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Interaction of two vortex filament with different strength
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1. Introduction.
In this paper, we examine the three-dimensional interactions of two vortex

filament with different strength. The goal of our investigations is to find a
possible mechanism to explain finite time singularity formation in inviscid ideal
flow. This problem may be stated as follows. Are there any smooth three-
dimensional velocity fields of inviscid fluid with finite energy such that there is a
critical time $T<\infty$ for which these solutions become singular as $tarrow T$?

By the work of Beale, Kato and Majda [1], we know that for maximum norm of
vorticity

$| \omega|L^{\infty}=\max_{x\in R^{3}}|\omega(x)|$ .

the interval $[O,T$) with $T<\infty$ is a maximal interval of smooth existence if and
only if the vorticity accumulates so rapidly that

$\int_{0^{I_{0}1}L^{\infty}}^{t}(s)dsarrow+\infty$ as $tarrow T$.

This mathematical result assure us to treat the problem in the framework of
vorticity dynamics.
Siggia [2] proposed a model to explain finite time singularity formation using a

notion of collapsing vortex pair. The scenario for a finite-time singularity is like
that: an isolated vortex filament can fold upon itself such that oppositely signed
pieces of the filament form a pair, advance under their mutual induced velocity
fields and cause stretching of filament. Because of the constraint of volume
conservation the core size of the filament will shrink as the filament stretches.
There are several difficulties with this scenario. It is observed that the
interfilament spacing decreases more rapidly than core size indicating overlap of
core. Pumir and Siggia [3] have performed careful numerical simulations of
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collapsing solutions to 3-D Euler equations and have shown that maximum
vorticity grows only exponentially.

2. Biot-Savart simulations.
Here, we examine the interaction of two vortex filaments with strength $\Gamma_{1}$ and

$\Gamma_{2}$, respectively. Suppose that a curved filament $\Gamma_{1}$ (hereafter we call filament 1)

approaches to a straight filament $\Gamma_{2}$ (filanent 2) at some initial instant $t=0(see$

Fig. 1). Due to the three dimensional interaction of two filaments, two filaments
may approach and deform for $t>0$ . If $\Gamma_{1}=\Gamma_{2}$ , the deformation may be
schematically like Fig. 1 $(a)$ . Near the point of closest approaches $O$ an
antiparallel pair of vortex filaments is formed. Mutual distance of the pair
decreases as time proceeds. But if $\Gamma_{1}$ is suffciently small compared with $\Gamma_{2}$ , then
strong filament $\Gamma_{2}$ may stay almost straight while the filament $\Gamma_{1}$ may wind
round to $\Gamma z$ as in Fig. 1 $tb$).

$(a)\Gamma_{1}=\Gamma_{2}$

$\ulcorner_{a}$

$tb)\Gamma_{1}<<\Gamma_{2}$

Fig. 1
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Case ta) corresponds to antiparallel pair considered by Siggia.We consider the

situation $tb$) here. We perform numerical simulations using the Biot-Savart’s law.

If the vorticity is distributed into two isolated filaments then Biot-Savart law
may be given as

$v(r)=-\frac{\Gamma_{1}}{4n}\int\frac{(r-r’)\cross\omega(r’)}{[|r-r’|^{2}+\sigma tr)^{2}]^{3l2}}dr’-\frac{\Gamma_{2}}{4n}\int\frac{(r-r)\cross\omega(r)}{[|r-r’|^{2}+otr’)^{2}]^{ l2}}d$’

where $\sigma$ is core diameter of the filaments. In inviscid flow, the tube volume of a
filament is conserved which is a consequence of the Helmholtz laws. In numerical

simulations, there are many possible core laws to express the tube volume

conservation. In this paper we use a core law like

$0^{2}16r|=$ const.

where $6r$ is a small segment of the tube. In numerical simulations, each filament

is represented by an ensemble of $N_{i}$ segments with length $6r_{i}$ and diameter $\sigma_{i}$ .
Then the Biot-Savart law is modeled by

$v(r)=-\frac{l}{4n}\sum_{i=1}^{2}\Gamma_{i}\sum_{k=1}^{N_{i}}\frac{a_{k}^{ti)}\cross 6r_{k}^{(i)}}{\{1a_{k}^{(i)2}1+(\sigma_{k}^{(i)})^{2}\}^{312}}$

$a_{k}^{ti)}=\frac{1}{2}(r_{k+1}^{(i)}-r_{k}^{(i)})-r,$ $6r_{k}^{(i)}=r_{k+1}^{(i)}-r_{k}^{(i)}(i=1,2)$

As time proceeds, each filament may be deformed and be stretched and two
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filaments may get entangled. In this situation, we need appropriate subdivisions

ofsegments to assure the accuracy of the calculations.

