
139

Dinaturality of Simple Subtyping

Yasushi Fujiwara

Systems&Software Engineering Laboratory

Research and Development Center

Toshiba Corporation’

Abstract

Semantic parametricity of a simply-typed λ-calculus with subtyping will be discussed. Viewing

subtyping as implicit coercion, we will give a category-theoretic formulation of semantic parametricity.

Although semantic parametricity may fail in arbitrary cartesian closed categories (ccc’s), simple

proof-theoretic argument gives us a sufficient condition on subtyping contexts such that terms satisfy

semantic parametricity in arbitrary ccc’s.

1 Introduction

Strachey’s concept of parametric polymorphism was discussed by Reynolds [24] from the view of repre-

sentation independence of data types in the study of the second-order λ-calculus. It is expected that the

meaning of functions is independent of particular implementations of data types. From then, parametric-

ity of the second-order A-calculus has been discussed by many researchers [2, 16, 21].

Bounded polymorphism has been discussed in the study of typed object-oriented languages [9]. As

the notion of bounded polymorphism is a generalization of the polymorphism in the second-order $\lambda-$

calculus, it seems natural to expect that the language with bounded polymorphism shows some kind of

parametricity. But there have been few discussion on parametricity of bounded polymorphism. (One

exception is [7], but its focus is the syntactic equational theory.)

In this article, we will discuss semantic parametricity of a simply-typed A-calculus with subtyping.

Although this system is rather weak compared to Fun or F_{\leq} [10], it serves as a good starting point

for the study. Our semantics of subtyping is based on the view “subtyping as implicit coercion.” In

the calculus with subsumption rule a term may have several types, but coherence $[4, 10]$ guarantees the

unicity of the meaning. Thanks to this result, we can formulate the notion of semantic parametricity

’ Part of this work was completed while the author was visiting Department of Computer Science, Stanford University.

数理解析研究所講究録
第 851巻 1993年 139-152

140

in a category-theoretic form, dinaturality. In this case, dinaturality implies that functions satisfy $((free$

theorems” [26] that follow from a subtyping context and type information.

Unfortunately, dinaturality may fail in an arbitrary cartesian closed category (ccc). But we can give

a sufficient condition for the subtyping context such that dinaturality holds in arbitrary $cccs$
) Stan-

dard proof-theoretic technique, cut-elimination, plays a crucial role in this result. This extends a result

of Girard-Scedrov-Scott [14] that valid typing judgments in a simply-typed λ-calculus provably satisfy

dinaturality in arbitrary ccc’s.

2 Dinaturality as Semantic Parametricity

In this section, we will review results on parametricity for the calculus without subtyping. Roughly speak-

ing, there are two ways of formulating parametricity, logical relation [19] and dinaturality. Reynolds [24]

originally formulated it in terms of logical relation. His aim was to establish representation independence

theorem (or abstraction theorem) of the the second-order λ-calculus F . Unfortunately the set-theoretic

model he discussed was rejected by himself [25], but representation independence of F was proved in

[21] by using logical relation of Bruce-Meyer-Mitchell model. Many works in parametricity are based on

logical relation. The appealing point of logical relation seems its intuitive relational formulation.

Bainbridge-Freyd-Scedrov-Scott [2] introduced another formulation of semantic parametricity, dinat-

urality. It had been suggested that the notion of parametric polymorphism was similar to that of natural

transformation in category theory viewing types as functors. Obvious trouble of this approach is that

type variables may appear in types both positively and negatively so that we may not be able to consider

types as (covariant or contravariant) functors. A similar problem was also encountered in category theory

and dinatural transformation has been worked out from early sixties [17] as its solution. Although it re-
quires machinery of category theory and, sometimes, proof-theory, dinaturality seems to have something

fundamental $[3, 14]$. The relationship between two formulations had been unclear, but recently Plotkin

and Abadi [22] show that under some conditions Reynolds parametricity implies dinaturality. In fact, a

result of Girard-Scedrov-Scott [14] also suggests that dinaturality seems to be a primitive form of seman-

tic parametricity. The formulation we adopt in this article will be based on dinatural transformation.

The notion of dinaturality is defined equationally as follows:

Definition 1 Let $F,$ G : $S^{o}\cross Sarrow \mathcal{T}$ be two functors. Then a family of morphisms θ_{A} : $FAAarrow$

GAA $(A\in Obj(S))$ is called a dinatural transformation from F to G if the following hexagon diagram

commutes for any morphism f : $Aarrow B$ in S .

141

$FAA\underline{\theta_{A}}$ GAA
$FfA\nearrow$ $\backslash _{\backslash }cAf$

FBA GAB
$FB\nwarrow$ $\nearrow GfB$

$FBB\overline{\theta_{B}}$ GBB

S^{o} denotes the opposite category [17] of S .

Bainbridge-Freyd-Scedrov-Scott [2] is the first to apply dinaturality to the study of parametricity.

They showed that in the PER model, the interpretation of a typingjudgment valid in the second-order
λ-calculus F is dinatural. That is, if a typing judgment x_{1} : $s_{1},$ $\ldots,$ x_{m} : $s_{m}\vdash e$: t is derivable in F and

all the free type variables are among $\alpha_{1},$
$\ldots,$

α_{n} , then e defines a dinatural transofrmation between two

functors \overline{s}^{*},t^{*} : $($PER $)^{n}\cross PER^{n}arrow PER$ corresponding to types $s_{1}\cross\ldots\cross s_{m}$ and t respectively. The

interpretation of the second-order quantifier is given in terms of end [17] of dinatural transformations.

