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Abstract

We developed an imperative reduction system called i-calculus which has imperative type
system. i-calculus has a representation of variable and assignment. The type system has
a representation of effects on variable that is allocation and value reading and assignment.
For an example of merit of imperative calculation model, We show an implementation of
imperative record type It is also shown some relation between imperative type and program
static analysis.

1 Introduction

Type theory is successful in functional prograInrning that is essentially based on $\lambda$ calculus.
Consequently, many good results of type theory in functional programming are not applicable
to imperative programming. There are many reason that imperative programming is impor-
tant. First of all, the great portion of real world software is written in imperative programming
languages. Another reason is that there are lot of works on the area of object oriented pro-
gramming and type theory. However, almost such works are done on functional object oriented
programming. Since object is an entity that can change its internal state, the notion of object
oriented computing can be well captured by a imperative computing.

One easy way of amendment is to introduce variable type (for example, ref type in ml)
and ignore effects on the variable. This is a good solution for programs almost functional,
but for programs almost imperative. Our goal is a type system that can represent effects on
variables such as assignment. We also need a calculation system with reduction. Because, a lot
of impressive results of type theory is related to reduction (such as normalization theorem or
formula as a type and normalization of proof as a reduction principle).

We achieved such goal by introducing a term that represents imperative effect. This term
works as a bridge between imperative calculation and imperative type.

2 Some works on Imperative calculus and imperative type sys-
tems

There are many works on calculus with assignment and imperative type systems. Some of them
are:

FX by Gifford et al (1987)
Call by Value, Effect Type system, No Reduction Semantics
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Forthys by Reynolds (1987)
Call by Name, Two-phase(Reduction+Execution) Semantics, Intersection Type

$\lambda- v- CS$ by Felleisen (1988)
Call by Value, Reduction Semantics, Untyped

Monad comprehension by Wadler (1990)

Single-threaded polymorphic lambda by Guzman et al (1990)

ILC(Imperative Lambda Calculus) by Swarup et al (1991)
Call by Name, Reduction Semantics

$\lambda var$ by Odersky et al (1992)
Call by Name, Reduction Semantics, Untyped

Only FX system has types of effect on variable, however FX doesn’t have reduction. In the
following section we see FX system and C-rewriting system briefly.

2.1 FX system

Kernel of FX system[l] is shown below. FX kernel is essentially a second order polymorphic
lambda calculus with re-writable memory region.

Kind::$=Region|$ Effect $|$ Type

$\rho\in Region$ $\tau\in Type$ $\epsilon\in Effect$

Effect:: $=Dvar|$ (ALLOC $\rho$ ) $|$ (READ $\rho$) $|$ (WRITE $\rho$ ) $|$ (MAXEFF $\epsilon^{*}$ ) $|$ PURE

Region::$=RCONST|$ Dvar $|$ (UNION $Region^{+}$ )

Type:: $=Dvar|$ (SUBR $(\tau)\epsilon\tau$ ) $|$ (POLY (Dvar: $Kind)\epsilon\tau$ ) $|$ (REF $\rho\tau$ )

FX term has a piar of separete types.

$e$ : Type ! Effect

One is a term type and the other is a effect type. FX inference rule is shown below.

(abstraction)

$\frac{A[xarrow\tau],B\vdash e:\tau’!\epsilon}{A,B\vdash(\lambda(x:\tau).e):(SUBR(\tau)\epsilon\tau’)!PURE}$

(application)
$A,$ $B\vdash e_{1}$ : (SUBR$(\tau_{1})\epsilon\tau_{2}$ ) ! $\epsilon_{1}$

$A,$ $B\vdash e_{2}$ : $\tau_{1}$ ! $\epsilon_{2}$

$A,$ $B\vdash(e_{1}e_{2}):\tau_{2}!$ (MXF $\epsilon_{1}\epsilon_{2}\epsilon$ )