3. Numerical results.

We consider two cases:

Casel : $\Gamma_{1}=-1.0,$ $\Gamma_{2}=1.0$

Case2 : $\Gamma_{1}=-0.05,$ $\Gamma_{2}=1.0$

Initial situation of two filaments is shown in Fig. 2. The mutual distance $d_{0}$ at

$t=0$ is, thus $d_{0}=0.3$ . Initial core diameter $0_{0}$ is $\sigma_{0}=d_{0}/30$ for all cases.
In Fig 2 ta) xy-projections of two filaments at $t=0$ and $t=0.47745$ are shown and

in Fig.2 $(b)$ yz-projections are shown for case 1. At $t=0.47745$ the minimum

distance $d$ of two filament is $d=0.002762$ where as the core diameter $\sigma$ at the

point of closest approach $O$ is $\sigma/\sigma_{0}=0.2079$ for filament 1 and $\sigma/\sigma_{0}=0.2284$ for

filament 2.

In Fig. $31a$) and $(b),$ xy- and yz-projections of two filaments at $t=3.8842$ are

shown. We see that filament 2 stays almost straight while filament 1 winds round

to filament 1. At $t=3.8842$, minimum distance $d=0.1067$ whereas core diameter

at $O$ is $\sigma/\sigma_{0}=0.6630$ for filament 1 and $\sigma/\sigma_{0}=0.5535$ for filament 2.

Fig.4 shows the stretching of filament 2 along the filament at different time.

The ordinate is the ratio of the core diameter $\sigma(s)$ to the initial core diameter. The

abscissa is the distance $s$ from $O$ along the filament. Each curve corresponds to

time $t=0$ , 2.4228, 2.9560, and 3.8842, respectively. We see that at the center $O$ of

the strong filament2 which stays almost straight effcient stretching occurs. This

effcient stretching is due to the induced velocity of filament 1 which winds round

to filament 2.

In Fig. 5, we compare the development in time of the ratio of core diameter to

minimum distance normalized to 1 at the initial instant. The curve 1 corresponds

to Case 1, curve 2 to Case 2 and curve 3 corresponds to Case 3 ($\Gamma_{1}=-0.001$ , i.e.

very weak filament and $\Gamma_{2}=1.0$). In Case 1, the minimum distance $d$ decreases
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very rapidly compared to the core diameter $\sigma$ resulting to overlap of core. In Case

2, though this ratio becomes larger than 1 but much slowly compared to Case 1. In

Case 3, this ratio stays almost 1 which means that core size decreases almost

same rate as minimum distance of two filament thus overlap of core does not

occur and thin filament approximation remains valid.

4. Simple model

From the numerical results above, we found that at the center $O$ of strong

straight filament an effcient stretching is take place due to the induced velocity

of weak filament which wind round to straight filament. A flow field near the

center $O$ of the strong filament may be approximated by a flow due to vortex rings

ofopposite direction (Fig. 6)

Fig. 6

We take $x$ axis along the straight filanent. Then the induced velocity on the $x$

axis due to two vortex rings near the center ofstraight filament is given by

$u_{x}= \frac{\Gamma a^{2}b}{(a^{2}+b^{2})^{5/2}}x+O(x^{2})$

here, $a$ is the radius of vortex ring and $b$ is the distance of the ring from O. If two

vortex rings stay fixed relative to $O$ , then motion of a fluid particle on the $x$ axis

near $O$ may be governed by
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$\frac{dx}{dt}=\frac{\Gamma a^{2}b}{(a^{2}+b^{2})^{5/2}}x$

Suppose a small portion $(-x_{0}, x_{0})$ of the filament $(x_{0}\ll b)$ . The volume of this

vortex segment is $V=no^{2}x_{0}$ . Fluid particles which initially contained within this

portion flow out of the portion through the sections at $x=x_{0}$ and $x=-x_{0}$ . Then,

$\frac{dV}{dt}=-\frac{\Gamma a^{2}b}{(a^{2}+b^{2})^{5/2}}v$

Then decrease of $V$ and thus decrease ofcore diameter at $O$ is at most exponential.

In our situation, weak filament continues to wind round to straight filament. In

the context ofthe model considered here, this means that smaller and smaller size

of vortex rings continue to generate around O. Here, we assume a similarity of

generation ofrings in a form

$\frac{a(t)}{b(t)}=\omega nst$.

In this case, the motion of a fluid particle on the $x$ axis (i.e. on the straight

filament) is governed by the equation of the form

$\frac{dx}{dt}=\frac{x}{c^{2}(t)}$

here $c1t$) is an effective distance of innermost vortex ring from the center O. $c(t)$ is

a decreasing function of $t$. If $c1t$) decrease as

$c(t)=c_{0}(T-t)^{q}$
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where $q$ is some positive constant. Let $x_{0}$ be initial position of a fluid particle. In

the limit $x_{0}arrow 0$ , we have

If $q> \frac{1}{2}$ $\frac{x1t)}{x_{0}}\sim\exp[\frac{const}{(T-t)^{2q-1}}1$

If $q= \frac{1}{2}$ $\frac{x1t)}{x_{0}}\sim(T-t)^{-1lc_{0}}$

If $q<\underline{1}$ $\underline{x(t)}arrow\omega nst$. as $tarrow T$

2 ’

$x_{0}$

Thus, if $q\geqq 1/2$ infinite stretching occurs at the center $O$ of the filament as $tarrow T$.
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