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Abstract

The $\pi$-calculus offers an attractive basis for concurrent programming languages. It is smal, elegant,
and well understood, and it supports, via simpk encodings,a wide range of high-level constructs such
as structured data, higher-order programming, concurrent control structures, and objects. Moreover,
familiar type systems for the $\lambda$-calculus have direct counterparts in the $\pi$-calculus, yielding strong, static
typing for high-level languages defined in this way.

1 Introduction
Though it originated some years before computer science itself, the $\lambda$-calculus has come to be regarded as
a canonical calculus capturing the notion of sequential computation in an elegant, mathematically tractable
presentation. Many of the fundamental issues of sequential programming languages can profitably be studied
by considering them in the more abstract setting of the $\lambda$-calculus. Conversely, the $\lambda$-calculus has strongly
influenced the design of many programming languages, notably McCarthy’s LISP $[McC78]$ .

Milner, Parrow, and Walker’s $\pi$-calculus [MPW92, Mi191] represents a step towards a canonical calculus
for concurrent computation. It is a synthesis and generalization of many years of work on CCS and its relat-
ives [Mi180, Mi189, etc.]. In the concurrency community, the $\pi$-calculus and similar “modern process calculi”
are being studied aggressively, and a substantial body of theoretical results has already been accumulated.
The $\pi$-calculus in its present form cannot be described as a canonical calculus for concurrent computation.
But what is more important for present purposes, though more difficult to quantify, is the fact that the
$\pi$-calculus appears to be a much more computationally complete model of real-world concurrent programs
than previous formal theories of concurrency.

For example, CCS can be extended to include communication of structured data, but even so, it still
lacks the ability to perform higher-order programming (the ability to send processes along channels). Thus,
although there are several programming languages whose facilities for communication are based on CCS, we
cannot design a higher-order language using only CCS as its formal foundation. The $\pi$-calculus, on the other
hand, does support higher-order programming. The ability to pass channels as values between processes –its
defining characteristic – turns out to yield sufficient power to construct dynamically evolving communication
topologies and to express a broad range of higher-level constructs. Basic structured data such as numbers,
queues, and trees can be encoded as processes using techniques reminiscent of Church’s encodings in the
$\lambda$-calculus. Indeed, the $\lambda$-calculus itself can be encoded fairly straightforwardly by considering $\beta$-reduction
as a kind of communication. Thus, the distance between the $\pi$-calculus and a high-level notation suitable
for general-purpose concurrent programming should be of the same order of magnitude as the step from
A-calculus to early dialects of LISP.

We have reached a point where a foundational calculus is sufficiently powerful to begin experimenting
with higher-level designs. We can now ask the question: “If LISP (or ML) is a language based directly on
the $\lambda$-calculus, then what might a language based directly on the $\pi$-calculus look like?”
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2 The Pure Pi-Calculus
The active agents of the $\pi$-calculus are processes, which exchange information over channels. The most
interesting process constructors are the input and output prefixes $x?y$ and $x!v$ . A process of the form $x$ ! $vP$

outputs the value $v$ along the channel $x$ and then continues as P. This communication is synchronous: $P$ is
prevented from executing until the communication on $x$ has completed. Symmetrically, the process $x?yQ$

waits to receive a value along $x$ , continuing as $Q$ where the value received is substituted for the formal
parameter $y$ .

The composite process expression

$x$ ! $vP$ $|$ $x?yQ$

denotes $x$ ! $vP$ and $x?yQ$ running in parallel. Since both an input and an output on $x$ are enabled, the two
subprocesses may interact, and the whole system evolves to

$–>P$ I $Q\{v/y\}$

where–$>denotes$ the interaction and $Q\{v/y\}$ is the capture-avoiding substitution of $v$ for $y$ in Q.
This style of synchronous rendez-vous on channels is well known from numerous concurrent programming

languages [$oD80$ , INM84, Ho183, Car86, Rep91, Mat91, GMP89, Ram90, Ber93, etc.] and earlier process
calculi [Mi180, Mi189, etc.]. However, unlike its predecessors, the $\pi$-calculus’s channels not only provide the
means of communication, but are also the values exchanged during communication. This is the source of
the $\pi$-calculus’s surprising flexibility. In the following example we send the channel $v$ along $x$ ,

$x$ ! $vP$ 1 $v?wQ$ 1 $x?yy$ ! $zR$

$->P$ $|$ $v?wQ$ $|$ $v$ ! $zR\{v/y\}$

enabling the rightmost process to use $v$ to send the value $z$ to the process in the middle:

$–>P$ $|$ $Q\{z/w\}|$ $R\{v/y\}$

New channels are created using the declaration form let new $x$ in $P$ end. In the following example,
this enables us to create a new channel $v$ , initially private to the two processes on the left:

let new $v$ in $x$ ! $vP|V^{?}WQ$ end $|$ $x?yy$ ! $zR$

Informally, the new construct is evaluated by replacing the bound name $v$ with a globally unique channel
constant $k$ , yielding the composite process

$–>x$ ! $kP\{k/v\}$ $|$ $k?wQ\{k/v\}$ $|$ $x?yy$ ! $zR$

which, as before, reduces to

$–>P\{k/v\}$ $|$ $k?wQ\{k/v\}$ $|$ $k$ ! $zR\{k/y\}$ .
In the end, all three subprocesses in the system have access to the channel $k$ . The semantics of the new
construct guarantees that $k$ is distinct from any other channels in the system; in particular, when $k$ is
transmitted to $R$ it cannot be confused with any channels already accessible to R.

For completeness, we provide a constant process skip that does nothing at all. When sk$ip$ appears at
the end of an input or output, it is usually omitted: $x$ ! $y$ skip is written just $x$ ! $y$ .

We also use the let declaration form to write recursive process definitions. Recursive definitions are
essential, since they give us the ability to express repetitive, possibly infinite, behavior. The ones we provide
are very similar to those used in CCS and early presentations of the $\pi$-calculus. The following example defines
a recursive process parameterized on a channel $a$ . When invoked, it outputs $v$ along whatever channel is
provided as its argument and then calls itself using the process application form X (a). One copy of $X$ is then
started, supplying $w$ as argument. The overall behavior of the example is to output the channel $v$ along $w$

infinitely often.
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let
def X(a) $=a!v\chi(a)$

in
X (w)

end

Mutually recursive definitions are also allowed:

let
def X a $=$ . . . X (v) $\ldots Y(w)\ldots$

and $Y$ a $=$ . . X $(a)$ . $.Y(b)\ldots.$ .
in

X (w)

end

We allow a simple version of non-deterministic choice, often called guarded choice: an expression of the
form select $P$ or $Q$ end can behave like either $P$ or $Q$ , where $P$ and $Q$ must both begin with either input or
output prefixes. For example,

select $x!yP$ or $x!zQ$ end

can transmit either $y$ or $z$ along $x$ , becoming $P$ in the first case and $Q$ in the second. In general, a select may
specify any number of alternative communications: when one occurs, all the other branches of the select
are discarded. We consider the simple input and output prefixes $x?yP$ and $x!vP$ to be abbreviations for
the unary selection forms select $x?yP$ end and select $x$ ! $vP$ end.

This completes our summary of the pure $\pi$-calculus. Our description has intentionally been kept rather
informal, both to emphasize its operational aspects and to avoid unnecessary formal detail in this survey
paper. More rigorous accounts of $\pi$-calculus semantics can be found in [MPW92, Mi191, Mi190]. Also, the
higher-level notation we describe in the following sections should not be taken as an actual programming
language in its own right: we have chosen a small set of features that can be used together to tell a coherent
story illustrating the power and elegance of a ”bottom-up” approach to concurrent language design. A
full-scale language design based on this core is underway. An early version, described in [Pie93], is available
electronically with a prototype implementation. Our current implementation efforts emphasize portability,
simulating concurrency on uniprocessors. The efficient implementation of $\pi$-calculus programs on distributed
architectures poses significant compilation challenges.

3 Values
At this point, we find ourselves in approximately the same position as a programmer using the pure, untyped
$\lambda$-calculus. In principle, everything we need for writing any conceivable program can be built up from the
elements at hand: data structures, higher-order programs, and even the $\lambda$-calculus can be encoded in the pure
$\pi$-calculus [Mi191, San92, Mi190]. For example, an extended language where a whole tuple of values can be
exchanged at each communication step can easily be “compiled“ into the pure calculus. The communication
of a tuple

$xt[u,v]P$ $|$ $x?[y,z]Q$
$–>P$ $|$ $Q\{u/y\}\{v/z\}$

is translated into an initial communication of a fresh “private name,” on which the elements of the tuple are
then exchanged (the channel names $p$ and $q$ are chosen fresh):

let new $p$ in $x!pp!up!vP$ end $|$ $x^{?}qq^{?}yq^{?}zQ$

$–>x$ ! $kk!uk$ ! $vP$ $|$ $X^{?}qq^{?}yq^{?}zQ$ ( $k$ a fresh constant)

$–>k!uk!vP$ $|$ $k?_{y}k?_{Z}Q$

$–>P$ $|$ $Q\{u/y\}\{v/z\}$
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The fact that $p$ is created fresh and used only for this exchange guarantees that this sequence of values
cannot become interleaved with the elements of another tuple being sent along $x$ by some other process.