(polymorphic abstraction)
$A,$ $B[darrow\kappa]\vdash e:\tau!\epsilon$

$\forall x\in FV(e).d\not\in FV(A(x))$

$\overline{A,B\vdash(A(d:\kappa).e):(POLY(d:\kappa)\epsilon\tau)!PURE}$
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(polimorphic application)
$A,$ $B\vdash e:(POLY(d:\kappa)\epsilon’\tau’)$ ! $\epsilon$

$B\vdash\delta:\kappa$

$A,$ $B\vdash(PROJe\delta):\tau’[\delta/d]!$ (MXF $\epsilon\epsilon’[\delta/d]$ )

(allocation)
$B\vdash\rho$ : REGION
$B\vdash\tau$ : TYPE

$\frac{A,B\vdash e:\tau!\epsilon}{A,B\vdash(NEW\rho\tau e):(REFp\tau)!(MXF\epsilon(ALLOC\rho))}$

(reading)
$A,$ $B\vdash e$ : (REF$p\tau$ ) $!\epsilon$

$A,$ $B\vdash$ (GET $e$ ) $:\tau!$ (MXF $\epsilon(READp)$ )

(writing)
$A,$ $B\vdash e_{1}$ : (REF $p\tau$ ) ! $\epsilon_{1}$

$A,$ $B\vdash e_{2}:\tau!\epsilon_{2}$

$A,$ $B\vdash$ (SET $e_{1}e_{2}$ ):UNIT! (MXF$\epsilon_{1}!\epsilon_{2}$(((WRITE $p)$ )

(effect masking)
$A,$ $B\vdash e:\tau!\epsilon$

$x\in FV(e)\Rightarrow d:REGION\not\in FV(A(x))$

$d:REGION\not\in FV(\tau)$

$\overline{A,B\vdash e:\tau!\epsilon[\psi/d]}$

2.2 C-rewriting system

C-rewriting system[2] is a previous version of successful $\lambda- v- CS[3]$ by Felleisen. C-rewriting sys-
tem is a kind of lambda calculus introducing labeled value $V^{n}$ and assignment to the labeled
value.

$x$ : variable
$n$ : label

$M$ $::=$ $x|\lambda x.M|\sigma X.M|$ MM $|V^{n}$

$V$ $;;=$ $\langle closure\rangle$

$X$ $;;=$ $x|V^{n}$

rewriting rule

The notion of context $C[]$ is introduced in order to controle the order of calculation.

$C[]$ $::=[]$ $|$ $VC[]$ $|$ $C[]M$

$C[(\lambda x.M)V]arrow_{c}C[M[V^{n}/x]]$ (where $n$ is new label)
$C[(\sigma U^{n}.M)V]arrow_{c}C[M][n :=V]$

$C[V^{n}]arrow_{c}C[V[n :=V]]$

$x[n:=V]$ $=$ $x$

$U^{n}[n:=V]$ $=$ $V^{n}$

$U^{m}[n:=V]$ $=$ $U[n:=V]^{m}$ where $n\neq m$



130

$(\lambda x.M)[n:=V]$ $=$ $\lambda x.M[n:=V]$

$(MN)[n:=V]$ $=$ $M[n:=V]N[n:=V]$
$(\sigma X.M)[n:=V]$ $=$ $\sigma X[n:=V].M[n:=V]$

As shown above, assignment is accomplished by rewriting whole context.

. $0^{n}\cdots(\sigma 0^{n}.M)1\cdots 0^{n}\cdotsarrow\cdots 1^{n}\cdots M’\cdots 1^{n}\cdots$

New labeled value is allocated by application.

$(\lambda x.x)0arrow 0^{n}arrow 0$

i-rewriting system

Syntax

$x$ : name
$n$ : label
$e$ $::=$ $x|k|V^{n}|\lambda x.e|?e|!e|\# e|ee$

$k$ $;;=$ $0$

$V$ $::=$ $k|\langle closure\rangle|V^{n}$

$\langle closure\rangle$
$def=$ abstractions(that is $\lambda x.e$ ) with no free names.