This may be considered as additional advantage of tis formulation. In this formulation, parametricity is

the definition of polymorphism, rather than property.

Girard-Scedrov-Scott [14] proved that the interpretation of the simply-typed A-calculus is dinatural

in an arbitrary ccc. Let C be a ccc. If a typing judgment x_{1} : $s_{1},$ \ldots , x_{m} : $s_{m}\vdash e$: t is derivable in the

simply-typed λ-calculus, and all the free type variables are among $\alpha_{1},$
$\ldots,$

α_{n} , then e defines a dinatural

transofrmation between two functors $\overline{s}^{*},$
t^{*} : $(C^{n})^{o}\cross C^{n}arrow C$ corresponding to types $s_{1}\cross\ldots\cross s_{m}$ and

t respectively. They used the sequent-calculus version of the calculus and applied the cut-elimination

theorem to establish dinaturality. As all rules except cut can be shown to preserve dinaturality, the cut

elimination theorem directly implies dinaturality of arbitrary terms.

Thus, dinaturality assures that functions provably satisfy equations that are determmined only by their

types. Several (($free$ theorems” that follow from type information can be found in $[14, 26]$. In the rest of

this article, we will discuss “free theorems” for the calculus with simple subtyping.

3 Dinaturality of Simple Subtyping

In this section, we will formulate dinaturality for a simply-typed λ-calculus with subtyping.

3.1 The Calculus $\lambda_{\leq}^{T\circ p,\mathcal{L},\Rightarrow}$

In this subsection, we introduce a simply-typed λ-calculus $\lambda_{\leq}^{Top,\mathcal{L},\Rightarrow}$ with subtyping. It can be regarded at

the same time as an extension of core-ML language and as a tiny fragment of Fun [9]. In this fragment,

142

type-variables and subtyping are available, but explicit bounded quantification is prohibited. So, this

system is rather weak compared to Fun or F_{\leq} . But this gives a good starting point for the study.

We fix the set \mathcal{L} of labels. We will adopt the notational convention that $\alpha,$
$\beta,$

\ldots denote type variables.

Then types and raw terms of $\lambda_{\leq}^{Top,\mathcal{L},\Rightarrow}$ are defined by the following grammar:

$t::=\alpha|Top|t\Rightarrow t|\{\ell_{1} : t, \ldots, \ell_{n} : t\}$

e $::=x|\lambda x$: $t.e|e\cdot e|\{\ell_{1}=e, \ldots, \ell_{n}=e\}|e.\ell$

We here assume all labels $\ell_{1},$ $\ldots\ell_{n}$ appearing in the record type $\{\ell_{1} : t, \ldots, \ell_{n} : t\}$ or the record term

$\{\ell_{1}=e, \ldots, f_{n}=e\}$ are distinct. The type constant Top is a supertype of all types.

The subsumption rule of $\lambda_{\leq}^{T\circ p,\mathcal{L},\Rightarrow}$makes use of subtyping judgments of the form $C\vdash s\leq t$, where

C is a subtyping context. A subtyping context is a set of subtyping assertions. Subtyping assertions

are relations of the form $\alpha\leq t$. Subtyping contexts are defined recursively as follows: ϕ is a subtyping

context; if C is a subtyping context that does not declare a type variable α and the free type variables

of t are already declared in C, then $C,$ $\alpha\leq t=C\cup\{\alpha\leq t\}$ is a subtyping context. Subtyping judgments

are defined to be freely generated from the following axioms and formation rules:

$C\vdash t\leq Top,$ where the free type variables of t are declared in C (top)

$C_{1},$ $\alpha\leq t,$ $C_{2}\vdash\alpha\leq t$ (typevar)

$C\vdash t\leq t$, where the free type variables of t are declared in C (refl)

$\frac{C\vdash s\leq tC\vdash u\leq v}{C\vdash t\Rightarrow u\leq s\Rightarrow v}$ (\Rightarrow)

$\frac{C\vdash s_{i_{1}}.\leq t_{i_{1}}\ldots C\vdash s_{i_{p}}\leq.t_{i_{p}}}{C\vdash\{f_{1}:s_{1},..,\ell_{q}:s_{q}\}\leq\{\ell_{i_{1}}:t_{i_{1}},..,\ell_{i_{p}}\sim t_{i_{p}}\}}$ (recd)

$\frac{C\vdash r\leq sC\vdash s\leq t}{C\vdash r\leq t}$ (irans)

In (recd), we assume that $1\leq i_{1}<i_{2}<\ldots<i_{p}\leq q$.

Raw terms are type-checked by deriving typing judgments of the form $C,$ $A\vdash e$: t , where C is a

subtyping context and A is a typing context. Typing contexts are a set of relations of the form x : t ,

with no variable x occuring twice. In addition to ordinary formation rule for typing judgments like $(\Rightarrow$,

$intro),$ (\Rightarrow , elim), (recd, intro), and (recd, elim), $\lambda_{\leq}^{T\circ p,L,\Rightarrow}$ has the following subsumption rule.

$\frac{C,A\vdash e:sC\vdash s\leq t}{C,A\vdash e:t}$ (subsumption)

Given our fourmulation of terms, it is natural to write equations of the form $C,$ $A\vdash e=e’$: t , where

we assume that both $C,$ $A\vdash e$: t and $C,$ $A\vdash e’$: t hold. The equality is a congruence relation defined by

ordinary rules like $\alpha-,$ $\beta-,\eta-,$ $recd-\beta-,$ $recd-\eta$-rules.