Of course, for notational convenience (and perhaps also for efficiency) we certainly want to write $x$ ! $[u.v]$

instead of performing this encoding each time by hand. But, as in the $\lambda$-calculus, we can gain useful intuition
from such encodings: if we provide a high-level notation for tuples that is behaviorally indistinguishable
from the encoding, we may rest assured that its introduction does not create internal inconsistencies in the
language semantics. Moreover, much of the formal theory of such high-level features can be obtained via
their translation into the more tractable lower-level language.

In fact, instead of extending the syntax of communication directly just with tuples, it is convenient to
introduce a more general syntax for values. For the moment, a value can be either a channel or a tuple of
values; on each output, a single value is transmitted. Similarly, each input receives a value; in the case where
a tuple is expected, its components may be named separately using a pattern:

PREFIX : $:–$ ID ’ ! ’ VAL PROC
ID ? PAT PROC

VAL : $:\underline{-}$ ID
’ $[ <<VAL . . . >> ]$ ’

PAT : $:=$ ID
$)$ $[ <<PAT . . . ’ >> ]$ ’

(Here ID ranges over channel names, VAL over values, PAT over patterns, and PROC over process expressions,
and $<<VAL\ldots$ ‘ , $‘>>$ stands for a sequence of zero or more values separated by commas. Our meta-
syntactic conventions are listed in Appendix $A$ , along with a complete grammar for the core language.)

Tuple values and tuple patterns are used symmetrically for building and destructing tuples. The pattern
$[y,z]$ in the process $x?[y,z]Q$ is a binder for two variables $y$ and $z$ , whose scope is Q. Arbitrarily nested
patterns may be used: a pattern such as $[[a,b],c]$ matches the output of a value like $[[u.v],w]$ , and binds
the variables $a,$ $b$ , and $c$ in the expression that follows it.

Communication of arbitrary values can be encoded in the pure $\pi$-calculus via a translation which is not
much more complicated than the one given above for tuples. More details about encoding data are given in
[Mi191].

Now, having distinguished different forms of data that can be communicated between processes, we must
face the possibility that a value being transmitted may not have the form expected by the receiver: a run-
time type error may occur. As in the $\lambda$-calculus, we can adjoin to our untyped language a simple type
system capable of detecting this sort of mistake. The crucial step here is the concept of a channel type,
which describes the values that may be transmitted along some channel:

TYPE : $:=$ ‘ Chan’ TYPE
$[ <<TYPE . . . ) >> ]$

Tuple values have types like $[T, \ldots ,T]$ , while an actual channel has a type like Chan(T), where $T$ is the
type of the values it carries. We make the crucial assumption that each channel carries values of a single
type $T$ , which does not vary over time; this ensures that typing is a static property of process expressions.

The definitions of values, patterns, and types can easily be extended to other sorts of data familiar
from sequential programming languages: labeled records, integers, booleans, and so on. These are all
included in the syntax and typing rules listed in the appendices. Some other useful extensions, such as
subtyping, recursive types, and polymorphism, are described (in various combinations) in the literature
(c.f. [Mi189, Gay93, PS93, VH93, Tur93]). Indeed, recent work on static type systems for sequential object-
oriented languages (c.f. [Car88, Bru93, PT93]) indicates that a general treatment of the object-oriented
features that we introduce in Section 7 might be based on a combination of all of these features.

4 Process Typing
A type system ensuring the absence of run-time errors can be built using techniques familiar from $\lambda$-calculus
and functional programming languages. Since processes do not reduce to values, the basic judgement of the
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system is simply $\Delta\vdash P$ , which can be read, “The process $P$ obeys the constraints on its free channels stated
by the context $\Delta$ .“

To avoid algorithmic issues associated with type inference, we assume that each binding occurrence of a
channel name is annotated with a type:

PAT : $:=$ ID ‘ : ‘ TYPE
$[ <<PAT . . . >>)]$ ’

DEF : $:=$ ‘new’ $<<ID$ ’ : ‘ TYPE . . . ‘ , $‘>>$

The rules for well-formedness of processes are straightforward. For example, the rule for output prefixes
states that an expression $x$ ! V $P$ is well formed if $x$ is a channel (as opposed to a tuple, integer, etc.)
carrying values of type $T$ , if furthermore the value being transmitted has type $T$ , and if the remainder $P$ is
well formed.