Context

$C$ $;;=$ $[]$ $|$ $VC$ $|$ Ce $|$ $?C$ $|$ $!C$ $|$ $\# C$

$C[e]def=$ a term that is prelaced the hole of $C[]$ by $e$

Rewriting rules

$C[(\lambda x.e)V]arrow C[e[V/x]]$

$C[?V^{n}]arrow C[V[n :=V]]$

$C[!U^{n}V]arrow C[0][n :=V]$

$C[\# V]arrow C[V^{n}]$ ( $n$ is fresh)

$e[V/x]$ : replacing all $heex$ by $V$ in $e$ .
$e[n:=V]$ : replacing all $\bullet^{n}$ by $V^{n}$ in $e$ .
Macro

$\lambda.e^{ma}=^{cro}\lambda d.e$ where $d$ is a new name.

Figure 1: i-rewriting system



131

3 i-rewriting system

In tluis section, we introduce a rewriting system with assigIment and introduce an imperative
type system for the system later.

The rewriting system is essectially equivalent to the FX kernel except for cell. Cell is a
representation of variables for use of reduction.

Figure 1 shows the systax and rewriting rules of i-rewriting system. Cell $V^{n}$ represent
variables which is a pair of value $V$ and label $n$ . Assignment to a cell $!V^{n}U$ is acomplished by
replacing $V^{n}$ to $U^{n}$ in whole of the program executing. Thus, the effect of assignment rewriting
rule change the context.

Swap(l)

Let us show an example of rewriting. swap is a routine that exchange the contents of two cells.

swap $=\lambda xy.(\lambda.\lambda.\lambda.0)(!0^{w}?x)(!x?y)(!y?0^{w})$

$C[swap7^{m}2^{n}]$

$arrow$ $C[(\lambda.\lambda.\lambda.0)(!0^{w}?7^{m})(!7^{m}?2^{n})(!2^{n}?0^{w})]$

$arrow$ $C[(\lambda.\lambda.\lambda.0)(!0^{w}7)(!7^{m}?2^{n})(!2^{n}?0^{w})]$

$arrow$ $C’[(\lambda.\lambda.\lambda.0)0(!7^{m}?2^{n})(!2^{n}?7^{w})]$ (where $C$ $\equiv C[w:=7]$ )
$arrow$ $C’[(\lambda.\lambda.0)(!7^{m}?2^{n})(!2^{n}?7^{w})]$

$arrow$ $C’[(\lambda.\lambda.0)(!7^{m}2)(!2^{n}?7^{w})]$

$arrow$ $C”[(\lambda.\lambda.0)0(!2^{n}?7^{w})]$ (where $C”\equiv C’[m:=2]$ )
$arrow$ $C”[(\lambda.0)(!2^{n}?7^{w})]$

$arrow$ $C”[(\lambda.0)(!2^{n}7)]$

$arrow$ $C”’[(\lambda.0)0]$ (where $C^{;u}\equiv C’’[n:=7]$ )
$arrow$ $C”’[0]$

Essential effect of swap is that context $C$ was rewritten to $C”’$ . This effect really depends
on the form of $C$ .

4 Effects as terms –Typed i-calculus

i-rewriting system is very close to FX kernel, so FX like typing can be easily introduce to
i-rewriting system. For example,

$?V^{n}$ : $\tau$ ! (READ $p$)

where $V^{n}$ is a cell in a region $p$ . However, there is a new problem in typing i-rewriting system.
Since, type is a static property of a program, type should not change by reduction. More
precisely, if term $e$ has a type $\tau$ and $e$ is rewrited to $e’$ , then $e’$ should has the type $\tau$ . However,
let us consider the rewriting example below.

$?V^{n}$ : $\tau$ ! (READ p)
$arrow$ $V$ $\tau$

$|$ (READ $p$)
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How can we type $V$ as : $\tau$ ! (READ $\rho$ ) ?
The solution we adopt here is introducing effect term that represent effect on cell. The term

$?V^{n}$ is reduced to something like below and the term has a type below.