143

3.2 Coercion Semantics and Dinaturality

In the rest of this article, we will try to extend the result of Girard-Scedrov-Scott to $\lambda_{\leq}^{Top,\mathcal{L},\Rightarrow}$. In this

subsection we will discuss the setting for the meaning of $\lambda_{\leq}^{Top,\mathcal{L},\Rightarrow}$ terms using category theory. The

idea essential in the following is to consider not only types but also subtyping relations. As we allow

subtyping contexts like $C=$ { $\alpha\leq$ Top, $\beta\leq\alpha\Rightarrow\alpha$ }, the morphisms between objects should have

some relatioships to these subtyping assertions. This is clarified by the view that “subtyping as implicit

coercion.” [4, 10, 24] Emulating subsumption rule by explicit coercions, we will give the meanings of

terms as families of morphisms in cartesian closed categories.

It is rather well-known that the theory of typed λ-calculus is equivalent to that of cartesian closed

categories (ccc)s). We here give a brief review of ccc’s. For further information, the reader is referred to

[1, 15, 19]. As ccc’s can be viewed as a slight generalization of well-known Henkin models [19], there will

be little fear of confusion if readers unfamiliar to category theory take ccc’s for Henkin models.

A cartesian closed category is a category with a specified terminal object 1, products and exponentials.

This means that each ccc has the following specific data:

. object 1 with a unique morphism O^{s} : $sarrow 1$ for each object s .

. binary object map \cross with, for any objects s,t and u , specified morphisms $\pi_{s,t}^{1}$: $s\cross tarrow s,$ $\pi_{s,t}^{2}$:

$s\cross tarrow t$, and a map $\{$, $\}$: $Mor(u, s)\cross Mor(u,t)arrow Mor(u, s\cross t)$ such that, for every f : $uarrow s$

and g : $uarrow t$, the morphism \langle $f,$ g } : $uarrow s\cross t$ is the unique h satisfying $f=h;\pi_{s,t}^{1}$ and $g=h,\cdot\pi_{s,t}^{2}$.

. binary object $map\Rightarrow with$, for any objects $s,$ t and u , a specified morphism $App:(s\Rightarrow t)\cross sarrow t$

and a map Curry : $Mor(s\cross t, u)arrow Mor(s, t\Rightarrow u)$ such that for every f : $s\cross tarrow u,$ $Curry(f)$:

$sarrow(t\Rightarrow u)$ is the unique h satisfying \langle $\pi_{s,t}^{1}$; $h,$ $\pi_{s,t}^{2}$) $;App=f$.

Here we denote the composition of two morphisms f : $sarrow t$ and g : $tarrow u$ by $f;g:sarrow u$. We will let \cross

associate to the right.

Let C be a ccc. For any type t of $\lambda_{\leq}^{Top,C,\Rightarrow}$, we will define its interpretation as a functor t^{*} : $(C^{0})^{n}\cross C^{n}arrow$

C , where $\alpha_{1},$
$\ldots,$

α_{n} are all type variables occuring in t . For $a=(a_{1)}a_{n}),$ $b=(b_{1}, \ldots, b_{n})\in(Obj(C))^{n}$,

let us define the object t^{*} ab inductively as follows:

$(\alpha_{i})^{*}ab$ $=$ b_{i}

$(Top)^{*}ab$ $=$ 1

$(s\Rightarrow t)^{*}ab$ $=$ $s^{*}ba\Rightarrow t^{*}ab$

$\{l_{1} : t_{1}, \ldots, \ell_{n} : t_{n}\}^{*}ab$ $=$ $t_{1}^{*}ab\cross\ldots\cross t_{n}^{*}$ab

In order to consider the typing judgments, we first need to define coercions, which will be used to

emulate subsumption rule. Let $\alpha_{1},$
$\ldots,$

α_{n} be type variables that occur in a subtyping context C . A pair

144

(a, f) consisting of a tuple of objects $a=(a_{1)}\ldots, a_{n})\in(Obj(C))^{n}$ and that of morphisms $f=(f_{1}, \ldots, f_{n})$

with f_{i} : $a_{i}arrow t_{i}^{*}$ aa for $\alpha_{i}\leq t_{i}\in C$ will be called a coercion pair and a morphism f_{i} will be called a

coercion morphism corresponding to a subtyping assertion $\alpha_{*}\cdot\leq t_{i}$.

We will give the meaning of typing judgments $C,$ $A\vdash e$: t as a family of morphisms [$eI_{a,f}$: $s_{1}^{*}aa\cross$

. . . $\cross s_{n}^{*}aaarrow t^{*}aa$ for (a,f) , where $A=\{x_{i} : s_{i}|1\leq i\leq m\}$. We will abuse notation and write $\overline{s}^{*}aa$ for

$s_{1}^{*}aa\cross\ldots\cross s_{n}^{*}$aa. We have to notice, however, that it is possible that a typing judgment corresponds

to several different morphisms in C because of subsumption rule. This problem is nontrivial in general

and called coherence [4]. In this case, we can guarantee that the meaning of a typing judgment is unique

thanks to [4].

In our formulation, families of morphisms are also attached to subtyping judgments. As a subtyping

judgment also may have multiple derivations, we first attach a family of morphisms to a derivation of a

subtyping judgment. We associate a family of morphisms [$\sigma J_{a,f}$: $s^{*}aaarrow t^{*}aa$ to a derivation σ of a

subtyping judgment $C\vdash s\leq t$. For the explicit construction of morphisms, readers should consult, for

example, [4].