$\frac{\Delta\vdash x:Chan(T)\Delta\vdash V:T\Delta\vdash P}{\Delta\vdash x!VP}$

Similarly, an input $x?pP$ is well formed if $x$ is a channel carrying values of type $T$ , the form of the pattern
$p$ matches $T$ , and $P$ is well formed under the assumptions from $\Delta$ plus the new bindings introduced by $p$ .

$\frac{\Delta\vdash x:Chan(T)\Delta\vdash p:\Delta’,T\Delta\cup\Delta’\vdash P}{\Delta\vdash x?pP}$

(Here $\Delta\cup\Delta’$ denotes concatenation of contexts, giving priority to the bindings in $\Delta’$ . The auxiliaryjudgement
$\Delta\vdash p:\Delta’,$ $T$ determines the (type’ of the pattern $p$ and the types of the names that it binds.)

A let-expression let $d$ in $P$ end, where $d$ is a sequence of new and def declarations, is well formed if its
body $P$ is well formed in the extended environment specified by $d$ , which is determined using the auxiliary
judgement $\Delta\vdash d:\Delta’$ .

$\frac{\Delta\vdash d:\Delta’\Delta\cup\Delta’\vdash P}{\Delta\vdash 1etdinPend}$

The process skip is always well formed: since it has no behavior at all, it cannot misbehave. The parallel
composition of two processes is well formed if they both are –the consistency of possible communications
between them is ensured by checking that both are compatible with the same context.

$\frac{\Delta\vdash P_{1}\Delta\vdash P_{2}}{\Delta\vdash P_{1}|P_{2}}$

Similarly, a guarded choice is well formed if each of the choices is well formed:

$\frac{\Delta\vdash s_{1}}{\Delta\vdash selects_{1}and}$

. . .
$\Delta\vdash s_{n}ands_{n}end$

Appendix $B$ presents complete sets of rules for well-formedness, value typing, and the auxiliary judgements,
covering all the constructs we have described so far as well as the higher-order features introduced in the
following section.

We can prove the soundness of this typing system using the combination of a subject-reduction theorem
(stating that reduction preserves well-formedness) and a simple theorem stating that a well-formed process
cannot (immediately misbehave“ :

Theorem: If $\Delta\vdash P$ and $P->P’$ ( $P$ reduces to $P’$ ) then $\Delta\vdash P’$ .
Theorem: If $\Delta\vdash P$ then $P^{)}s$ next step cannot result in a run-time type failure.

Formal proofs of these theorems can be found in [VH93] for a system extended with recursive types.
Proofs for a system including both recursive types and polymorphism appear in [Tur93], and for a system
with recursive types and subtyping in [PS93].

As in the simply typed $\lambda$-calculus, simply typed $\pi$-calculus processes have principal types [Gay93, Tur93,
VH93]. This leads naturally to an equivalent of ML-style polymorphism [DM82] for the $\pi$-calculus extended
with let. (The well-known problematic interaction between ML type inference and imperative features does
not arise here because the bodies of process definitions are not evaluated until they are used.) We are also
exploring strategies for partial type inference in the presence of higher-order polymorphism.
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5 Higher-Order Programming
We now consider the addition of higher-order programming features to our language. A natural approach,
which has often been followed in the past [Rep91, BMT92, Mat91, GMP89, Ho183, Car86, and many others],
is to integrate concurrency primitives with the $\lambda$-calculus (or, in some cases, ML). However, the functional
sublanguage tends to dominate the character of languages designed in this way. This runs contrary to the
aims of the present experiment, which are to investigate high-level designs retaining the essential character of
the pure $\pi$-calculus. To this end, we choose an alternative notation called the higher-order $\pi$-calculus [San92],
which remains closer in spirit to the original system.

In the pure $\pi$-calculus, the only entities that can be passed on channels are channels. We have seen how
to extend this to allow structured data, where the extension can be explained by means of a straightforward
compilation into the pure $\pi$-calculus. Sangiorgi [San92] demonstrates that it is also possible to extend
communication to allow processes to be sent along channels. Moreover, this extension can again be explained
by mean of a straightforward compilation into the pure $\pi$-calculus. To accomplish this without notational
confusion, it is important to distinguish two fundamental notions:. processes, which are ready to run with no additional outside stimulus, and. process abstractions, which cannot run until they are triggered by some other process.