$V|EffectTerm$ : $\tau\ddagger E$

One remark here is the typing introduced here is essentially different from FX typing. In FX
typing

$A,$ $B\vdash e:\tau!\epsilon$

$e$ has a type $\tau$ and also has a type $\epsilon$ . However, in our typing, term $V|Effect$ has a type $\tau\ddagger E$ .
We introduce three effect terms related to three effects on cell, that is allocation, reading

and writing. The syntax of these effect terms and related rewriting rules are shown below.

[Allocation]
$[\mbox{\boldmath $\tau$}][\mbox{\boldmath $\rho$}]V : $\tau^{\rho}\ddagger(A\rho)$

—., $V^{n}|^{n}$ $\tau^{\rho}\ddagger(Ap)$

[Reading]
$?V^{n}$ : $\tau\ddagger(R\rho)$

$arrow$ $V|\Uparrow^{n}$ $\tau\ddagger(R\rho)$

[Writing]
$!\bullet^{n}V$ : $1\ddagger(W\rho)$

$arrow$ $0|V\Downarrow n$ : 1\ddagger $(W\rho)$

In the next section, we give a whole syntax of typed i-calculus (i-rewriting system with
typing) and typing rules.

5 syntax of i-calculus

Kind$(K)$ $::=region|$ effect $|$ type

effect $(\epsilon)$ $::=dvar|(Ap)|(Rp)|(Wp)|(\epsilon\wedge\epsilon)|$ PURE

region(p) $::=RCONST|$ dvar $|$ (UNION $p^{+}$ )

type (0) $::=\tau|\tau\ddagger\epsilon$

$\tau$ $::=\alpha|\tau^{\rho}|\Delta Dvar:Kind.\tau|\tauarrow\tau\ddagger\epsilon$

Type $\alpha$ includes type variable and primitive types such as int. In other words, primitive types
are free variables which is globally defined.

$n$ : label

$x$ : name

$e::=x|k|V^{n}|\lambda x:\tau.e|ee|\Lambda\alpha:K.e|e[\tau]$

$k::=0|$ ? $|$ ! $|\#$
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typing rules

[Cell]
$\Pi,$ $\pi\vdash n:\rho$

$[V_{\Pi}ar_{\pi\vdash x}iab1e]_{:\pi(x)}$ $\frac{\Pi,\pi\vdash V:\tau}{\Pi,\pi\vdash V^{n}:\tau^{\rho}}$

[Application]
[Abstraction]

$\Pi,$ $\pi\vdash e_{1}$ : $(\tauarrow\tau’\ddagger\epsilon)\ddagger\epsilon_{1}$

$\frac{\Pi,\pi[xarrow\tau]\vdash e:\tau’\ddagger\epsilon}{\Pi,\pi\vdash(\lambda x:\tau.e):\tauarrow\tau’\ddagger\epsilon}$

$\frac{\Pi,\pi\vdash e_{2}:\tau\ddagger\epsilon_{2}}{\Pi,\pi\vdash e_{1}e_{2}:\tau\ddagger\epsilon\Lambda\epsilon_{1}\wedge\epsilon_{2}}$

[Polymorphic Abstraction] [Polymorphic Application]
$\Pi[darrow\kappa],$ $\pi\vdash e:\tau$ $\Pi,$ $\pi\vdash e;(\triangle d:\kappa.\tau)$

$\frac{\forall x\in FV(e).d\not\in FV(\pi.(x))}{\Pi,\pi\vdash(\Lambda d:\kappa.e):(\triangle d:\kappa\tau)}$ $\frac{\Pi\vdash\delta:\kappa}{\Pi,\pi\vdash e[\delta]:\tau[\delta/d]}$

[Allocation]
$\Pi\vdash p$ : region [Reading]

$\prod_{\Pi}\vdash_{\pi}\tau_{\vdash^{:}e:\tau\ddagger\epsilon}type$ $\frac{\Pi,\pi\vdash e:p^{\tau_{\ddagger\epsilon}}}{\Pi,\pi\vdash?e:\tau\ddagger\epsilon\wedge(R\rho)}$