We will associate a family of morphisms [$\triangle I_{a,f}$: $\overline{s}^{*}aaarrow t^{*}aa$ to a derivation Δ of a typing judgment

$C,$ $A\vdash e$: t with $A=\{x_{i} : s_{i}|1\leq i\leq m\}$. The procedure is almost identical to the one discussed in [19].

The main difference lies, of course, in the subsumption rule, but the necessary modification is obvious.

If Δ is a derivation of the judgment $C,$ $A\vdash e$: t from a derivation Δ_{1} of $C,$ $A\vdash e$: s and a derivation σ

of a subtyping judgment $C\vdash s\leq t$ by (subsumption), then we define

$[\triangle I_{a,f}=[\Delta_{1}I_{a,f)}[\sigma \mathbb{I}_{a,f:}\overline{s}^{*}aaarrow t^{*}aa$

Proposition 1 1. Suppose that σ_{1} and σ_{2} be two denvations of a subtyping judgment $C\vdash s\leq t$.

Then we have [$\sigma_{1}J_{a,f}=[\sigma_{2}I_{a,f}$: $s^{*}aaarrow t^{*}aa$ for any coercion pair (a, f) .

2. Suppose that Δ_{1} and Δ_{2} be two derivations of a typing judgment $C,$ $A\vdash e$: t . Then we have

[$\Delta_{1}J_{a,f}=[\Delta_{2}J_{af,,}$ for any coercion pair (a, f) .

Thus, the meaning of a judgment is uniquely defined. We may denote the meaning of $C\vdash s\leq t$ by

[$s\leq tJ_{a,f}$: $s^{*}aaarrow t^{*}aa$ and that of $C,$ $A\vdash e:t$ by $[e]_{a,f}$: $\overline{s}^{*}aaarrow t^{*}aa$.

Now we can give our formulation of dinaturality. As we have noticed, we have to take consideration

of not only type instances but also coercion pairs. Intuitively speaking, subtyping assertions are similar

to proper axioms. (This claim will be made clear in the course of proof-theoretic analysis below.) So, it

is natural to assume that coercion morphisms are also dinatural with respect to morphisms between type

instances. It in turn means that we should only consider morphims between coercion pairs such that

coercion morphisms are dinatural with respect to them. Notice that similar modification of Reynold)s

parametricity was necessary when the fixpoint operator was added to the pure λ-calculus [26].

145

Let (a, f) and (b, g) be two coercion pairs with respect to the subtyping context $C=\{\alpha_{i}\leq t_{i}|1\leq$

$i\leq n\}$. A tuple $d=(d_{1}, \ldots, d_{n})$ with $d_{i}\in Mor(a_{i)}b_{i})$ will be called a morphism from (a, f) to (b, g) if

it makes the following pentagon diagram commutative for $1\leq i\leq n$.

In fact, this terminology is legal, that is, coercion pairs form a category with respect to morphisms

we just defined.

Lemma 1 Morphisms between coercion pairs compose.

Let us denote by C_{C} the category defined above. In the case that subtyping assertions are all of the form

$\alpha_{i}\leq t_{i}$ with t_{i} constant types, the above condition reduces to $f_{i}=d_{i}$; g_{i} . But in the case that type

variables appear in t_{i} , the situation is necessarily a little more complicated.

By considering the forgetful functor from C_{C} to C^{n} given by $(a, f)arrow a$, we can associate a type t with a

functor t^{*} : $(C_{C})^{o}\cross Ccarrow C$. Notice that, if the subtyping context is of the form $C=\{\alpha_{i}\leq Top|1\leq i\leq n\}$,

then C_{C} is C^{n} . Semantic parametricity we expect is formalized as follows:

Claim Let C be a ccc and suppose that $C,$ $A\vdash e$: t is provable in $\lambda_{\leq}^{Top,\mathcal{L},\Rightarrow}$. Then the family [$eI_{a,f}$ is

a dinatural transformation between two functors \overline{s}^{*},t^{*} : $(C_{C})^{o}\cross C_{C}arrow C$, where $A=\{x_{i} : s_{i}|1\leq i\leq m\}$.

Example Let us discuss a simplifed version of an example given in [10]. Let $C=\{\alpha_{1}\leq Top,$ $\alpha_{2}\leq$

$\alpha_{1},$ $\alpha_{3}\leq\alpha_{1}$ } be a subtyping context. Let (a, f) and (b, g) be objects of C_{C} . Then, $f_{1}=O^{a_{1}}$: $a_{1}arrow$

$1,$ f_{2} : $a_{2}arrow a_{1)}$ and f_{3} : $a_{3}arrow a_{1}$. By definition, the morphism d : $(a, f)arrow(b, g)$ satisfies the equations

f_{2} ; $d_{1}=d_{2}$; g_{2} : $a_{2}arrow b_{1}$ and f_{2} ; $d_{1}=d_{2}$; g_{2} : $a_{2}arrow b_{1}$. Then the above claim implies that if a typing

judgment $C,$ x : $\alpha_{2},$ y : $\alpha_{3}\vdash e$: α_{1} is valid, then the corresponding morphisms [$eI_{a,f}$ and [$eI_{b,g}$ make

the following diagram commutative.

