to request that, if each value of an w-chain satisfies such properties, then the supreme
of the chain must also satisfy those properties. This corresponds to the completeness condition requested to
our pers (the pointedness is necessary since we want to have fix on all types).

15

16

On the other hand, when v; C vg, v; has less information than v, does, so v; may not satisfy some of
the properties that v, does. This is the reason why we have not requested the downward closedness like in
ideals [Cardelli 84] nor the closedness under approximations like in the class of pers used by Amadio and
Cardone [Amadio 91, Cardone 91].

This abandonment of the approximation-closedness forces us to discard the inverse limit construction
making the semantic domain D and we have obtained it in the universal domain T, since pers on D,
is naturally requested to be closed under approximations from the construction of elements of Do,. It is
guaranteed by Theorem 11 in [Plotkin 78] that our semantic domain, D, can be obtained as a retract of
T,.“.

One drawback of our semantics is that the computation of a functional application cannot be performed
within a type in general. To be more concrete, let f be a function from type ¢ to 7 and a be a value of
o, then f(a) must be calculated using bases (e;)ic., of a. The point is that some of these bases may not
belong to the sub-cpo (the domain of a per) corresponding to the type of a, o, hence we must perform this
calculation in the whole domain D. This is the cost we have paid for our more expressive type system.

We now turn to the soundness of our type theory uFINAL with respect to this semantics.

Definition 21. An environment € = ({, i) is said to respect bases I', A (notation: ¢ |=I', A) iff it satisfies
both of the following two conditions:

(1) (=T, i.e., for any variable z € dom(T'), ¢[z] € |T[I'(z)]|; and
(2) €= A4, ie., for any implementation variable r € dom(A), £[r] € |T{A)]I.

Finally, we show that the theory uFINAL is sound with respect to this semantics. First, we give some
definitions and a lemma.

Definition 22.
(1) Let ¥ be a sentence of uFINAL. Then X is satisfied under an environment € = (¢,) (notation:
€ = X) iff either one of the following cases holds:
(a) whenEZ =0 <: 7,
Tl € T[r];

(b) whenEZ=T,A b e:0,

e=T, A = Elefe € |T[o]};
(c) whenZ =T,A b ¢,

eENA = Alg]e = true.

(2) Let ¥ be a sentence of uFINAL. Then L is valid (notation: = ¥) iff € = T for any environment
€ € Env.

Lemma 23 Substitutivity Lemma.
(1) If FTz:0'l,A > e:oand T, A b € : ¢, then for all ((,€) € Env such that ((,€) T, A,

Elelz = €')(¢.) = Elel (¢l — E['NC, €)1, €).-
(2) If ~TAfr:0'} b e:oand =T, A v € : 0, then for all {(,€) € Env such that ((,£) =T, A,

Elelr == €'I](¢,§) = E[e]((, [— E[TC O]

Proof. (1), (2) By induction on the structure of e. 1§
Now we can state and prove the soundness theorem for uFINAL.

Theorem 24 Soundness Theorem. The theory uFINAL is sound with respect to this semantics; i.e.,
Jor any sentence ¥ of uFINAL,

FX = kLI

Proof. By induction on the structure of £ using Lemma 23. |

Versions of this theorem have been presented in forms for special cases (cf. [Cardelli 84)):

Corollary 25 Semantical Soundness Theorem. If an ezpression is syntactically typable, then it does
not cause any run-time type error. That is,

FT,Abe:oc = VekET A[le]ee|T[d]l]

In other words,
FT,Abe:oc = Vel=T,A.[E]e]e# wrong]. 1

Corollary 26 Semantical Subtyping Theorem. Let o and 7 be types of pFinal. Then

o<t = T]CT[] 1

6. Directions of Future Research and Related Works

The motivation of our work originates from the editors’ Foreword of the proceedings of International Work-
shop of Semantics of Data Types [KMP 84]. It says that “The Symposium was intended to bring these
somewhat disparate groups together with a view to promoting a common language ...,” but unfortunately
there have been hardly any efforts to integrate logical and algebraic approaches to abstract data types by
now. What we have shown in this paper is that the type system with inequational assertions is a natural
extension of a typed A-calculus with record types and the complete partial equivalence relation model is rich
enough to interpret types with inequational assertions.