$\overline{\Pi,\pi\vdash\#[\tau][\rho]e:\tau^{\rho}\ddagger\epsilon\wedge(Ap)}$

[Writing]
$\Pi,$ $\pi\vdash e_{1}$ : $p^{\tau}\ddagger\epsilon_{1}$

$\frac{\Pi,\pi\vdash e_{2}:\tau\ddagger\epsilon_{2}}{\Pi,\pi\vdash!e_{1}e_{2}:1\ddagger\epsilon_{1}\wedge\epsilon_{2}\wedge(W\rho)}$

[Write Effect]
[Alloc Effect]

$\Pi,$ $\pi\vdash n:\rho$

$\frac{\Pi,\pi\vdash n:p}{\Pi,\pi\vdash ^{n}:(A\rho)}$

$\frac{\Pi,\pi\vdash V:\tau}{\Pi,\pi\vdash V\Downarrow^{n}:(W\rho)}$

[Read Effect]

$\frac{\Pi,\pi\vdash n:\rho}{\Pi,\pi\vdash\Uparrow^{n}:(R\rho)}$

[Type and Effect]
$\Pi,$ $\pi\vdash e:\tau\ddagger\epsilon$

$\Pi,$ $\pi\vdash r;\epsilon’$

$\overline{\Pi,\pi\vdash e|r:\tau\ddagger\epsilon\wedge\epsilon’}$

[Effect Masking]
$\Pi,$ $\pi\vdash e:\tau\ddagger\epsilon$

$\Pi\vdash d$ : region
$x\in FV(e)\Rightarrow d\not\in FV(\pi(x))$

$d\not\in FV(\tau)$

$\overline{\Pi,\pi\vdash e:\tau\ddagger\epsilon[\psi/d]}$

Deflnition of FV and fv are shown below.

$fv(x)$ $=$ $\{x\}$
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$fv(k)$ $=$ $\{\}$

fv $(V^{n})$ $=$ $\{n\}$

$fv(\lambda x:\tau.e)$ $=$ $fv(e)-\{x\}$

fv $(e_{1}e_{2})$ $=$ fv $(e_{1})\cup$ fv $(e_{2})$

$fv$ ( $\Lambda\alpha$ :K. $e$ ) $=$ $fv(e)$

$fv(e[\tau])$ $=$ $fv(e)$

$FV(\alpha)$ $=$ $\{\alpha\}$

$FV(\tau^{\rho})$ $=$ $\{\rho\}UFV(\tau)$

$FV(\triangle\alpha:K.\tau)$ $=$ $FV(\tau)-\{\alpha\}$

FV $(\tau_{1}arrow\tau_{2}\ddagger\epsilon)$ $=$ FV $(\tau_{1})\cup$ FV $(\tau_{2})$

6 Reduction of typed i-calculus

Typing rules of i-calculus is designed to move automatically inner effect to outside. For effect
terms, we need new set of rewriting rules to move inner effect terms outside. These rules would
look like

$(e|r)darrow(ed’)|r$

or

$d(e|r)arrow(d’e)|r$

As indicated above, term $d$ is changed to $d’$ during rewriting. This means that we have a free
hand to do something useful during effect moving. One condition is that $d$ and $d’$ should be the
same type.

We chose the set of effect term moving rewriting rules as below.

$\bullet$ Allocation

$(t|^{n})earrow(te)|^{n}$

$U(t|^{n})arrow(Ut)|^{n}$

$\bullet$ Writing

$(t|V\Downarrow^{n})earrow(te[n:=V])|V\Downarrow^{n}$

$U(t|V\Downarrow^{n})arrow(U[n :=V]t)|V\Downarrow^{n}$

where $e[n:=V]$ is a term replaced all cells $\circ^{n}$ (that is cell with label n) by $V^{n}$ .
$\bullet$ $(t|\Uparrow^{n})earrow(te)|\Uparrow^{n}$

$U(t|\Uparrow^{n})arrow(Ut)|\Uparrow^{n}$
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Using write effect term and above write effect moving rule, it is possible to develop reduction
system for i-calculus that no reduction rules change context. (So we call it i-calculus.)