146

$a_{2}\cross a_{3}a_{1}\underline{\mathbb{I}eI_{a,f}}$

$d_{2}\cross d_{3}\ovalbox{\tt\small REJECT}$ $\ovalbox{\tt\small REJECT}^{d_{1}}$

$b_{2}\cross b_{3}arrow b_{1}[eJ_{b,g}$

Typingjudgments $C,$ $x:\alpha_{2},$ $y:\alpha_{3}\vdash x$: α_{1} and $C,$ x : $\alpha_{2)}y:\alpha_{3}\vdash y:\alpha_{1}$ are valid. It is easy to see our

claim holds for these judgments. For example, as the morphism $[x]_{a,f}$ corresponding to the judgment

$C,$ x : $\alpha_{2},$ y : $\alpha_{3}\vdash x$: α_{1} is given by $\pi_{a_{2},a_{3})}^{1}\cdot f_{2}$: $a_{2}\cross a_{3}arrow a_{1}$, we easily see that the above diagram is

commutative. \square

Unfortunately, this claim is not true for an arbitrary ccc. Let us consider a subtyping context $C=$

$\{\alpha\leq Top, \beta\leq(\alpha\Rightarrow\alpha)\Rightarrow\alpha\}$. Suppose that there exists a dinatural transformation Y : $(\alpha\Rightarrow\alpha)arrow\alpha$

with respect to a ccc C . By considering the currification, we get a family of morphisms Curry$(Y)_{a}\in$

$Mor(1, (a\Rightarrow a)\Rightarrow a)$. Then for arbitrary objects a , the pair of objects $(a, 1)$ and that of morphisms

$(O^{a}. aarrow 1, Curry(Y)_{a} : 1arrow(a\Rightarrow a)\Rightarrow a)$ defines a coercion pair. Take two objects $a_{1},$ a_{2} and consider

the corresponding coercion pairs. Then a morphism between them are determined by giving a morphism

from a_{1} to a_{2} . The morphism corresponding to the valid judgment $C,$ y : $\beta\vdash y$. $(\lambda x : \alpha.x)$: α and a

pair $(a, 1)$ with coercion morphisms as above is given by Curry$(1_{a});Y_{a}$: $1arrow a$. But, it was shown in [2]

that the composition of Y and the polymorphic identity may not be dinatural with respect to C . This

shows that the family corresponding to the above judgment may not be dinatural with respect to C_{C} .

4 Proof-Theoretic Analysis

In this section, we will consider dinaturality of $\lambda_{\leq}^{Top,L,\Rightarrow}$ in arbitrary ccc’s. As we have seen, dinaturality

may fail in general. But by using proof-theoretic idea, we can give a sufficinet condition for dinaturality

of definable terms in arbitrary ccc’s. This is an extension of a result by Girard-Scedrov-Scott [14].

We first need a few terminologies. A type in $\lambda_{\leq}^{Top,\mathcal{L},\Rightarrow}$ is called covariant (resp. contravariant) if all the

occurrences of type variables are positive (resp. negative). A type is called uni-variant if it is covariant

or contravariant and is called multi-variant if it is not uni-variant.

Definition 2 The set S of $\lambda_{\leq}^{Top,\mathcal{L},\Rightarrow}$ types is defined inductively as follows:

147

1. Top E S .

2. $\alpha\in S$ for any type variable α .

3. $(s\Rightarrow t)\in S\Leftrightarrow s$ is uni-variant and $t\in S$.

4. $\{\ell_{1} : t_{1}, \ldots , \ell_{n} : t_{n}\}\in S\Leftrightarrow t;\in S$ for all $1\leq i\leq n$.

For example, the type $(\alpha\Rightarrow\alpha)\Rightarrow\alpha$ does not belong to S , for the type $\alpha\Rightarrow\alpha$ is multi-variant. The

following theorem gives a sufficient condition on subtyping context for dinaturality in arbitrary ccc’s.

Theorem 1 Let $C=\{\alpha_{i}\leq t_{i}|1\leq i\leq n\}$ be a subtyping context and suppose that $t_{i}\in S$ for $1\leq i\leq n$.

Then the image of the meaning function of a provable typing judgment $C,$ $A\vdash e$: t in $\lambda_{\leq}^{Top,C,\Rightarrow}is$ a

dinatural transformation between two functors \overline{s}^{*},t^{*} : $(C_{C})^{o}\cross C_{C}arrow C$, where $A=\{x; : s;|1\leq i\leq m\}$.

Thus, this theorem is applicable to the subtyping context { $\alpha_{1}\leq$ Top, $\alpha_{2}\leq\alpha_{1},$ $\alpha_{3}\leq\alpha_{1}$ } we

discussed. But, it is not applicable to $\{\alpha\leq Top, \beta\leq(\alpha\Rightarrow\alpha)\Rightarrow\alpha\}$, which gave us a counter-example

of dinaturality.

Our argument procceeds as follows. We first translate $\lambda_{\leq}^{Top,\mathcal{L},\Rightarrow}$ into a simply-typed λ-calculus $\lambda^{1,x,\Rightarrow}$and

then define a meaning function of the $\lambda^{1,\cross,\Rightarrow}$ with the value in morphisms in ccc’s. As the meaning func-

tion of the $\lambda_{\leq}^{Top,\mathcal{L},\Rightarrow}$ factors as the composite of this translation from to $\lambda^{1,\cross,\Rightarrow}$ and the meaning function

on $\lambda^{1,x,\Rightarrow}$, we can show dinaturality of $\lambda_{\leq}^{Top,\mathcal{L},\Rightarrow}$ by analyzing translated $\lambda^{1,\cross,\Rightarrow}typingjudgment$ by using

cut-elimination procedure. To apply the cut-elimination procedure, we will adopt the sequent-calculus

formulation $[1, 14]$ of $\lambda_{\leq}^{Top,C,\Rightarrow}$ and $\lambda^{1,\cross,\Rightarrow}$.