Our system can be called a type system combining programming types (usual types of pFun) and
specification (inequational assertions as partial correctness requirements) used to write specifications for
verification as well as ezecutable programs, hence our pFinal is a good candidate for foundations of type
systems of functional wide-spectrum languages such as Extended ML (Sannella and Tarlecki 89]. The present
work is just the first step toward the goal of incorporating algebraic structures with logical types with domain-
theoretical foundations. There remain many interesting issues as follows:

(1) to give our language typed interpretations;
(2) to strengthen our inequality “<” to “=" in assertions;

(3) to extend our system to second-order calculi with polymorphism, existentially quantified types,
bounded quantifications, and parameterization of types;

(4) to enrich our system with recursion on types;

(5) to incorporate more sophisticated record calculi such as row variables and selective field updating.

For (1), we have given semantics of puFinal via the erasure interpretation as shown above. In other words,
we have given semantics of uFinal as a wide-spectrum functional language, but we have not constructed any
typed model of uFinal as an enriched simply typed A-calculus. We expect that our semantics will be able to
be converted to a typed model as far as first-order calculi using some structures like Lindenbaum algebras
without much difficulties, but as we will discuss later, the non-computable aspects of our types may have some
affects in model constructions when we extend our calculus to second-order calculi such as polymorphism,

. ete.

For (2), roughly speaking, our inequality “<” corresponds to partial correctness in program verification
while the equality “=" to total correctness, since “e; < eg” intuitively means that, if the computation of
e; terminates, then it must give the same result as that of e, but the computation e; may diverge on its
way, while the equality requests that the results of computations of both sides must always coincide. Using
“=" introduces the new problem that denotations of types may be empty. This difficulty can be overcome if
we introduce the notion of admissible types whose assertions have no inconsistencies. Adopting this notion
forces us to admit that the syntactic well-formedness of types is no longer context-free (nor even decidable).
On the other hand, if the denotation of a type (with equational assertions) is not empty, then it is a cper,
hence this approach serves enough interests.

17

18

For (3), the type system with existentially quantified types and algebraic types will give the full modeling
of ADTs. For example, we can define the abstract data type of the group-like structure as:

type Group = 3G.paGroupOp{(_-):G — G — G,
OG-,
eG
lforallz,y,2:Gz-(y-2)=(z-y) - 2:G,
forallz:G.z- (z) ' =e: G,
forallz:G.e-z < z: G}.

But the only known model of existentially quantified types is based on intervals of ideals {Martini 88] and
Cardone has pointed out that the profinite pers (cpers closed under approximations) cannot be used to model
such types. On the other hand, the extension making the systerh a polymorphic type system seems possible
as long as we adopt the erasure interpretation, since cpers are closed under arbitrary intersection. With these
extensions, we can obtain true abstract type constructors. Furthermore, bounded quantification of types
is a very interesting extension for this type system. For example, if we can write V7 < StackOpImpl. . ..,
then this bounded quantification means “for all types 7 having at least the stack structure ...” and such
description will be very useful for specifications of modular programming [Cardelli and Wegner 85].

For (4), it is worth noting that our semantic function A is not continuous, hence types of our system
are not computable in general. The computability of types are essential, however, for this extension. To
overcome this difficulty, we may substitute the object-level equality operator “eq,” for the present “C” (or
“=") of the meta-level in the semantic function A and simultaneously replace non-pointed T by the usual
pointed domain T . But This also involves several problems. First, not every type has it own computable
equality operator, hence, we must characterize the class of types equipped with such equality. This class
corresponds to eqtype in Standard ML, and its domain-theoretical characterization is unknown hence may
be interesting. Second, this approach introduces the problem of empty types again. Third, the inverse image
of {true} is not pointed. If we avoid this problem by considering the inverse image of {1, true}, then the
corresponding proof system loses the transitivity rule.

For (5), record calculi with raw variables and selective updating are proposed to be very useful in
modeling of inheritances of object-oriented programming {Cardelli and Mitchell 91} and incorporating thése
ideas with our algebraic types must give a good foundation of functional object-oriented wide-spectrum
languages.