The definition of i-calclus is shown below.

(New) context

$\mathcal{E}$ $;;=$ $[]$ $|$
$V\mathcal{E}$

$|$
$\mathcal{E}e$

$|$
$?\mathcal{E}$

$|$
$!\mathcal{E}$

$|$
$\#\mathcal{E}$

$|$ $\mathcal{E}|V\Downarrow^{n}$

(New) term

$t::=\mathcal{E}[e]$

Where $e$ is the same as in i-rewriting system.
The meanings of the context $\mathcal{E}$ is that there is no effect terms that can affect term in a hole

of $\mathcal{E}$ .

Reduction rule

$\mathcal{E}[(\lambda x.e)V]arrow \mathcal{E}[e[V/x]]$

$\mathcal{E}[?V^{n}]arrow \mathcal{E}[V[n :=V]]$

$\mathcal{E}[!U^{n}V]arrow \mathcal{E}[0|V\Downarrow^{n}]$

$\mathcal{E}[\# V]-\mathcal{E}[V^{n}]$ ( $n$ is fresh)

$(t|V\Downarrow^{n})earrow te[n:=V]|V\Downarrow^{n}$

$U(t|V\Downarrow^{n})arrow U[n :=V]t|V\Downarrow^{n}$

$(t|^{n})earrow(te)|^{n}$

$U(t|^{n})arrow(Ut)|^{n}$

$(t|\Uparrow^{n})earrow(te)|\Uparrow^{n}$

$U(t|\Uparrow^{n})arrow(Ut)|\Uparrow^{n}$

$?(t|V\Downarrow^{n})arrow?t|V\Downarrow^{n}$

$!(t|V\Downarrow^{n})arrow!t|V\Downarrow^{n}$

$\#(t|V\Downarrow^{n})arrow\# t|V\Downarrow^{n}$

As shown above, no reduction rules rewrite context $\mathcal{E}$ . The objective of context $\mathcal{E}$ is to avoid
effect conflict. For example, consider the term below.

$(e|\epsilon)(e’|\epsilon’)$

The result will rewriting will be different between moving the write effect term $\epsilon$ first, or moving
the write effect term $\epsilon’$ first. The definition of i-calculus term

$t::=\mathcal{E}[e]$

exclude such a term with effect conflict and the reduction rules will not generate such term
under the control by $\mathcal{E}$ .
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6.1 Reduction and typing of Swap

Here we show a i-calculus version of reduction of swap. We onunit read effect term in the
example for clality.

$\mathcal{E}[swap7^{m}2^{n}]$

$arrow$ $\mathcal{E}[(\lambda.\lambda.\lambda.0)(!0^{l}?7^{m})(!7^{m}?2^{n})(!2^{n}?0^{l})]$

$arrow$ $\mathcal{E}[(\lambda.\lambda.\lambda.0)(!0^{l}7)(!7^{m}?2^{n})(!2^{n}?0^{l})]$

$arrow$ $\mathcal{E}[(\lambda.\lambda.\lambda.0)(0|7\Downarrow^{w})(!7^{m}?2^{n})(!2^{n}?0^{l})]$

$arrow$ $\mathcal{E}[((\lambda.\lambda.\lambda.0)0)|7\Downarrow^{w}(!7^{m}?2^{n})(!2^{n}?0^{l})]$

$arrow$ $\mathcal{E}[(\lambda.\lambda.0)|7\Downarrow^{w}(!7^{m}?2^{n})(!2^{n}?0^{l})]$

$arrow$ $\mathcal{E}[((\lambda.\lambda.0)(!7^{m}?2^{n}))|7\Downarrow^{w}(!2^{n}?0^{l})]$

$arrow$ $\mathcal{E}[((\lambda.\lambda.0)(!7^{m}2))|7\Downarrow^{w}(!2^{n}?0^{l})]$