The language $\lambda^{1,\cross,\Rightarrow}[19]$ is a simply-typed λ-calculus without subtyping. But we here allow the

language to have proper axioms. Type expressions are defined by the following grammar:

$t::=\alpha|1|t\Rightarrow t|t\cross t$

The type 1 corresponds to the terminal object of ccc’s. The set of raw terms will be defined as follows:

e $::=c|*|x|\lambda x$: $t.e|e\cdot e|(e,$ $e\rangle$ $|\pi^{1}e|\pi^{2}e$

The symbol $*denotes$ a constant of the type 1. The rules for the typing judgments and ones for the

equations can be found in $[1, 14]$.

We will translate $\lambda_{\leq}^{T\circ p,\mathcal{L},\Rightarrow into\lambda^{1,\cross,\Rightarrow}by}$ the method inspired by [4]. The trasnslation of $\lambda_{\leq}^{Top,\mathcal{L},\Rightarrow}$ types

to $\lambda^{1,\cross,\Rightarrow}$ types is defined as follows.

α_{i}^{*} $=$ α_{i}

Top’ $=$ 1

$(s\Rightarrow t)^{*}$ $=$ $s^{*}\Rightarrow t^{*}$

$\{\ell_{1} : t_{1}, \ldots,\ell_{n} : t_{n}\}^{*}$ $=$ $t_{1}^{*}\cross\ldots\cross t_{n}^{*}$

148

A subtyping assertion $\alpha\leq t$ in C will be translated into a proper axiom x : $\alpha\vdash f_{\alpha}(x)$: t^{*} , where f_{α}

is a constant. We denote by C’ the set of proper axioms attached to the subtyping assertions in C . A

derivation σ of subtyping judgments $C\vdash s\leq t$ will be translated into a $\lambda^{1,\cross,\Rightarrow}judgment$ of the form

x : $s^{*}\vdash P:t^{*}[4]$. Then we can show that this typingjudgment x : $s”\vdash P:t^{*}$ is a valid derivation from
C^{*} in $\lambda^{1,\cross,\Rightarrow}$ and that all translations of derivations of ajudgment in $\lambda_{\leq}^{T\circ p,\mathcal{L},\Rightarrow}$are provably equivalent in
$\lambda^{1,\cross,\Rightarrow}[4]$.

We will translate a $\lambda_{\leq}^{Top,\mathcal{L},\Rightarrow}$ typing judgment of the form $C,$ $A\vdash e$: t into a $\lambda^{1,\cross,\Rightarrow}$ typing judgment

of the form $A^{*}\vdash e^{*}$: t^{*} , where $A^{*}=\{x_{i} : s_{i}^{*}|1\leq i\leq m\}$ for $A=\{x_{i} : s_{i}|1\leq i\leq m\}$. Also in this case,

we first translate derivations of typing judgments in $\lambda_{\leq}^{Top,\mathcal{L},\Rightarrow}$ to those in $\lambda^{1,\cross,\Rightarrow}$. As the main difference

between $\lambda_{\leq}^{Top,\mathcal{L},\Rightarrow}$ and $\lambda^{1,\cross,\Rightarrow}$ lies in the rules for subtyping judgments and subsumption rule, we only

have to discuss the subsumption rule. An instance of (subsumption)

$\frac{C,A\vdash e:sC\vdash s\leq t}{C,A\vdash e:t}$

is replaced by a cut
$A^{*}\vdash e^{*}$: s^{*} x : $s^{*}\vdash P$: t^{*}

$A^{*}\vdash[e^{*}/x]P$: t^{*}

where $A”\vdash e$ “ : s^{*} and x : $s”\vdash P$: t^{*} are the typing judgments corresponding to $C,A\vdash e$: s and

$C\vdash s\leq t$ respectively. If a typing judgment $C,A\vdash e$: s is derivable in $\lambda_{\leq}^{Top,\mathcal{L},\Rightarrow}$, the corresponding

typing judgment $A^{*}\vdash e^{*}$: s
“ is a valid derivation in λ^{1} , $’\Rightarrow from$ C’ and all translations of derivations

of a judgment in $\lambda_{\leq}^{Top,\mathcal{L},\Rightarrow}$ are provably equivalent in $\lambda^{1,x,\Rightarrow}[4]$.

We can attach morphisms in a ccc to typing judgments in $\lambda^{1,x,\Rightarrow}[1,14]$. Here, given a coercion pair

(a,f) , we attach to a proper axiom x : $\alpha_{i}\vdash f_{\alpha:}(x)$: t_{i}^{*} the morphism f; : $a_{i}arrow t_{i}^{*}$aa. Hence we can

attach to a derivation of $A^{*}\vdash e$: t^{*} a family of morphisms [$eJ_{a,f}$: $\overline{s}^{*}aaarrow t^{*}aa$ for $(a, f)\in Obj(C_{C})$.

It is apparent from the construction that the meaning function of $\lambda_{\leq}^{Top,C,\Rightarrow}$ factors as the composite of

the translation into $\lambda^{1,\cross,\Rightarrow}$ and the meaning function of $\lambda^{1,\cross,\Rightarrow}$. Thus, to prove dinaturality of the
$\lambda_{\leq}^{Top,\mathcal{L},\Rightarrow}$ term, we only have to consider the corresponding A” $’\Rightarrow term$.