On foundations of wide-spectrum languages, the Martin-Lof type system [Martin-Lof 84] is also such
a system [NPS 90]. But it has several drawbacks: the first is that it does not support fixed-points and
limits only total functions losing some computable total functions. The second is rather pragmatic problem,
writing a specification of an ADT with his type system using equality types for assertions, means that
the execution of the extracted program for the ADT contains a construction of the proof of “this ADT
is correctly implemented,” which is intuitively irrelevant for the execution of the intended program. The
Goéteborg group has introduced their Subset Theory [NPS 90] to remedy this inefficiency, but it does not
preserve De Bruijn-Curry-Howard correspondence, while the original system does and it is the main merit
of the Martin-Lof system.

Relating our results to T-algebras is another interesting theme. For strict and continous f € D— D and
continuous g € D — D, predicates of the form P(v) = f(v) C g(v) are w-inductive, and such predicates has a
strong connection with T-algebras (cf. [Plotkin 83], Chapter 5, Theorem 4). {Lehmann and Smyth 81] used
T-algebras to interpret types with operations in domain theory. But as Pierce has pointed out in [Pierce 91,
p. 41], “this construction works only for algebras without equations. The framework has apparently never
been extended to include algebras with equations.”

Finally, we summarize the related works. In [Cardelli 84}, Cardelli used the ideal models to interpret
types, whose downward-closedness condition cannot be satisfied by algebraic types. [Cardone 91] gave a
typed interpretation of the second-order typed A-calculus with fixed-points, records and variants using more
restrictive pers than we have used in this paper. [Amadio 91} interpreted types via realizability over the
reflexive domain and studied basic properties of several kinds of pers. Actually, we used some of his results in
this paper. In [Abadi and Plotkin 90], they studied the closedness condition of pers, especially with respect to
Plotkin powerdomain construction. In all of these studies, the pers considered are those over D, and must
be closed under approximations. This condition is not satisfied by interpretations of assertions, however,

hence we have used a kind of universal domain satisfying a retraction instead of Do, and complete pers over
it for interpretations. [Bruce and Longo 88] presented a per model for the bounded polymorphic calculus
without recursion either on expressions or on types. The most interesting work on the semantics of bounded
second-order A-calculi is by Martini [Martini 88], who successfully gives a semantics to the second-order
calculus with bounded existential types, bounded polymorphic types and fixed-points on expressions using
intervals of ideals as interpretations of types. But none of these previous works have considered algebraic
structures. Actually, Mitchell and Plotkin have already pointed out the necessity for considering structures,
but the approach they have suggested is based on the formulas-as-types correspondence and contains the
same problems as noted about Martin-Lo6f’s system.

Acknowledgements

The author wish to express his deepest thanks to Professor Henk Barendregt for his invaluable advice on an
earlier version of this paper and for his warm encouragement. He also strongly wish to express his gratitude
for a referee of TLCA 93 who pointed out an essential problem in the earlier version of this paper and gave
the author very constructive comments and encouragement. Furthermore, the author thanks Yugo Kashiwagi
for his enthusiastic discussions and valuable suggestions. Dr. Aart Middeldorp’s ¢{rue encouragements much
increased the author’s motivation to complete this work. The author is obliged to Kenroku Nogi for his
encouragement and comients. Last but not least, the author is grateful to Dr. Eiichi Maruyama, the former
general manager of Hitachi Advanced Research Laboratory, and Nobuyoshi Domen, the general manager of
Hitachi Systems Development Laboratory, who gave me the chance to start this work, and Dr. Shojiro Asai,
the general manager of Hitachi Advanced Research Laboratory, for providing the ideal research environment
for the author to continue his work.

References

[Abadi and Plotkin 90] Abadi, M. and G. D. Plotkin: A Per Model of Polymorphism and Recursive Types,
5th IEEE Conf. of Logic in Computer Science, 355-365 (1990).

[Amadio 91] Amadio, R. M.: Recursion over Realizability Structures, Inform. Comput. 91, 55-85 (1991).
[Barendregt 81] Barendregt, H. P.: The Lambda Calculus: Its Syntaz and Semantics, North-Holland, Ams-
terdam (1981).

(Bruce 92] Bruce, K. B.: A Paradigmatic Object-Oriented Programming Languages: Design, Static Typing
and Semantics, Technical Report CS-92-01, Williams College (Jan. 31, 1992).

