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INDEX THEOREMS AND MICROSUPPORT
L. Boutet de Monvel (Univ.ParisVI)

パリ 6大学

Vn these notes we propose to describe again the Atiyah-Singer index theorem for
systems of differential operators, and related extensions such as the index theorem for
Toeplitz operators or the relative index theorem proved by B. Malgrange and the author. We
make a special emphasis on the microlocal contribution produced by the sheaf in which the
solutions of the differential equations are computed, as described by P.Schapira and
J.P.Schneiders, believing that this point of view, although as yet incomplete, sheds a new
and unifying light.

We describe this presentation of the index theorem in \S 1. Vt was not possible in these
short notes to give complete and detailed proofs, and we have limited ourselves to give in 3
appendixes short, but hopefully useful, descriptions of the main ingredients: K-theory, $\mathscr{D}-$

modules, and the idea of the proof.

Description of the index theorem

Let us recall that complex of vector spaces is a sequence

(1) $p$ : $...arrow E_{k}^{\underline{p}}SE_{k+1}arrow\ldots$ $(k\in Z)$

of complex vector spaces $E_{k}$ and linear maps $p_{k}\in L(E_{k};E_{k+1})$ such that $p_{k+1^{o}}p_{k}=0$ (we may
identify a linear map $p:E_{o}arrow E_{1}$ to a complex of length 2, concentrated in degrees $0$ and 1).

The cohomology $H^{*}(p)$ is the graded vector space $H^{*}(p)=kerp/V_{l}np(H^{k}(p)=kerp_{k}/{\rm Im} p_{k- 1})$ .

a is a Fredholm complex if $H^{*}(p)$ is finite dimensional, ie. the $H^{k}(p)$ are finite dimensional
and vanish except for a finite number of indices $k$ . Then the index (Euler characteristic) of a
is defined as the alternating sum:

(2) $Vndp=\sum(- 1)^{k}di_{I}nH^{k}(p)$

The index theorem is $concel\cdot ned$ with the index of complexes in which the $p_{k}$ are
differential operators on a manifold X and the $E_{k}$ are suitable spaces of distributions on X or
parts of X. Vt has long been known that under suitable ellipticity conditions the index exists,

and that it is quite stable under small perturbations or $defo\iota lnations$ , so one expects that it
can be computed in terms of simpler topological $inval\cdot iants$ of the data. We first recall what
these formulas look like.

The model for all index formulas is Hirzcbruch‘s $f^{\backslash }o11nu1\cdot nion$ of the Riemann-Roch
theorem for coherent sheaves on complex projective spaces. Vn this formula the ingredients
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are the Chem character of the sheaf and the Todd class of the space. Later A.Grothendieck
gave a relative version of the Riemann-Roch theorem, in which the topological ingredient is
the behaviour under direct image of a K-theoretical element associated to the sheaf. Let us
recall the formulation of Baum, Fulton and Mac Pherson of Grothendieck’s theorem: let X
be a projective analytic space and $Z\subset X$ a subspace. The Grothendieck group $K_{Z}^{an}(X)$ is the
group generated by isomorphy classes of coherent $\mathcal{O}_{X}$-modules with support in $Z$ , and the

relations $[M]=[M’]+[M^{\dagger\prime}]$ for each exact sequence $0arrow M^{\dagger}arrow Marrow M’arrow 0$ . There is a canonical
homomorphism $K_{Z}^{an}(X)arrow K_{Z}^{top}(X)$ , where $K_{Z}^{top}(X)$ is the Atiyah group of “virtual vector

bundles with support in $Z’$ , which describes the additive and deformation invariant
properties of complexes of vector bundles which are exact outside of Z. According to Baum,

Fulton, Mac Pherson, the relative Riemann-Roch theorem states that this homomorphism
commutes to proper direct images (it also commutes to inverse images). This should be
complemented by the description of the K-theoretical image, which is constructed by means
of the Bott periodicity theorem. One may further translate this in teims of cohomology,
using the Chem character:

(3) ch : $K_{Z}^{top}(X)\otimes \mathbb{Q}arrow\sim H_{Z}^{p\tau ir}(X,\mathbb{Q})$

The Hirzebruch-Riemann-Roch theorem is the cohomological translation when then goal
manifold is a point (recall that $Earrow dimE$ defines the canonical isomorphism $K(point)\simeq Z$ ). In

this analysis the Todd class appears when one interprets the K-theoretical direct image
(whose cohomological intelpretation is not integration along fibers).

The Atiyah-Singer index formula deals with elliptic complexes of differential
operators on a real manifold. Since holomorphic functions are solutions of the elliptic
system of Cauchy-Riemann equations, this formula contains the complex Riemann-Roch
formula from which it was inspired. Although the first proof of this formula was
cohomological and close to that of Hirzebruch, the published proof of 1968 is more inspired
by that of Grothendieck and convincingly shows that K-theory is a natural tool in this
context.

A similar case where one has an index theorem is the following: if X is a complex
manifold, $U\subset X$ a relatively compact open subset with smooth boundary $\partial U$ , and $p$ a
complex of holomorphic differential operators on X, one defines the non characteristicity of
$\partial U$ for $p$ ; this condition is closely related to the ellipticity condition in the real case, and
when it is true, the complex $p$ acting on germs of $ho1_{omo1])}hic$ sections near $Uu\partial U$ is
Fredholm and its index is essentially given by the same Riemann-Roch formula (the same
formula holds more generally for Toeplitz operators-cf. Boutet de Monvel 1.)
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In these notes we restrict ourselves to operators with analytic coefficients on analytic
manifolds. This is not an important $resl\cdot iction$ for the topological aspect of the index formula

because this deals with homotopy classes of continuous functions, which usually contain
real-analytic functions. It does make a difference for the analysis and geometry of the
differential operators involved: some pathologies are avoided , but mostly in the analytic

setting we dispose of a good algebraic and geometric formalism similar to those of algebraic
or analytic geometry, which would not exist othelwise, eg. there is a good notion of supports

and characteristic sets, and direct or inverse images.
In this setting the data for the index theorem is the following: first we have a complex

manifold X; a real manifold will always be considered as the gern of a subset $X_{0}\subset X$ (the

set of real points in a complex manifold). On X we have a differential system with analytic
coefficients, best described as a coherent $\mathscr{D}$ -module $\mathscr{M}(\mathscr{D}$ denotes the sheaf of analytic

differential operators). Finally we have a sheaf of coefficients ,9‘ in which we compute the

solutions. We will represent the differential system by a sheaf $\mathscr{M}$ of right $\mathscr{D}$ -modules (or

more generally by an $ob\backslash |ect$ with coherent cohomology of the derived category of these); $\mathscr{F}’$

is a sheaf of left $\mathscr{D}$ -modules (or more generally an $ob\dot{\mathfrak{s}}ect\backslash$ of the $del\cdot ived$ category); the sheaf

of solutions is the complete tensor product $\Lambda l^{L}\otimes_{\emptyset}\mathscr{T}$ (an object of the derived category of

sheaves of vector spaces), and the index (if it exists) is the altemating sum of the Betti

numbers of its global sections:

(4) Index$( \Lambda\ell,\mathcal{T})=\chi(\mathscr{M}^{L}\otimes_{\emptyset}\mathscr{T})=\sum(- 1)^{1}(\otimes_{\emptyset^{ff)}}$

(One can equivalently represent the differential system by a left $\mathscr{D}$ -module, the sheaf of

solutions being RHom$(\mathscr{M},\Psi))$ .

Let us point out typical cases for the sheaf $\mathscr{F}’$ of coefficients: a first example is the

case where $\mathscr{F}’$ is the sheaf $\mathcal{O}$ of holomorphic functions; in this case (X complex compact),

we may take $\mathscr{M}=m\otimes_{\mathcal{O}}\mathscr{D}$ with $m$ a coherent 9-module, and the index theorem will give back

the Riemann-Roch theorem (in fact one gets a little more since coherent left $\mathscr{D}$ -modules are
not all of the form $m\otimes_{\mathcal{O}}\mathscr{D}$ ). More generally one can choose $\mathscr{T}$ a coherent left $\mathscr{D}$ -module;

the ellipticity condition is then that ssne and SS.9“ meet along a compact set (in the zero
section of $T^{*}X$). The index formula is then the formula below.

A second example is the following: let $Y$ be a closed subset of X and $\mathscr{T}=\mathcal{O}_{Y}$ the sheaf

of gelms of holomorphic functions along $Y(F=i_{*}i^{-1}\mathcal{O}$ if $i$ is the canonical inclusion $Yarrow X$ ,

so that for the stalks we have $\mathscr{T}_{x}=\mathcal{O}_{x}$ if $x\in Y$ , and $()$ otherwise). The case of Toeplitz

operators corresponds to the case where $Y=Uu\partial U$ with $U$ a relatively compact open subset
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of X, with smooth boundary $\partial U$ . The case of operators on a real manifold corresponds to the
case where $Y=X_{0}$ is the set of real points of X as above. More generally Schapira and
Schneiders have examined the case $T=\mathcal{O}\otimes$’ where $f$ is a $real- const\iota uctible$ sheaf.

We may now describe the structure of the index formula: to ne is associated its
microsupport SS $\mathscr{M}$ , and a K-theoretical element $[\prime M]\in K_{SS\mathscr{M}}(T^{*}X)$ (when $\mathscr{M}$ is given as a

complex of differential operators with symbol exact outside of $Z=SS\mathscr{M},$ $[\ovalbox{\tt\small REJECT}]$ is the element
of $K_{SS\mathscr{M}}(T^{*}X)$ defined by the symbol; in general cf. Boutet de Monvel-Malgrange). In the

examples described above we can also define the microsupport $SS\mathscr{T}$ , and in the best cases a
K-theoretical element $[\mathscr{T}]\in K_{SS\mathscr{T}}(T^{*}X)$ . The ellipticity condition is that $SS\mathscr{M}\cap SS\mathscr{T}$ is

compact. Then the index formula then reads as follows:

Index theorem: (5) Index $(\mathscr{M},\mathscr{T})=\chi^{top}([\prime M][\mathscr{T}])$

where $\chi^{top}$ is the canonical K-theoretical character $K_{Z}(T^{*}X)arrow Z$ arising from the complex
stlucture of $T^{*}X$ (cf. appendixl), and $[ffi][ff]$ is the K-theoretical product (it has compact

support $SS\ovalbox{\tt\small REJECT}\cap SS\mathscr{T}$ ). In the cases we will describe below $\mathscr{T}$ is associated to a simple set $U$ ,

and $SS\mathscr{T}=SSU$ has a complex tubular neighborhood whose Bott element is precisely $[\mathscr{T}]$ ,

so the index formula can be $rewl\cdot itten$

(5)$bis$ Index$(\Lambda l,\mathscr{T})=\chi^{top}([\mathscr{M}]|SS\mathscr{T})$

If ,9‘ is $\mathscr{D}$ -coherent, $SS\mathscr{F}’$ is its charateristic set as mentionned; if $\mathscr{T}=\mathcal{O}\otimes$’ with $r$ a
real-constructible sheaf, SSSi is the microsupport of $r$ as defined by Kashiwara and

Schapira. The index formula in the case $T=\mathcal{O}\otimes f$ with $f$ a $\iota\cdot eal$ -constluctible sheaf was
described by Schapira and Schneiders, in terms of the microlocal Euler classes of’ and ne.
Here we have described the index formula in terms of K-theory; this seems more natural in

view of Grothendieck’s. and $Atiyah- Singer^{t}s$ work, and also for formulas with parameters. At

this stage this description is not complete, although it contains all previous cases of the
index theorem: we need to associate to the sheaf of coefficients $\mathscr{T}$ a K-theoretical element
$[\mathscr{T}]\in K_{SST}(T^{*}X)$ . This was done by M.Ohana only in the simpler cases $\mathscr{T}=\mathcal{O}_{Y}$ if $Y$ is a

real-analytic submanifold with comers of $Y$ ; it remains to be done in more general cases.