A process abstraction is a value formed by prefixing a process expression with a pattern (the keywords abs
and $=resolve$ any parsing ambiguities):

VAL : $:-$

‘abs’ PAT $=$ ) PROC

A process abstraction is triggered by applying it to a value:

PROC : $:=$

ID VAL

For example, we can defer the evaluation of $P$ by abstracting it on the empty tuple $[]$ . The resulting
abstraction, abs $[]$ $=P$ , can then be sent along the channel $x$ and activated by applying it to the empty
tuple:

$x$ ! (abs [] $-p$ ) $Q$ $|$ $x?yy$ $[]$

$–>Q$ $|$ (abs $[]$ $=P$ ) $[]$

$–>Q$ $|$ $P$

Abstracting a process on a non-trivial pattern allows us to create parameterized process abstractions.
The following example sends along $x$ a process abstraction which is parametric in a and $b$ . The receiver of
such an abstraction may activate it with different arguments by applying it to different values:

$x$ ! (abs $[a,b]=P$ ) $Q$ $|$ $x?y$ ( $y$ [vl, $v2]|y[v3,v4]$ )
$–\rangle Q$ $|$ (abs $[a,b]=P$ ) [vl, $v2$] $|$ (abs $[a,b]=p$ ) $[v3,v4]$
$–\rangle Q$ $|$ $P\{vl/a\}\{v2/b\}$ $|$ $P\{v3/a\}\{v4/b\}$

Process abstractions and applications can be translated straightforwardly into our low-level language.
For example, the compilation of the previous example is:

let
new trigger
def Server $[]$ $=$ trigger?[a,b] $(p|Server[])$

in
Server $[]$ $|x$ ! trigger $Q$

end
$|x^{?}y$ ( $y$ ! [vl, $v2]|y$ ! [v3, $v4]$ )
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Instead of sending a process abstraction along $x$ , we send a fresh channel named trigger. Then, since we
are representing process abstractions by channels, we replace the application of $y$ to a value by an output
prefix which sends the value along $y$ . Thus, the applications $y$ [vl, $v2$] and $y[v3,v4]$ are compiled to the
output prefixes $y$ ! [vl, $v2$] and $y$ ! [v3, $v4$] respectively. The compilation also creates a Server process that,
upon receipt of a value along the trigger channel, activates the process $P$ , thus mimicking the result of
applying a process abstraction. The server requires a recursive definition, since it must be able to handle
any number of outputs on the trigger channel.

Abstractions and process definitions are very similar constructs. Indeed, they can be unified, allowing
recursively defined processes to be used as higher-order values. (Compare Standard ML [MTH90], in which
recursively defined functions and anonymous function abstractions are treated uniformly.)

The compilation of abstractions and applications guides the formulation of their typing rules. We can
either extend the set of types with abstraction types, Abs (T), or we can officially view abstractions in terms of
their encodings, conveniently confusing application with output. For brevity, we choose the latter approach
here; in a complete programming language design, it is not clear which is preferable.

6 Returning Results
Assuming the usual infix operations on integers, we can write the factorial function using our programming
language:

def Fact [$x$ : Int, $res$ : Chan(Int)] $=$

if $x==0$ then $res$ ! 1 else
let new $r$ : Chan(Int) in

Fact $[x-1, r]$ $|r?ires$ ! $(x*i)$
end

end

This definition of Fact expects two arguments: $x$ , the number we wish to take the factorial of, and $res$ , the
channel on which to send the final result. The problem we encounter is that whenever we wish to calculate
some intermediate value such as the factorial of $x-l$ , we need to explicitly create a temporary channel to
receive the result (here, r). Then we have to explicitly wait for the result (the input prefix $r?i$). In larger
programs this quickly becomes cumbersome.

ML and other functional languages have demonstrated the convenience of positional notation in exactly
this sort of situation. We therefore introduce abbreviations which allow us to make use of positional notation.
We introduce the type abbreviation $T->T$ , which stands for Chan [$T$ , Chan(T)]. For example, we can now
give Fact the type Int $->$ Int. More importantly, we extend our syntax of values with applications:

VAL : $:=$

VAL VAL

The typing rule for application is exactly as we would expect, using the abbreviation $T->T$ ;

$\Delta\vdash V$ : $T’->T$ $\Delta\vdash V’$ : $T’$

$\Delta\vdash VV’$ : $T$

Using positional notation, we can now rewrite our factorial example much more concisely:

def Fact [$x$ : Int, $res$ : Chan(Int)l $=$

if $x==0$ then $res$ ! 1 else $res$ ! ( $x*$ Fact $(x-1)$ ) end

It is important to note that this result-passing convention only provides special syntax to abbreviate the use
of processes that return results: there is no special syntax for defining processes that return results. The new
definition of Fact has the same formal parameters as before, including the $res$ channel. The programmer
still has to explicitly return a result on res.