Now we apply the standard proof-theoretic armament, cut-elimination, to translated $\lambda^{1,x,\Rightarrow}typing$

judgment so that we obtain dinaturality of the calculus $\lambda_{\leq}^{Top,C,\Rightarrow}$. It is easy to see that the cut-elimination

procedure leaves the meaning of the proof unchanged. As we have introduced proper axioms, we cannot

expect all cuts be eliminated. But, by applying the procedure, we can obtain a derivation that is

convenient for the establishment of parametricity under the condition on subtyping context stated in the

above theorem. A similar technique has been employed in $[12, 13]$.

But, before applying the cut-elimination procedure, we simplify the set of proper axioms. The simpli-

fication goes as follows: If a proper axiom is of the form x : $\alpha\vdash f_{\alpha}(x)$: $s\cross t$, then we replace it with two

axioms $\{x:\alpha\vdash\pi^{1}f_{\alpha}(x) : s, x:\alpha\vdash\pi^{2}f_{\alpha}(x):t\}$. If a proper axiom is of the form $x:\alpha\vdash f_{\alpha}(x):s\Rightarrow t$,

we replace it with x : $\alpha,$ $y:s\vdash f_{\alpha}(x)\cdot y:t$. If the subtyping context C satisfies the condition mentioned

in the above theorem, then, by repeatedly applying this procedure, we eventually obtain a set $C^{*}‘$ of

149

proper axioms of the form y_{1} : $s_{1)}\ldots,$ y_{m} : $s_{m}\vdash g(y_{1}, \ldots y_{m})$: t , where s_{1} is a type variable, t is a type

variable or 1, and all $s_{2},$ $\ldots s_{m}$ are uni-variant. And this set C^{**} and the original set C^{*} are (essentially)

equiprovable. We further can show that the morphisms corresponding to these axioms in C^{**} are di-

natural with respect to C_{C} . Thus, we can consider the translated $\lambda^{1,\cross,\Rightarrow}judgment$ as derived from the

set of proper axioms in which only uni-variant types occur. By applying cut-elimination procedure to
$\lambda^{1,\cross,\Rightarrow}judgments$, we can show that all multi-variant cuts are eliminable. And we can easily see that,

from the definition, cuts at uni-variant types preserve dinaturality. This concludes our theorem.

Let us consider how dinaturality may fail if the subtyping context does not satisfy the above condition.

For the concreteness, let us consider our familiar case that $C=\{\alpha\leq Top, \beta\leq(\alpha\Rightarrow\alpha)\Rightarrow\alpha\}$. Then the

corresponding set of proper axioms is given as $C’=\{x:\alpha\vdash f_{\alpha}(x) : 1, y:\beta\vdash f_{\beta}(y) : (\alpha\Rightarrow\alpha)\Rightarrow\alpha\}$.

In this case, we have $C^{**}=\{x : \alpha\vdash f_{\alpha}(x) : 1, y : \beta, z : \alpha\Rightarrow\alpha\vdash f_{\beta}(y)\cdot z : \alpha\}$. Let us consider the
$\lambda_{\leq}^{Top,\mathcal{L},\Rightarrow}$ typing judgment $C,$ $y:\beta\vdash y$. $(\lambda x : \alpha.x)$: α . Then the corresponding derivation in $\lambda^{1,x,\Rightarrow}$ is

$\frac{\vdash\lambda_{X:\alpha.X:\alpha\Rightarrow\alpha y:\beta)}z:\alpha\Rightarrow\alpha\vdash f_{\beta}(y)\cdot z:\alpha}{y:\beta\vdash f_{\beta}(y)\cdot(\lambda x:\alpha.x):\alpha}$

Here the cut occurs at a multi-variant type $\alpha\Rightarrow\alpha$ and is not eliminable.

5 Conclusion and Future Work

In this article, we exhibited a formulation of semantic parametricity of the calculus with simple subtyping

and its accompanying problems. Based on the view that “subtyping as implicit coercion,” our formulation

of dinatural transformations nicely extends that of the calculus without subtyping. And we have given

a sufficient condition for dinaturality, which seems useful for actual use of subtyping. But there are also

many technical challenges left unanswered.

We have seen that dinaturality may fail in arbitrary ccc’s. The obvious question is whether there exists

a ccc such that the definable terms have dinaturality with respect to all subtyping contexts. In particular,

we are very interested in whether this holds in PER or not, for PER has been the most successful model

of polymorphism and parametricity. (A recent paper of Freyd-Robinson-Rosolini [11] suggests significant

inconvenience of the category for the study of parametricity, though.) On the other hand, in this article

we allowed arbitrary coercion morphisms. The coercion pair used in the explanation of the failure of

dinaturality does not look like a morphism naturally associated with subtyping. Bruce-Longo [5] and

Breazu-Tannen-Coquand-Gunter-Scedrov [4] suggests appropriateness of considering coercion morphisms

of specific type. For example, in Bruce-Longo [5], only realizable morphisms whose G\"odel numbers are

identical to that of identity function were allowed as coercion morphisms. But it is unclear whether this

restriction is helpful to establish dinaturality of our calculus in PER.