To conclude let us point out that the preceeding description also applies to the relative
case, as described in Boutet de Monvel-Malgrange: let $f:Xarrow Y$ be a submersion of complex
analytic manifolds. Then one defines the transfer module $\mathscr{D}_{Xarrow Y}$ (the sheaf on X of

“differential operators’t of type $\mathcal{O}_{Y}arrow \mathcal{O}_{X}$ : $\varphiarrow P((Q\varphi)_{0}f)$ with $P$ , resp. $Q$ , a differential

operator on X, resp. Y). $\mathscr{D}_{Xarrow Y}$ is a coherent $\mathscr{D}_{X}$-module and its characteristic set is the set
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$H\simeq T^{*}Y\cross YX$ of horizontal covectors. Let $U\subset X$ be an open set with smooth boundary $\partial U$ :
then SSO $U$ was defined above (it is the zero section above $U$ and the set of outgoing normal

covectors on $\partial U$ ). We set $\mathscr{D}_{1Iarrow Y}=\mathscr{D}_{Xarrow Y}\otimes_{\mathcal{O}\chi}\mathcal{O}_{1I}$ ; then, although the microsupport is not

generally defined in this context, a reasonable definition is $SS\mathscr{D}_{Uarrow Y}=SS\mathscr{D}_{Xarrow Y}+SS\mathcal{O}_{U}$ (at

least when the map SS $\mathscr{D}_{Xarrow Y^{\cross}X}SS\mathcal{O}_{U}arrow T^{*}X$ is proper). We may extend the projection $F$ :
$SS\mathscr{D}_{Xarrow Y}=T^{*}Y\cross YXarrow T^{*}YtoamapF_{e}:SS\emptyset_{1Iarrow Y}$ by requiring that it is constant along real

half-lines parallel to the normal outgoing real half-lines along $\partial U$ .
When $\mathscr{M}$ is a coherent 9-module on X, we studied in Boutet de Monvel-Malgrange

the direct image of the $geI^{\cdot}m$ of ne along $Uu\partial U$ :

(6) $f_{U^{+}}(\mathscr{M})=Rf_{*}(\mathscr{M}\otimes_{\emptyset x^{\mathscr{D}_{Uarrow Y)}}}$

(which describes intuitively the differential relations on $Y$ between germs of solutions of $\mathscr{M}$

along the fibers of $f$ in $Uu\partial U$ ). The geometric ellipticity condition is that $SS\mathscr{M}\cap SS\mathscr{D}_{Uarrow Y}$

is contained in $H$ ; the geometric finiteness condition is that the restriction Fe:
$SS\mathscr{M}\cap SS\mathscr{D}_{Uarrow Y}arrow T^{*}Y$ is proper. The relative ellipticity condition (with respect to U) is
that any section of $\mathscr{M}$ is killed by some veItical operator which is non-characteristic along
$\partial U$ and it cannot be read on the principal symbol alone. It implies geometric ellipticity, and

together with the stronger compactness condition above, as was shown by Houzel-Schapira,
it implies relative finiteness, ie. that $f_{U^{+}}(\ovalbox{\tt\small REJECT})$ has coherent cohomology. In this case we have
$SSf_{U^{+}}(A\ell)\subset Z=F_{e}(SS\mathscr{M}\cap SS\mathscr{D}_{1Iarrow Y})$ and the relative index formula of Boutet de Monvel-

Malgrange can be written:

Relative index formula: (7) $[f_{lI^{+}}(\swarrow u)]_{Z}=F_{e*}[\mathscr{M}]_{SS\mathscr{M}}|$ SS $\mathscr{D}\iota\intarrow Y$

where $F_{e*}$ is the K-theoretical image (the relation to the formula above is that the product
$[\mathscr{M}]_{SS\mathscr{M}}[ss\mathscr{D}_{tIarrow Y]conesponds}$ to $[\mathscr{M}]_{c}\backslash |$ SS $\mathscr{D}_{tIarrow Y}$ by the Bott isomorphism from
$K_{W}$( $SS\mathscr{D}_{1Iarrow Y)}$ to $K_{W}(T^{*}X)$ with $W=SS\ovalbox{\tt\small REJECT}\cap SS\mathscr{D}\iota \mathfrak{s}arrow Y$)
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Appendix 1. $K$ theory

$a$. Definitions Let X be a paracompact topological space. We recall that the Atiyah group
$K(X)$ is the group generated by isomorphy classes of vector bundles and the groupoid $law\oplus$ .
If $Z\subset X$ a closed subset, $K_{Z}(X)$ is the group of equivalence classes $[a]$ of bounded complexes

a of C-vector bundles on X, exact outside of $Z$ , where the equivalence relation is generated
by the relations:

(All) (i) $[a]+[b]=[a\oplus b]$

(ii) $[a]=()$ if there exists a deformation of a to an exact complex, exact out of Z.

In fact any element of $K_{Z}(X)$ is the class of length 2: if

(A12) a: $...arrow E_{k}^{\underline{a}}5E_{k+1}arrow\ldots$ $(k\in Z)$

is a bounded complex on X exact out of $Z$ , we have $[a]=6(a)\in K_{Z}(X)$ , where $\delta(a)$ is the
operator ($=complex$ of length 2) $a+a^{*}$ : $\sum E^{2k}arrow\sum E^{2k+1}$ .

K-theory is equipped with a product, colTesponding to the tensor product of complexes
of vector bundles: if $u\in K_{Z}(X)$ and $v\in K_{Z^{\dagger}}(X)$ then $uv\in K_{Z\cap Z’}(X)$ ;in particular $K(X)$ in an
algebra and $K_{Z}(X)$ id a K(X)-module.

Let $H$ be a Hilbert space and let Fred $(H)\subset L(H)$ be the set of Fredholm operators. If
$Z\subset X$ as above we denote $F_{Z}(X)$ the group of homotopy classes of continuous functions $A$ :
$Xarrow Fred(H)$ invertible outside of Z. Since GL(H) is contractible (by N.Kuiper’s theorem)

this is identical the group of homotopy classes of Fredholm Hilbert bundles which are exact

outside of $Z$ (a complex of Hilbert bundles is Fredholm if its cohomology is finite
dimensional at each point). There is an obvious map $K_{Z}(X)\in F_{Z}(X)$ because a finite-
dimensional complex is a particular case of Fredholm Hilbert complex. $J\ddot{a}nisch^{t}s$ theory
shows that this is an isomorphism if $Z$ is compact, or if the Cech dimension of X is finite.
The inverse map is the index map and is denoted $Ind_{Z}$ .

$b$ . Inverse image If $f$ is a continuous map $Xarrow Y$ , the inverse image for vector bundles
induces an inverse image $f^{-1}$ for K-theory: $K_{Z}’(Y)arrow K_{Z}(X)$ , if $Z\supset f^{-1}Z’$ . In $pal\ddagger icular$ if $U$ is
an open set of X and $Z\subset U$ is closed in X, there is a restriction map $K_{Z}(X)arrow K_{Z}(U)$ . If X is
finite dimensional this is always an isomorphism (excision) (a Fredholm map a on $U$

invertible outside of $Z$ can be deformed into 1 outside of some small neighborhood of $Z$ by
$Kuiper^{t}s$ theorem, so its homotopy class can be extended).