One advantage of this approach is that a process that needs to return a result can pass the responsibility
onto another process. This is reminiscent of continuation-passing style in the $\lambda$-calculus, and also of the
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delegation operation in some concurrent object-oriented languages. For example, the process $Y$ below is
expected to return an integer result on res. $X$ also returns integer results on $r$ . Thus, $Y$ can make X
responsible for returning its result by passing the $res$ channel on to X. This enables $Y$ to continue with some
other work, knowing that $X$ will deal with sending the result on res.

def X [$x$ : Int, $r$ : Chan(Int)] $=$ . . . $r$ ! $v$ . . .

def $Y$ [a,b,c: Int, $res$ : Chan(Int)] $=X[a+b*c,res]|$ . . .
This part of the $\pi$-calculus language involves a number of quite subtle design tradeoffs and is the subject

of ongoing research. In particular, there are some subtle problems with sequentiality. It is simpler to see
these in terms of the original definition of Fact, since there we see Fact’s synchronization behavior written
explicitly. The crucial decision that we have made is that (in the case where $x$ is non-zero) we create
a new process Fact $[x-1, r]$ that runs in parallel with the process $r?ires$ ! $(x*i)$ . However, the
process $r?ires$ ! $(x*i)$ cannot execute until Fact [$x-1$ , rl sends a result along $r$ , so we actually have
a sequential implementation of the factorial function. For more complicated functions, there might well be
useful work which we could be doing in parallel with the computation of a value. One possible solution to
these problems with sequentiality would be to base our high-level language on the more flexible synchronous
$\pi$-calculus [Mi193], refining the above result-passing scheme to support a mechanism similar to Multilisp
futures [Ha185].

7 Concurrent Objects

Another, more speculative, extension is high-level syntax for grouping related services so that they can be
manipulated as a unit. In this section we sketch the essential ideas behind this extension. A full design is in
progress.

A server process is one that communicates with $itsclients$
)

via some fixed set of request channels; for
example, a buffer with one channel for inserting elements and one for removing them is a server. The
only difference between a server and an arbitrary process is that a server’s set of request channels remains
fixed over time. Although it may sometimes exchange messages over other, transient channels (for example,
sending a reply back to a client along a channel provided as part of a request), the set of channels that clients
use to initiate such exchanges is always the same.

Many concurrent programs can naturally be expressed in terms of interacting servers. However, servers
are not very convenient for higher-order programming: if a client process wants to send a reference to a buffer
server to another client, it must pass two parameters separately; to send a reference to a more complicated
server, many more might be needed. To render higher-order programming with servers practical, we need
to be able to refer to a server by a single handle.

To do this, we can interpose a simple name server process between clients and the original server. The
name server provides a single request channel, which clients can interrogate to find the request channels of
the original server. For example, the name server for a buffer process maps the labels “get“ and ”put“ into
the actual request channels for the buffer’s services; in effect, it is simply a record of channels with two fields
get and put. The name server’s single request channel forms a convenient handle for the buffer.

A server together with an associated name server form a natural and very simple notion of object. To
build and manipulate such objects, we extend our existing syntactic categories with some new high-level
constructs. First, we add a type constructor Object:

TYPE : $:=$

‘Object’ ) (‘ $<<ID$ ‘ : ‘ TYPE . . . ‘ , $‘>>$ ‘) ‘

(The syntax and typing rules in the appendices omit the forms introduced in this section. For present
purposes, it suffices to interpret Object (xl:Tl, $x2$ : T2) as the record type {xl:Tl, $x2$ : T2}.)

For example, the type

type IntList $=Object($
empty: $[]$ $->$ Bool,
fold: $[[Int, Int]->Int$ , Int] $->$ Int

$)$
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says that integer-list objects have request channels named empty and fold with the given types. Clients can
use empty to find out whether a given list is empty; fold is used to apply a given binary function to all the
elements of the list, beginning with a given initial value ($folding+with$ initial value 100 along a list with
elements 1, 2, and 3 yields 106).

Objects are constructed using the declaration form obj ect:

DEC : $:=$

‘ object ‘ ID ‘ with’ $<<ID$ ‘ : ‘ TYPE . . . ‘, $‘>>$ ‘ be’ PROC ‘ end ‘

For example, an empty integer-list object is declared by:

object nil with
empty: $[]->Boo1$ ,
fold: $[[Int,Int]->Int,$ $Int$ ] $->Int$

be
let ready $[]$ $=$

select empty? [ $[],r$ : Chan (Bool)]

$r!true|ready[]$
or fold? [ $[f$ : [Int, $Int]->Int,$ a: Int], $r$ : Chan (Int)]

$r!a|ready[]$
end

in ready $[]$ end
end

This declaration binds the channel name nil to the record {empty$=empty$ ,fold$=fold$ }, where empty and
fold are newly created channels, local to the body of the declaration. The object’s behavior is specified by
the body (the let expression), which repeatedly accepts requests on either empty or fold.