(Bruce and Longo 88] Bruce, K. B. and G. Longo: A Modest Model of Records, Inheritance and Bounded
Quantification, 8rd IEEE Conf. of Logic in Computer Science, 38-50 (1988); a revised version appeared in
Inform. Comput. 87, 196-240 (1990).

[Bruce and Mitchell 92] Bruce, K. and J. C. Mitchell: PER Models of Subtyping, Recursive Types and
Higher-order Polymorphism, 16th ACM Symp. on Principles of Programming Languages, 316-327 (1992).
[Cardelli 84] Cardelli, L.: A Semantics of Multiple Inheritances, in [KMP 84}, 51-67; a revised version
appeared in Inform. Comput. 76, 138-164 (1988).

[Cardelli and Mitchell 91] Cardelli, L. and J. C. Mitchell: Operations on Records, Math. Struct. Comput.
Sci. 1, 3-48 (1991).

[Cardelli and Wegner 85] Cardelli, L. and P. Wegner: On Understanding Types, Data Abstraction, and
Polymorphism, ACM Comput. Surv. 17 (1985).

[Cardone 91] Cardone, F.: Recursive Types for Fun, Theoret. Comput. Sci. 83, 29-56 (1991).

{Ehrig and Mahr 85] Ehrig, H. and B. Mahr: Fundamentals of Algebraic Specification 1, Springer-Verlag,
Berlin (1985).

{(KMP 84] Kahn, G., D. B. MacQueen, and G. Plotkin (eds.): Semantics of Data Types, Proceedings of
International Symposium, Sophia- Antipolis, June 1984, Lecture Notes in Computer Science 173, Springer-
Verlag, Berlin (1984). '
(Lehmann and Smyth 81] Lehmann, D. J. and M. B. Smyth: Algebraic Specification of Data Types: A
Synthetic Approach, Math. Syst. Theory 14, 97-139 (1981).

{Martini 88] Martini, S.: Bounded Quantification Have Interval Models, 1988 ACM Conf. on LISP and
Functional Programming, 164-173 (1988). k

[Martin-Lof 84] Martin-Lof, P.: Intuitionistic Type Theory, Bibliopolis, Napoli (1984).

[Mitchell and Plotkin 85] Mitchell, J. C. and G. D. Plotkin: Abstract Types Have Existential Type, 12th
ACM Symp. on Principles of Programming Languages, 37-51; a revised version appeared in ACM Trans.
Prog. Lang. Syst. 10, 470-502 (1988).

[MTH 90] Milner, R. et al.: The Definition of Standard ML, MIT Press, Cambridge MA (1990).

19

20

[NPS 90] Nordstrom, B. et al.: Programming in Martin-Lof’s Type Theory, Clarendon Press, Oxford (1990).
(Pierce 91] Pierce, B. C.: Basic Category Theory for Computer Scientists, MIT Press, Cambridge MA (1991).
[Plotkin 77] Plotkin, G. D.: LCF Considered as a Programming Language, Theoret. Comput. Sci. 5, 223-255
(1977).

[Plotkin 78] Plotkin, G.: T* as a Universal Domain, J. Comput. Syst. Sci. 17, 209-236 (1978).

[Plotkin 83] Plotkin, G.D.: Domains, Advanced Postgraduate Course Notes, Department of Computer Sci-
ence, University of Edinburgh (1983).

[Reynolds 83] Reynolds, J. C.: Types, Abstraction and Parametric Polymorphism, Information Processing
83 (R. E. A. Mason ed.), 513-523, North-Holland, Amsterdam (1983).

[Reynolds 85] Reynolds, J. C.: Three Approaches to Type Structures, TAPSOFT-CAAP ’85 (H. Ehrig et
al. eds.), Lecture Notes in Computer Science 185, 97-138, Springer- Verlag, Berlin (1985).

[Sannella and Tarlecki 89] Sannella D. and A. Tarlecki: Toward Formal Development of ML Programs:
Foundations and Methodology — Preliminary Version, Technical Report ECS-LFCS-89-71, Laboratory for
Foundations of Computer Science, Department of Computer Science, University of Edinburgh (1989).
[Thompson 91] Thompson, S.: Type Theory and Funcional Programming, Addison-Wesley, Reading MA
(1991). '