$c$. Products K-theory is multiplicative: if $\xi=[a]\in K_{Z}(X)$ and $\eta=[b]\in K_{Z’}[X]$ where $a$ ,

resp. $b$ are two complexes of vector spaces (resp. or Fredholm complexes), exact outside of
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$Z$ resp. $Z^{t}$ , then $\xi\eta=[a\otimes b]\in K_{Z\cap Z’}(X)$ , where $a\otimes b$ is the tensor product of complexes (it is
exact wherever one of the factors is). Slightly more generally if we have $Z\subset Y\subset X$ , and
$\xi=[a]\in K_{Z}(Y),$ $\eta=[b]\in K_{Y}(X)$ , we define the product $\xi\eta\in K_{Z}(X)$ : it is the class $[\sim a\otimes b]$ where

5 is any extension of a to X (if a is a Fredholm family, we may take any extension,

Fredholm or not, of a: the product $\sim a\otimes b$ will still be exact (thus Fredholm) outside of $Y$

because $b$ is).

$d$ . Bott isomorphism If $N$ is a complex vector bundle on X, we define its Koszul
complex, which is a complex of vector bundles on $N$ considered as a topological space:

(A13) $k_{N}$ ... $\Lambda^{-k}(p^{-1}N^{*})arrow\Lambda^{-k+1}(p^{-1}N^{*})arrow\ldotsarrow(p^{-1}N^{*})arrow Carrow 0$

where $pNarrow X$ is the projection, $N^{*}$ the dual bundle of $N$ , and the diferential at a point $n\in N$

is the intelior product $\omegaarrow n_{L}\omega$ .
$k_{N}$ is exact outside of the zero section (which we identify with X) and defines an

element $[k_{N}]\in K_{X}(N)$ . The Bott map $\beta_{NX}$ is the K-theoretical multiplication by $[k_{N}]$

(A14) $\beta_{NX}$ : $K_{Z}(X)arrow K_{Z}(N)$

$Atiyah|sfo\iota mulation$ of the Bott periodicity theorem is that (if X is finite dimensional)

this map is always an isomolphism (cf Boutet de Monvel-Malgrange for the case where the
support $Z$ is $\neq X$). The proof in Boutet de Monvcl-Malgrange describes the inverse map as
the index of families of Toeplitz operators. Thus the Bott periodicity theorem appears as the
first and fundamental case of all index theorems, and essentially all proofs of the index
theorem consist in reducing to this formula.

$e$. K-theoretical image We end this section by the description of the K-theoretical
push-forward. Let us notice that the Bott element $[k_{N}]$ is as well defined by the bundle map

$\delta(k_{N})=k_{N}+k_{N}^{*}$ : $A_{N}^{+}arrow A_{\overline{N}}$

where $A_{N}^{+}=\Lambda^{even}N^{*}$ and $A_{\overline{N}}=\Lambda^{odd}N^{*}$ (we have chosen some hermitian metric to define
the adjoint $k_{N}^{*}$ ). Thus the Bott element and the Bott map are still well defined if $N$ is only a
real vector bundle equipped with a spinc structure.1 Spinc $structUl\cdot es$ also give rise to a

$\wedge I^{1}$ A spinc structure on a real vector bundle $N$ consists of a euclidean metric on $N$ , and a simple graded

Clifford bundle (ie a vector bundle $A_{N}=/6_{N}^{+}+A_{\overline{N}}$ endowed with a structure of $C_{N}$ -module, where $C_{N}$ is the

Clifford algebra of N-generated by $NaI\iota d$ the relations n.n $=-||_{I\iota||2}$ for each $n\in N$ , which is simple at each

point of X)
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Grothendieck group $K^{S}P^{in^{C}}(X)(A_{N\oplus N’}=A_{N}\otimes^{gr}A_{N’})$ of virtual spinc structures. This has the

following property (which does not hold for complex structures): if $E$ is a real vector bundle,

and $\xi\in K^{S}P^{in^{C}}(X)$ a virtual spinc stmcture with underlying real virtual bundle [E], then there
is a unique compatible spinc stlucture on $E^{2}$

If X and $Y$ are two smooth manifolds and $f$ a differentiable map $Xarrow Y$ , a spinc
structure on $f$ is a spinc $stluctuI^{\cdot}e$ on the nonnal bundle $N(f)=f^{-1}[TY]-[TX]\in K(X)$ . A map
between complex (or symplectic) manifolds carries a canonical spinc structure.

For $f$ spinc and proper on $Z\subset X$ , the K-theoretical push-forward $K_{Z}(X)arrow K_{f(Z)}(Y)is$

defined by the following axioms:
- it is covariant: $(fg)_{*}=f_{*}g*$

-if $f:Xarrow N$ is the zero section of a spinc bundle (equipped with the obvious spinc
structure), then $f_{*}$ is the Bott isomorphism.
- it is compatible with a change of basis, ie. if we have a diagram

X $-Garrow X$
$\downarrow F$

$\downarrow f$

$Y-garrow Y$
where X, $Y,$ $X’,$ $Y^{\dagger}$ are manifolds $f,$ $g,$ $F,$ $G$ differentiable maps, $f$ and $g$ are transversal and
$Y^{1}=Y\cross_{x}X’,$ $f$ and $F$ are equipped with compatible spinc structures. If further we have

supports $Z\subset X,$ $Z^{t}\subset X’,$ $T\subset Y,$ $T^{t}\subset Y’$ with $Z^{1}\supset G^{-1}(Z),$ $T’\supset g^{-1}(T),$ $T\supset f(Z),$ $T’\supset F(Z’)$ then
$G^{-1}f*=F*g^{-1}$ : $Kz(Y)arrow K_{T}’(X^{\dagger})$ .

Thus $f_{*}$ is defined if $f$ is a spinc immersion (as the composition of the Bott

isomorphism of a tubular neighborhood, and the excision map). It is also defined if $f$ is the
projection $X=Y\cross C^{n}arrow Y$ (with the canonical spinc structure), as the composition of the
restriction map: $K_{Z}(X)arrow K_{B(X)}$ where $B\supset Z$ is aball bundle with basis $f(Z)$ and of radius

some suitably large continuous function, and of the inverse of the Bott isomorphism
$K_{B}(X)arrow K_{f(}z)(Y)$ (this is well defined because the pair $(X,f(Z))$ can be deformed in the pair
(X,B)). In the general casef is the composition of two such maps.

In particular if X has a spinc structure (eg. a complex or a symplectic structure), and
$Z\subset X$ is compact, the character $\chi^{top}:K_{Z}(X)arrow Z=K(point)$ is the $push- f_{01}ward$ map by the
spinc map $Xarrow point$ .