A client process invokes a service of an object by first communicating with the name server to find the
appropriate request channel and then sending the actual request. This sequence of three communications
(send-receive-send) is abbreviated using the following constructs:

PREFIX : $:=$ . . .
ID ) $<-$ ID VAL [PROC]

VAL : $:=$

ID ) $<-$ ID VAL

(As usual, the PREFIX case is for requests that do not return results and VAL is for those that do.) For
example,

if nil $<$ -empty $[]$ then . . . else . . . end

sends the request empty (with no arguments) to the object nil and switches on the result. Nonempty lists
can now be built with a cons operation:

def cons [[$h$ ; Int, $t$ : IntList], $res$ : Chan(IntList)l $-$

let
object 1 with

empty: $[1->Boo1$ ,
fold: $[[Int,Int]->Int$ , Intl-$>lnt$

be
let ready $[]$ $=$

select empty? [ $[],r$ : Chan(Bool)]

$r!false|ready[]$
or fold? [ $[f$ : [Int, $Int]->lnt,$ a: Int], $r:Chan(Int)$ ]

$t<-fold[f,f[h,a],r]$ $|$ ready $[]$

end
in ready $[]$ end

end
in

$res!1$
end
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Given an integer $h$ and an existing list $t$ , cons build a new object 1 and sends it back on the result channel
res. As before, the new object responds repeatedly to empty and fold requests. It returns false in
response to empty, and responds to fold $[[f,a],r]$ by applying $f$ to $[h,a]$ and invoking the fold service
of $t$ , passing $f[h,a]$ as initial value and its own result channel $r$ as the result channel of the recursive call.
Another request can be processed while the fold operation on $t$ is still in progress.

This simple account of objects and their types leaves out several important features, most importantly
subtyping and the definition of recursive object types. A full treatment based on recent type systems
for sequential objects [Car88, Bru93, PT93] is in progress. We have also chosen to omit any mechanism
for inheritance for the time being; its status in concurrent object-oriented languages is still a matter of
controversy.
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A Syntax Summary

We rely on the following meta-syntactic conventions: The possible forms of each production are listed on
successive lines. Nonterminals are written in uppercase; keywords and symbolic constants appear inside
quotes. An expression of the form $<<XYZ$ . . . ‘ sep‘ $>>indicates$ a list of zero or more occurrences of the
sequence X $YZ$ , separated (in case there are two or more occurrences) by sep. For example, the production

‘new’ $<<ID$ ‘ : ‘ TYPE . . . ‘, $’>>$

allows the following examples:

ner
new $x$ : $[]$

new $x$ : $[]$ , $y:[]$

The syntactic forms of our core language are as follows:

PROC : $:\Leftrightarrow$ PROC ‘ $|$ ‘ PROC
’ skip’
‘let’ DEC ‘in’ PROC ‘end’
‘ select’ $<<PREFIX$ . . . ‘ or‘ $>>$ ‘ end ‘

ID VAL
‘if‘ VAL ‘then’ PROC ‘else’ PROC ‘end’

PREFIX : $:=$ ID ’ ! 2 VAL PROC
ID ? PAT PROC

DEC : $:=$ ‘new’ $<<ID$ ‘ : ‘ TYPE . . . ) , $‘>>$

‘def ‘ $<<ID$ ABS . . . ‘ and ‘ \rangle \rangle

’local‘ DEC ‘in’ DEC ‘end‘
DEC DEC
‘val‘ PAT $=$ VAL

VAL : $:=$ ID
$[ <<VAL . . . ) >> ])$

‘ {’ $<<ID$ $‘=$ VAL . . . $)$ $)>>$ ‘}’
VAL ‘. ‘ ID
INT
BOOL
‘abs’ ABS
VAL VAL
‘ (’ VAL ‘) ‘

PAT : $:-$ ID ’ :’ TYPE
$)$ $[ <<PAT . . . ) >>)]$ ’

’{’ $<<ID$ $’=)$ PAT . . . ’ , $’>>$ })

TYPE ‘Chan’ TYPE
$)$ $[ <<TYPE . . . >>)]$
‘ {’ $<<ID$ ‘ : ‘ TYPE . . . ‘ , $‘>>$ ‘}’
‘ Int’
‘Bool ‘