$arrow$ $\mathcal{E}[((\lambda.\lambda.0)(0|2\Downarrow^{m}))|7\Downarrow^{w}(!2^{n}?0^{l})]$

$arrow$ $\mathcal{E}[((\lambda.\lambda.0)0)|2\Downarrow^{m}|7\Downarrow^{w}(!2^{n}?0^{l})]$

$arrow$ $\mathcal{E}[(\lambda.0)|2\Downarrow^{m}|7\Downarrow^{w}(!2^{n}?0^{l})]$

$arrow$ $\mathcal{E}[(\lambda.0)|2\Downarrow^{m}(!2^{n}?7^{l})|7\Downarrow^{w}]$

$arrow$ $\mathcal{E}[(\lambda.0)(!2^{n}?7^{l})|2\Downarrow^{m}|7\Downarrow^{w}]$

$arrow$ $\mathcal{E}[(\lambda.0)(!2^{n}7)|2\Downarrow^{m}|7\Downarrow^{w}]$

$arrow$ $\mathcal{E}[(\lambda.0)(0|7\Downarrow^{n})|2\Downarrow^{\mathfrak{m}}|7\Downarrow^{w}]$

$arrow$ $\mathcal{E}[((\lambda.())0)|7\Downarrow^{n}|2\Downarrow^{m}|7\Downarrow^{w}]$

$arrow$ $\mathcal{E}[0|7\Downarrow^{n}|2\Downarrow^{m}|7\Downarrow^{w}]$

The effect of swap is not changing the context but generating three write effects.
Let us see the type of swap. Typed swap is

swp $=\Lambda p\iota:region.\Lambda\rho_{2}:region.\lambda x:\tau_{1}^{\rho}.\lambda y:\tau_{2^{\rho}}.(\lambda.\lambda.\lambda.0)(!0^{l}?x)(!x?y)(!y?0^{l})$

and type of it is

$[larrow p]\vdash$ swp: $\triangle\rho_{1}:region.\triangle\rho_{2}:region.\tau_{1}^{\rho}arrow\tau_{2^{\rho}}arrow 1\ddagger Wp\wedge R\rho_{1}\wedge W\rho_{1}\wedge R\rho_{2}\wedge W\rho_{2}\wedge R\rho$

Since there is free variable $l$ in swp (see the definition of fv) and $l$ has type $p$ , effects on region
$\rho$ can not be masked. It is justifiable because, there are possiblities that the location $l$ apear
outside of this term then the write effect can be observed there. On the other hand, another
swap

$\Lambda p_{1}:region.\Lambda\rho_{2}:region.\lambda x:\tau_{1}^{\rho}.\lambda y:\tau_{2}^{\rho}.\lambda w:\tau^{\rho}.((\lambda.\lambda.\lambda.0)(!w?x)(!x?y)(!y?w))(*[\tau][\rho]0)$

has a type

$\vdash\triangle\rho_{1}:region.\triangle\rho_{2}:region.\tau_{1}^{\rho}arrow\tau_{2}^{\rho}arrow 1$ \ddagger $Wp\wedge R\rho_{1}\wedge W\rho_{1}\wedge R\rho_{2}\wedge W\rho_{2}\wedge R\rho\wedge A\rho$

and has no free variable. So, the effect mask inference rule can be applied and the result type is

$\vdash\triangle\rho_{1}:region.\triangle\rho_{2}:region.\tau_{1}^{\rho}arrow\tau_{2}^{\rho}arrow 1$ \ddagger $R\rho_{1}\wedge W\rho_{1}\wedge R\rho_{2}\wedge W\rho_{2}$
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7 Record types in imperative system

Record type in functional system has a special modification operation as below.

incx $\{x=3\}-\{x=4\}$

incx $\{x=3, c=b\}-\rangle$ $\{x=4, c=b\}$

This record modification is good to have especially in modeling object oriented calculation, but
hard to type.

On the other hand, the same record modification can be implemented without typing diffi-
culty in imperative system. We design the modifiable record with fields that value is a cell.