2 This follows from tbe fact that if $NaI|dN^{t}\subset N$ are equipped with spinc strutures, and we set $N”=N^{\prime\perp}$ , then
$A_{N’’}=Hom^{gr_{C_{N}’}},(A_{N’},A_{N})$ is (up to $i_{L}\backslash omo_{c}\backslash 1]1hi\backslash m$ ) the unique spinc structure such that

$(N,A_{N})=(N^{1},A_{N}|)\oplus(N^{\prime t},A_{N^{\prime 1).Thi\backslash }}$. complementation property does not hold for complex structures.
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Appendix 2. 9-Modules

In the introduction we mentionned that the natural framework to describe linear
differential systems is the theory of $\mathscr{D}$ -modules. This section gives a r\’esum\’e of the basic

definitions and constructions concerning 9-modules. For further details see the book of

Sato-Kawai-Kashiwa, or Borel et al seminar (in the algebro-geometric setting), and the
books of Kashiwara 5, Schapira, and Bjork, or the Grenoble seminar (Boutet de Monvel-
Lejeune-Malgrange, 1965). Many operations on $\mathscr{D}$ -modules are a superposition of several

manipulations and are suitably described in terms of $de\iota$ ived categories; for this we refer to

the same, and Verdier, Borel et al 2, Kashiwara-Schapira 2.

$a$. Introduction Let X be an analytic manifold. We denote by $\mathcal{O}$ , the sheaf of

complex valued analytic functions, $\Omega$ the sheaf of differential folms of maximum degree
(densities) and 9 the sheaf of analytic differential operators: $\mathcal{O}$ is a left $\mathscr{D}$ -module and $\Omega$ a
right $\mathscr{D}$ -module. $\mathscr{D}$ has a canonical filtration ($\mathscr{D}_{m}$ is the sub-sheaf of operators of degree $\leq m$)

and gr $\mathscr{D}$ identifies with the sheaf of sections of the symmetric algebra STX (equivalently-

the graded sheaf of polynomial functions on $T^{*}X$ , with coefficients in $\mathcal{O}_{X}$ ). $\mathscr{D}$ is coherent
(because $gr\mathscr{D}$ is). A system of differential equations on X is often described as a complex of

differential operators

(A21) $p$ : ... $E^{k}arrow p_{k}$ $E^{k+1}arrow\cdots$

where the $E^{k}$ are analytic vector bundles on X (here we denote by the same letter the sheaf
of analytic sections of E), and where we are interested in the solution sheaves, ie. the
cohomology sheaves of $p^{3}$ One is also interested by the solutions with $C^{\infty}$ or distribution
coefficients, or more generally with coefficients in a sheaf $N$ of left $\mathscr{D}$ -modules.

A more systematic description consists in defining a differential system $P$ as a
complex of right $\mathscr{D}$ -modules (or rather an $ob\backslash \dot{\mathfrak{s}}ect$ of the derived category of these) 4; the

sheaf of solutions with coefficients in $N$ is the complete tensor product

(A22) $Sol(P, N)=P\otimes_{\emptyset}^{\llcorner}N$

3 For example if $p:E^{0}arrow E^{1}$ is of length 2, the homolo\’oy sheaf $H^{0}$ is $tl$) $e$ sheaf of solutions of the equation

$pf=0$, and $H^{1}$ is the sheaf of obstructions to solving the equation $pf=g$ .
4 the sheaf of right 9-modules associated to $p$ (A-3) is $P^{d}$ : $arrow 9^{k}arrow\delta^{k+1}arrow\cdots$ withS$k=Diff(O,E^{k})$

the sheaf of differential operators of type $0arrow E^{k}$ , and differential $Qarrow p_{0}Q$ , so that $P^{d}\otimes O$ is the initial

complex $p$ . Simnilarily one associates to $p$ the complex $pg$ of left $\emptyset$ -modules Diff$(E,O)$ , for which
Sol(P)$=Hom_{\emptyset}(P^{g},0)$ .
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which is an object of the derived category of sheaves. Familiar systems correspond to
coherent $\mathscr{D}$ -modules (or complexes with coherent cohomology). In fact we will be mostly

dealing with $\mathscr{D}$ -modules which possess good filtrations.5

$b$ . Characteristic set
In general, if $M$ is a left (or light) $\mathscr{D}_{X}$-module, the characteristic set, or analytic

microsupport SS $M$ is the conic set $supp(\delta\otimes_{p^{-1}9}p^{-1}M\rangle=T^{*}X$ , where $p$ is the projection

$T^{*}Xarrow X$ and 8 is the sheaf on $T^{*}X$ of analytic pseudo-differential operators. This definition

extends to complexes or objects of the derived category. If $M$ is coherent (or has coherent
cohomology), SS $M$ is also the support of gr $M$ for any good filtration, and it is an analytic
involutive subset of $T^{*}X^{6}$ (cf the book of Sato, Kawai, Kashiwara).

$c$. Direct and inverse image
Let X, $Y$ be analytic manifolds and $f:Xarrow Y$ an analytic map. We define the

transfer module $\mathscr{D}_{Xarrow Y}$ as the sheaf on X of f-differential operators of type $\mathcal{O}_{Y^{arrow}}\mathcal{O}_{X}$ (local

sections are operators of the form $u\in 0yarrow P_{X}(Qyu_{o}f)$ with $P_{X}\in \mathscr{D}_{X},$ $Q_{Y}\in \mathscr{D}_{Y}$ ). $\mathscr{D}_{Xarrow Y}$ is a
left $\mathscr{D}_{X}$-module and a right $f^{-1}\mathscr{D}_{Y}$ -module. Similalily one defines the transfer module $\mathscr{D}_{Yarrow X}$

as the sheaf on X: it is the sheaf of f-differential operators of type $\Omega_{Y}arrow\Omega_{X}$ , a $(f^{-1}\mathscr{D}_{Y},\mathscr{D}_{X})-$

bimodule.