We have only disscussed a simply-typed λ-calculus. As explicit bounded quantification introduces

further challenges, it seems immature for us to investigate it right now. But dinatural calculus may also

150

bring opportunities, especially beyond pure λ-calculus. For example, let us consider a update-function [5]

inc which increments the value of the label f . Let $A=$ { l : int, . . .}, $B=$ { l : int, . . .} and f be an

arbitrary function from A to B that leaves the value corresponding to the label ℓ unchanged. Then

we expect that inc satisfies an equality f) $inc=inc;$ f , which, intuitively speaking, can be viewed as

a kind of “parametricity.” Although such a function is not definable in pure λ-calculus [5], it may be

possible to define it as a dinatural transformation with respect to some category of coercions. And our

category-theoretic setting may also be applicable to the study of F-bounded polymorphism [6], which

reflects another crucial feature of object-oriented languages. Of course, in order to discuss these issues

characteristic of typed object-oriented languages, we need further understanding of dinaturality of pure
λ-calculus.

References

[1] A. Asperti and G. Longo, Catego7tes, Types, and Structures: An Introduction to Category Theory

for the Working Computer Scientist, MIT Press, 1991.

[2] E. S. Bainbridge, P. Freyd, A. Scedrov and P. J. Scott, Functorial polymorphism, Theoretical Com-

puter Science, 70, 35-64, 1990.

[3] R. Blute, Linear logic, coherence and dinaturality, to appear in Theoretical Computer Science.

[4] V. Breazu-Tannen, T. Coquand, C. A. Gunter and A. Scedrov, Inheritance as implicit coercion,

Info rmation and Computation, 93, 172-221, 1991.

[5] K. Bruce and G. Longo, A modest model of records, inheritance, and bounded quantification, Infor-
mation and Computation, 87, 1/2, 196-240, 1990.

[6] P. Canning, W. Cook, W. Hill, J. C. Mitchell and W. Olthoff, F-bounded quantification for object-

oriented programming, in Proceedings of Fourth Intemational Confrence on Functional Progmmming

Languages and Computer Architecture, 273-280, ACM, 1989.

[7] L. Cardelli, S. Martini, J. C. Mitchell and A. Scedrov, An extension of system F with subtyping, in

T. Ito and A. R. Meyer (eds) TA CS91, Lecture Notes in Computer Science 526, 750-770, Springer

Verlag, 1991.

[8] L. Cardelli and J. C. Mitchell, Operations on records, Mathematical Structures in Computer Science,

1, 1, 3-48, 1991.

[9] L. Cardelli and P. Wegner, On understanding types, data abstraction, and polymorphism, ACM

Comuting Surveys, 17, 471-522, 1985.

151

[10] P. -L. Curien and G. Ghelli, Coherence of subsumption, in A. Arnold (ed) CAAP 9θ, Lecture Notes

in Computer Science 431, 132-146, Springer Verlag, 1990.

[11] P. J. Freyd, E. P. Robinson and G. Rosolini, Functorial parametricity, in $\dot{f}^{J}roc$. of 7-th IEEE Sym-

posium on Logic in Computer Science, 444-452, IEEE, 1992.

[12] V. Gehlot and C. Gunter, Normal process representatives, in Proc. of 5-th IEEE Symposium on

Logic in Computer Science, 200-207, IEEE, 1990.

[13] J. -Y. Girard, Y. Lafont and P. Taylor, Proofs and Types, Cambridge University Press, 1989.

[14] J. -Y. Girard, A. Scedrov, and P. J. Scott, Normal forms and cut-free proofs as natural transforma-

tions, in Y. N. Moschovakis (ed) Logic from Computer Science, Springer Verlag, 1992.

[15] J. Lambek and P. J. Scott, Introduction to Higher Order Categorical Logic, Cambridge University

Press, 1986.

[16] Q. Ma, Parametricity as subtyping (preliminary report), in Proc. of 19-th A CM Symp. on $Pr\dot{\tau}$nciples

of Progmmming Languages, 281-292, 1992.

[17] S. MacLane, Catego $\gamma\eta$ es for the Working Mathematician, Springer Verlag, 1971.

[18] J. C. Mitchell, Toward a typed foundation for method specialization and inheritance, in Proc. of
17-th ACM Symp. on Principles of Programming Languages, 109-124, 1990.

[19] J. C. Mitchell, Type systems for programming languages, in J. van Leeuwen (ed) Handbook of
Theoretical Computer Science Vol. B, 365-458, 1990, The MIT Press/Elsevier.

[20] J. C. Mitchell, Type inference with simple subtypes, Journal of Functional Programming, 1, 3,

245-285, 1991.

[21] J. C. Mitchell and A. Meyer, Second-order logical relations (extended abstract), in R. Parikh (ed)

Logic of Progmms, Lecture Notes in Computer Science 193, 225-236, Springer Verlag, 1985.

[22] G. D. Plotkin and M. Abadi, A logic for parametric polymorphism, in M. Bezem and J. F. Groote

(eds) Proc. of the International Conference on Typed Lambda Calculi and Applications, Lecture

Notes in Computer Science 664, Springer Verlag, 1993.

[23] J. C. Reynolds, Using category theory to design implicit conversions and generic operators, in N.

D. Jones (ed) Semantics-Directed Compiler Genemtion, Lecture Notes in Computer Science 94,

211-258, Springer Verlag, 1980.

[24] J. C. Reynolds, Types, abstraction and parametric polymorphism, in R. E. A. Mason (ed), Infor-
mation P’rocessing. 83,513-523, North-Holland, 1983.

152

[25] J. C. Reynolds, Polymorphism is not set-theoretic, in G. Kahn, D. B. MacQueen and G. Plotkin

(eds), Semantics of Data Types, Lecture Notes in Computer Science 173, 145-156, Springer Verlag,

1984.

[26] P. Wadler, Theorems for free!, in Proceedings of Fourth International Confrence on Functional Pro-

gramming Languages and Computer Architecture, 347-359, ACM, 1989.