ABS : $:=$ PAT $’\approx$ PROC

We adopt the standard convention that two processes are considered identical if they differ only by a
renaming of bound variables. We also require that the set of variables bound in either a pattern, mutually
recursive definition, or new declaration must be distinct.
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B Summary of Typing Rules

B.l Processes

$\frac{\Delta\vdash P_{1}\Delta\vdash P_{2}}{\Delta\vdash P_{1}|P_{2}}$

$\Delta\vdash skip$

$\frac{\Delta\vdash s_{1}}{\Delta\vdash selects_{1}and}$. . . $\Delta_{ands_{n}}\vdash s_{n}end$

$\frac{\Delta\vdash d:\Delta’\Delta\cup\Delta’\vdash P}{\Delta\vdash 1etdinPend}$

$\frac{\Delta\vdash V:Boo1\Delta\vdash P_{1}\Delta\vdash P_{2}}{\Delta\vdash ifVthenP_{1}e1seP_{2}end}$

$\frac{\Delta\vdash x:Chan(T)\Delta\vdash V:T}{\Delta\vdash xV}$

B.2 Prefixes

$\frac{\Delta\vdash x:Chan(T)\Delta\vdash p:\Delta’,T\Delta\cup\Delta’\vdash P}{\Delta\vdash x?pP}$

$\frac{\Delta\vdash x:Chan(T)\Delta\vdash V\sim T\Delta\vdash P}{\Delta\vdash x!VP}$

B.3 Declarations
$\frac{\Delta\cup\{x_{1}:T_{l},\ldots.’.x_{n}:T_{n}\}\vdash a::\tau_{1}for.eachi}{\Delta\vdash defx_{1}a_{1}and.andx_{n}a_{n}:\{x_{1}:T_{1},..,x_{n}:T_{n}\}}$

$\Delta\vdash newx_{1}$ : Chan$(T_{1}),$
$\ldots,$

$x_{n}$ : Chan$(T_{n})$ : { $x_{1}$ : Chan$(T_{1}),$
$\ldots,$ $x_{n}$ : Chan$(T_{n})$ }

$\frac{\Delta\vdash p:\Delta,T\Delta\vdash V:T}{\Delta\vdash va1p=V:\Delta}$

$\frac{\Delta\vdash d_{1}:\Delta_{1}\Delta\cup\Delta_{1}\vdash d:\Delta}{\Delta\vdash 1oca1d_{1}ind_{2}end:\Delta_{2}}$

$\frac{\Delta\vdash d_{1}:\Delta_{1}\Delta\cup\Delta_{1}\vdash d_{2}:\Delta_{2}}{\Delta\vdash d_{1}d_{2}:\Delta_{1}\cup\Delta_{2}}$
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B.4 Values
$\frac{\Delta\vdash V_{1}:T_{1}..\cdot.\Delta.\vdash.V_{n}:T_{n}}{\Delta\vdash[V_{1},.,V_{n}]:[T_{1))}T_{n}]}$

$\ovalbox{\tt\small REJECT}\Delta\vdash\{l_{1}=V_{1}, \ldots, l_{n}=V_{n}\}:\{l_{1}:T_{1},.,l_{n}:T_{n}\}\Delta\vdash V_{1}:T_{1}\Delta\vdash V_{n}.:.T_{n}$

$\frac{\Delta\vdash V:\{l_{1}:T_{1},\ldots,l_{n}:T_{n}\}}{\Delta\vdash V.l::\tau_{:}}$

$\underline{k}$a $constantoftypeK\Delta\vdash k:K$

$\Delta\vdash x;\Delta(x)$

$\frac{\Delta\vdash a:T}{\Delta\vdash absa:^{r}1}$

$\frac{\Delta\vdash V:T’->T\Delta\vdash V’:T’}{\Delta\vdash VV’:T}$

B.5 Abstractions
$\frac{\Delta\vdash p:\Delta’,T\Delta\cup\Delta’\vdash P}{\Delta\vdash p=P:Chan(T)}$

B.6 Patterns
$\frac{\Delta\vdash p_{1}.:.\Delta_{1},T_{1}\ldots.\Delta\vdash p_{n}:\Delta_{n},.T_{n}}{\Delta\vdash[]}$

$\ovalbox{\tt\small REJECT}\Delta\vdash\{=p\Delta_{1}\vdash.p_{1}:_{n}\Delta,T_{1}\Delta p_{n}:\Delta_{n},\ldots$

$\Delta\vdash x:T$ : $\{x;T\},T$
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