Examplel-If $f$ is submersive we have the relative De Rham complex $d_{X/Y}$ :

(A23) $d_{X/Y}$ : $0arrow \mathcal{O}_{Y}arrow T^{*}X/Yarrow\cdots\Lambda^{k}T^{*}X/Yarrow\Lambda^{k+1}T^{*}X/Yarrow\cdots$

As a left $\mathscr{D}_{X}$ -module, $\mathscr{D}_{Xarrow Y}$ is generated by the pullback operator $\epsilon(uarrow uoD$ ; it is a flat
$f^{-1}\mathscr{D}_{Y}$-module (as $\mathcal{O}_{X}$ is flat on $f^{-1}\mathcal{O}_{Y);}$ and the complex $DR_{X}^{g_{!Y}}$ of left $\mathscr{D}$ -modules

associated to $d_{X/Y}$ is a locally free resolution of $\mathscr{D}_{Xarrow Y}$ (the augmentation is $P\in \mathscr{D}xarrow P_{O}\epsilon$).

If $f:Xarrow Y$ is an immersion we have $\mathscr{D}_{Xarrow Y}\simeq \mathcal{O}_{X}\otimes_{f^{-1_{\mathcal{O}_{Y}}}}f^{1}\mathscr{D}_{Y}$ . It is a locally $free\mathscr{D}_{X^{-}}$

module; locally $f$ is isomorphic with the zero section of a vector bundle, whose Koszul
complex defines (extending coefficients to $\mathscr{D}_{Y}$) alocally free resolution of $\mathscr{D}_{Xarrow Y}$ on $\mathscr{D}_{Y}$ .

5 A good filtration on a 9-module $M$ is a filtration $M=\cup M_{k}$ , with $M_{k}O_{X}$ coh\’erent, $M_{k}=0$ if $k<<0,$ $M_{k}9_{p}\subset$

$M_{k+p}$, with equality if $k\gg O$ . A fD-module is coherent iff it possesses locally good filtrations. Algebraic

coherent 9-modules and holonomic 9-modules possess global good filtrations but in general existence of a
globally defined good filtration on a coferent 9-module is not known. The canonical flitration of 9 is a good

filtration.
6 ie. if $f$ and $g$ vanish on char,$\mathscr{M}$ then so does their Poisson bracket {f,g} $= \sum\partial f/\partial\xi_{j}\partial g/\partial x_{j}-\partial f/\partial x_{j}\partial g/\partial\xi_{j}$ (in any

system of local coordinates)
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If $.\parallel l$ is a right $\mathscr{D}_{X}$-module (resp. aleft $\mathscr{D}_{Y}$-module) the direct image $f_{+}M$ is the object

of the derived category of right $\mathscr{D}_{Y}$-modules defined by

(A24) $f_{+}M=Rf_{*}(M^{\llcorner}\otimes 9_{X}\mathscr{D}_{Xarrow Y})\in obD^{b}(\mathscr{D}_{Y})$

(resp. the inverse image $f^{+}M$ is

(A25) $f^{+}M=F^{1}(M)\otimes\emptyset_{Y})\mathscr{D}_{Yarrow X}\llcorner$ [-d] $\in obD^{b}(\mathscr{D}_{Y)}(d=dimX- dimY)$

one defines similarily the direct image of a left $\mathscr{D}_{X}$ -module or a right $\mathscr{D}_{Y}$-module using the

transfer module $\mathscr{D}_{Yarrow X)}$ .

Example 2-If $f:Xarrow Y$ is a closed immersion, the direct image $f_{+}$ is defined for $\mathscr{D}$ -modules:

the functor $Marrow f_{*}M\otimes \mathscr{D}_{Xarrow Y}\emptyset_{X}$ is exact; it is a category equivalence (Kashiwara

equivalence) between $\mathscr{D}_{X}$ -modules and $\mathscr{D}_{Y}$ -modules “algebraically” supported by X (ie. any

of whose sections is killed by some power of the ideal of X).

Dually if $f:Xarrow Y$ is a submersion with cohomologically $tl\cdot ivial$ fiber-eg. X is the

germ of some manifold along a continuous section of f-it is shown in Boutet de Monvel-
Malgrange that the inverse image $f^{+}\backslash$ realizes a category equivalence between coherent $\mathscr{D}_{Y^{-}}$

modules and the category of coherent $\mathscr{D}_{X}$-modules which are $regulal\cdot ily$ characteristic along

horizontal covectors of the submersion (the characteristic set of $d_{X/Y}$). This is particularily
useful in the following case: $Y$ is a complex manifold, $X=Y_{R}$ the real sublying manifold-
germ of $Y\cross\overline{Y}$ along the diagonal, and $f:Xarrow Y$ is the canonical projection.

$d$ . Symbol , K-theoretical element associated to a 9-module

Let X be a complex manifold, and $M$ a $\mathscr{D}$ -module possessing a good filtration. If
$Z\subset T^{*}X$ is a closed conic set containing SSM we define:

(A26) $[M]_{Z}^{an}\in K_{Z}^{an}(T^{*}X)$

the element of the Grothendieck group of homogeneous sheaves on $T^{*}X$ . This element (or

rather its restriction to any subset with compact basis in $T^{*}X$) does not depend on the choice
of a good filtration on M.

We also define the topological symbol

(A27) $[M]_{Z}^{top}\in K_{Z}(T^{*}X)$

of right $\mathscr{D}$ -modules possessing good filtrations (or similatily for a left $\mathscr{D}$ -module) by the

following axioms:
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(i) it is additive for exact sequences ie. $[M]_{Z}^{top}=[M’]_{Z}^{top}+[M^{\dagger\prime}]_{Z}^{top}$ if there exists an exact

sequence $0arrow M’arrow Marrow M^{\dagger\dagger}arrow 0$

(ii) if $M$ corresponds (as above) to a complex $P$ of differential operators whose symbol $\sigma(P)$

is exact outside of $Z$ , then $[M]_{Z}^{top}=[\sigma(P)]_{Z}$ (the element of $Kz(T^{*}X)$ defined by $\sigma(P)$ ).