$\{x=3^{n}, c=b^{l}\}$

Record modification can be implemented by field selection and ordinal assignment.

incx$(r)^{d}=^{ef}inc(r.x)$

The reduction example is
$incx\{x=3^{n}\}arrow^{*}0|4\Downarrow^{n}$

$incx\{x=3^{n}, c=b^{l}\}arrow^{*}0|4\Downarrow^{n}$

Since, the result of above two reduction are exactly identical, typing to the polymorphic incx is
not difficult.

incx: $\{x:int^{\rho}\}arrow 1\ddagger W\rho$

$\{x:int^{\rho}, c:boo1^{\rho’}\}\leq\{x:int^{\rho}\}$

8 Where comes from region?

Region notion of type system of i-calculus is just borrowed from type system of FX. Region
notion is a kind of trick in the both imperative type systems. It is possible to allocate more
than one cells in one region. However, there is no reason to do so willingly because it makes
type inference less precise. For the precision of type inference, eacn cell should have own region.

$V^{n}$ : $\tau^{n}$

However, the number of cells allocated during execution is not limited in general. So, static
typing does not use a label itself as a region. Typing require limmiting the number of region to
finite. There are several solutions for this problem. An important thing is that the region notion
is the mechanism to turn this problem out from the type system.

Here we show a list of candidate of those solutions.
Given:

$(\lambda f. \cdots\# 0\cdots f()\cdots f()\cdots)(\lambda.\# 0)$

(1) Only one region in a program
$(\lambda f. \cdots\#[r]0\cdots f()\cdots f()\cdots)(\lambda.\#[r]0)$

(2) regions for each occurrence of !. $(\lambda f. \cdots\#[r_{1}]0\cdots f()\cdots f()\cdots)(\lambda.\#[r_{2}]0)$

(3) distinguish call sites
$(\lambda f. \cdots\#[r_{1}]0\cdots f[c_{1}]()\cdots f[c_{2}]()\cdots)(\Lambda\rho.\lambda.\#[\{\rho r_{2}\rangle]0)$

(4) etc.
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9 Conclusions

We have developed i-calculus that is an imperative reduction system with FX like type system.
The reduction uses write effect moving idea.

For future work, it will be important to analize properties of a program by using imperative
typing information. For example, cell is inherently global in i-calculus and some locality can be
analized by effect masking type inference. There are more localities that can not be caught by
effect masking inference.

There are plenty of works on static analysis of imperative program. It would be also impor-
tant to study the relation between imperative types and those static analysis.

References

[1] Lucassen, J. and Gifford, D: Polymortphic Effect Systems Prec of the 15th Annual ACM
Conference on Principles of Programming Languages, pp. 47-57 (1988)

[2] Felleisen, M. and Friedman, D. P. : A Calculus for Assignments in Higher-Order Languages
Proc. Symp. on Principles on Programming Languages, pp. 314-325 (1987)

[3] Felleisen, M.: $\lambda- v- CS$ : An Extended $\lambda$-Calculus for Scheme Proc. Conference on Lisp and
Functional Programming, pp. 72-85 (1988)

[4] Kazuo Otake: An imperative computatin model and its types for object orineted program-
ing 「オブジェクト指向のための手続き的計算モデルと型」情報処理学会 記号処理 60-6 . プロ
グラミング 2-6合同研究会 (1991)

[5] Kazuo Otake: A calculus with assignment for object oriented programming and identity of
objects 「 オブジェクト指向のための代入を持つ計算系と同一性」 情報処理学会第 44回全国大
会講演論文集 (5) pp.33-34 (1992)

[6] Scott Danforth and Chris Tomlinson.: Type theories and object-oriented programming.
ACM Computing Surveys, Vol.20, No. 1, pp.29-72, March 1988.

[7] Shivers, O. The semantics of scheme control-flow analysis. the first ACM SIGPLAN and
IFIP Symposium on Partial Evaluation and Semantics-Based Program Manuipulation, June
1991.