(iii) it is compatible with submersive inverse images. More $P^{lecisely}$ let $f:Xarrow Y$ be a
submersion. If $M$ is a coherent 9-module (possessing a good filtration) we have $f^{+}M=$

$f^{-1}M\otimes_{r-\iota_{9}}\mathscr{D}_{Yarrow X}[d](d=dimX1Y)$ . Denote $F:f^{-1}T^{*}Y=X\cross_{Y}T^{*}Y\simeq’ T^{*}X$ the cotangent

map: its image is $H=car\mathscr{D}_{Yarrow X}\subset T^{*}Y$ , the set of $ho\iota$ izontal covectors; denote $\overline{f}$:
$F^{1}T^{*}Yarrow T^{*}Y$ the projection. Then we have car $(t(M))=F\overline{F}^{1}$ (car $M$ ) $\subset H$ , and

(A28) $[fM]_{\Gamma Z}^{to_{\vdash}p}=\overline{f}^{-1}[M]_{Z}^{top}$ . $[\mathscr{D}xarrow Y[d]]_{Z}^{to,p}=F_{*}f^{-1}[M]_{Z}^{top}-(d=dimX/Y)$

the K-theoretical image. These axioms define $[M]_{Z}^{top}$ if X is the germ of a complex manifold

along a compact set, or if X is a $pro_{\backslash }|ective$ manifold, since $M$ then possesses a ftgood“
locally free resolution (corresponding to a locally free $1^{\cdot}esolution$ or $grM$), whose symbol
defines $[M]_{Z}^{top}$ . In the general case the real sublying manifold $X_{R}$ is Stein, so [ $M_{R]_{Z_{R}}^{top}}$ is well
defined, so as $[M]_{Z}^{top}$ since in this case the K-theoretical map $F_{*}\Gamma^{1}$ : $K_{Z}(T^{*}X)arrow K_{fZ}(T^{*}X_{R})$

is one to one (it is the Bott isomorphism). Reducing similarily to the case where X is real
one shows that the symbol $[M]_{Z^{()}}^{tp}$ is well behaved under closed immersions:

(iv) If $f:Xarrow Y$ is a closed immersion, $M$ a $\mathscr{D}_{X}$-module with a good filtration and car $M=$

Z. Then $f_{+}M$ possesses a good filtration, we have $carf_{+}M=\overline{f}F^{-1}(Z)$ , and

(A29) $[f_{+}M]_{Z}^{to}l^{1}=\overline{f}_{*}F^{-1}[M\}_{Z}^{op}$ (K-theoretical image( $with\overline{f}:F^{1}(T^{*}Y)arrow T^{*}Y$ the

projection, and $F:f^{-1}(T^{*}Y)arrow T^{*}X$ the cotangent map)

Remark-if $m$ is a coherent $\mathcal{O}_{X}$-module with $support\subset Z$ , we set note $[m]_{Z}^{top}\in K_{Z}(X)$

whose inverse image on $T^{*}X$ is $[m\otimes_{\mathcal{O}_{X}}\mathscr{D}_{X}]_{p^{-1}}^{top_{Z}}\in K_{p^{-1}Z}(T^{*}X)$ . This definition commutes

with submersions and closed immersions. 7 This definition of course coincides with that of
Baum, Fulton, Mac-Pherson when it is defined (eg. if X is a Stein or projective manifold so
$m$ has finite locally free resolutions). In their work Baum, Fulton, Mac-Pherson prove the

result for immersions by “deformation to the normal cone“.

7 The canonical map $K_{Z}^{an}(X)arrow K_{Z}^{top}(X)$ was defined by Baum-Fulton-Mac Pherson when X is a projective

space, using a deformation to the nolmal cone. Our definition uses the real sublying manifold $X_{R}$ so X does not

needs to be projective. Note that going from X to $X_{R}$ , one looses nothing at the level of $\emptyset$ -modules, but one
looses all modular or continuous infoImation contained in $K_{Z}^{an}(X)$ .
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Appendix 3. Sketch of the proof of the index formula

The data for the index theorem consists in a complex manifold X, a system of
differential equations on X described by a coherent right $\mathscr{D}$ -module $M$ (possessing a good
filtration), and a sheaf of coefficients $N$ (a left $\mathscr{D}$ -module).

In what follows $N$ will always be of the form $N=0_{U}$ where $U$ is a real analytic

submanifold with boundary (or corners).8 The microsupport SS $N=SSU$ is then the set of
all ”outgoing“ nolmal covectors, ie complex covector $\zeta$ such that ${\rm Re}\zeta$ is negative on the 1st
order jet of $U$ (this makes sense unambiguously if $M$ is a real analytic submanifold with
corners).

example-if $U$ is a totally real submanifold in X (real case), SSU is the set of pure
imaginary covectors at points of U.

If $U$ is a submanifold of real dimension $2dimX$, with boundary $\partial U$ a real-analytic
hypersurface, $SSU\subset T^{*}X$ is the union of the zero section of $U$ and the outgoing conormal
bundle of $\partial U$ (set of all $\zeta$ at points.

As mentionned above the $\mathscr{D}$ -module $M$ is elliptic with respect to $U$ if SS $M\cap SSU$ is

contained in the zero section: the stronger $f_{1}^{\vee}niteness$ condition is that SS $M\cap SSU$ is

compact. We then dispose of the following $ob|ects:\backslash$

-the characteristic set $Z=SSM$, and the symbol $[M]_{Z}^{top}\in K_{Z}(T^{*}X)^{9}$

-the microsupport SSN: in the case considered here $(N=O_{U})$ this always has a tubular

neighborhood with a canonical spinc structure, and by definition [N] is the Bott element
corresponding to this. 10

Thus the terms in the index folmula (5) are well defined. The main idea of the proof is
to embed everything in a numeric space where the folmula is known. However ellipticity is
not preserved by closed embeddings (a system whose solutions are carried by a proper
submanifold cannot be elliptic), so it is useful to slightly enlarge the definition. In the cases
we are dealing with ($U$ a real analytic manifold with corners) it is easy to see that $U$ can be

8 the case where $N$ is a coherent left $\emptyset$ -module can form$\prime Uly$ be reduced to the case $M=O$ . ‘Riere clearly should

be a more general case, making the symmetry between $M$ and $N$ more apparent, but the K-theoretical aspect in

more general cases remains to be developped. As mentionned above $Ule$ case where $N$ is associated to a
constructible sheaf on X has been exalniIled by Schapira and Schneiders.
9 this is really only defined above compact $sub\backslash \backslash ets$ of X, but this is enou\’oh for the $i_{11}dex$ formula where it only

needs to be defined dear the compact set SS $M\cap SS$ U.
10 for example if $U$ is an open subset with analytic boundtary. SS $U$ can be defoimed into the zero section; for

the zero section the tubular neighborhood is $T^{*}X$ , which is a $c(lnplex$ vector bundle. The K-theoretical element

[N] for more generent coefticient sheaves remains to be constructed.
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deformed and thickened in the following sense: there existes a continuous one parameter
family $U_{\epsilon}$ of neighborhoods of $U$ , such that each $U_{\epsilon}$ is a manifold with boundary, $U_{\epsilon}\subset U_{\epsilon’}$ if
$\epsilon<\epsilon’$ , and SS $U_{\epsilon}arrow SSU$ if $\epsilonarrow 0$ . We will say that such a family of neighborhoods is adapted

to $U$ , a use the following generalization of ellipticity:

D\’efinition A3- $M$ is almost elliptic with respect to $U$ if there exists an adapted family $U_{\epsilon}$

of neighborhoods such that $M$ is adapted with respect to $U_{\epsilon}$ for small $\epsilon$ .

examples: an elliptic module is almost elliptic. Products of almost elliptic modules are
almost elliptic. If $M$ is almost elliptic with respect to $U$ , and $f$ is an analytic embedding, $f_{+}M$

is almost elliptic with respect to $f(U)$ . Finally a holonomic module is always almost elliptic,
with respect to any U.

The index foimula extends naturally to almost elliptic systems (replacing the product
$[M]_{carM}^{top}[\mathcal{O}_{U}]_{SSU}$ (or the restriction $[M]_{carM}^{top}|SSU$) by the limit of the deformations
$[M]_{carM}^{top}[\mathcal{O}_{11_{8}}]_{SSU_{\epsilon}})$ , and we prove it in this framework, which allows embeddings.

The index theorem may then be proved as follows:
1. We first replace the manifold X by the sublying real manifold $X_{R}$ , and $M$ by $M_{R}$

2. The choose a closed immersion $f$ to embed everything in a numelic space $R^{n}$ , and
possibly thicken in $C^{n}$ to reduce to the case where $U$ is a small ellipsoYd neighborhood of the
real unit ball; in this cas the formula is already established: it reduces to the index foimula
for Toeplitz operators on a ball and is a particular case of the Bott periodicity theorem.

The topological character $\chi^{top}$ or the K-theoretical push-forward were precisely

constmcted to follow in these operations.

As was shown by Atiyah-Segal, the absolute index $fo\iota mula$ has a natural
generalization to systems to systems depending on parameters. i1 In our analytic framework
these are described as follows: we first have an analytic map $f:Xarrow Y$ (of real or complex
manifolds), a complex $M$ of right $\mathscr{D}_{X/Y}$-modules (with good filtrations), representing an
analytic family of differential systems on the fibers, and a sheaf of coefficients $N=0_{U}$,

associated as above to a real analytic submanifold with comers $U\subset X$ . The relative
characteristic variety $Z=carM/Y\subset T^{*}X/Y$ is the support of $grM$ (for any good filtration). To
$M$ we associate the symbol

(A31) $[M]_{Z}^{top}\in K_{Z}(T^{*}X/Y)$

11 also to G-equivariant systems, $G$ a compact group (the index is then a virtual representation of G), to which

case our proof adapts easily-using equivariallt embeddings.
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defined as above (it is only defined above compact subsets of X). The direct image of $MIU$

(describing solutions along fibers of U) is $f_{+}M=Rf_{*}(M\otimes_{9}N)L$ . To $N$ we associate its relative

microsupport $SSN\subset T^{*}X/Y$ , whose fiber above $y\in Y$ is $SSU_{y}$ . The finiteness (ellipticity)

condition is that the projection $SSM\cap SSNarrow Y$ be proper, ie. that $M_{y}$ be elliptic along $U_{y}$

for all $y\in Y$ and this ensures that $f_{+}M$ has coherent cohomology. In that case the support of
$f_{+}M$ is contained in the projection $Z^{t}$ of $Z=carM/Y\cap SSU/Y$ , and the following formula is
the natural generalization of the index formula:

(A32) $[f_{+}M]_{Z}^{to}P=\overline{f}*([M]_{Z}^{top}[N_{U}])\in K_{Z’}(Y)$ (K-theoretical image)

where $\overline{f}$ is the projection $T^{*}X/Yarrow Y$ . The proof is an immediate adaptation of the proof

sketched above.

Relative index theorem

We end these notes by a brief $desc\iota\cdot iption$ of the relative case. In the relative index
folmula we are given an analytic map $f:Xarrow Y$ between analytic manifolds, a $\mathscr{D}$ -module $M$

on X, and a subset $U$ defining the sheaf of coefficients. We are interested in the direct image
$f_{+}(MlU)$ : a relative ellipticity condition will ensure that this is coherent, and the relative
index formula will then describe its symbol bundle $[f_{+}(MlU)]$ in terms of [M].

Let us $descl\cdot ibe$ this more precisely. First the relative index formula below, as all
folmulas above, is compatible with closed immersions: replacing X by $X\cross Y,$ $M$ and $U$ by
their direct image by the graph map Idxf, and $f$ by the projection $X\cross Yarrow Y$ , we are reduced
to the case where $f$ is submersive (a projection), which we will always suppose from now
on. As above we denote

(A34) $H=X\cross YT^{*}Y$

7: $Harrow T^{*}Y$ the second $pro_{\backslash }|ection$

$F:Harrow T^{*}X$ the cotangent map

to our set $U$ defining the coefficient sheaf we associate the transfer module $\mathscr{D}_{Uarrow Y}=$

$C_{U}\otimes \mathscr{D}_{Xarrow Y}$. We define the microsupport SS $\mathscr{D}_{1Iarrow Y}=SSC_{U}+SS\mathscr{D}_{Xarrow Y}$ (the set of all

covector of the form $\xi+\eta$ with $\xi\in SSU$ and $\eta\in H=SS\mathscr{D}_{Xarrow Y}$ at points of U). We denote

further

(A35) $U_{e}=SS\mathscr{D}_{1Iarrow Y}=SSU\cross x^{H}$

$F_{e}$ : $U_{e}arrow T^{*}X$ the map which extends $F$ by $F_{e}(\eta,h)=\eta+h$

$F_{e}:U_{e}arrow T^{*}Y$ the projection
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The relative ellipticity ellipticity condition is the following: we have seen above the
definition of ellipticity with respect to $U$ for a vertical $\mathscr{D}_{X/Y}$ -module, which is the

straightforward generalization of the ellipticity condition in the absolute case. The $M$ is
relatively elliptic if locally (near any point of $\partial U$ ) it is a quotient of a $\mathscr{D}$ -module of the form

$N\otimes_{9_{X/Y}^{\mathscr{D}}X}$ for some coherent $\mathscr{D}_{X/Y}$-module $N$ , elliptic with respect to U. 12 Relative

ellipticity implies the following geometric condition:

(A36) SS $M$ and SS $\mathscr{D}_{Uarrow Y}$ meet along $H$ ( $the$ zero section of $T_{H\Pi^{*}Y}^{*}$).

The finiteness condition is this relative ellipticity condition, plus the condition that the
projection: SS $M\cap SS\mathscr{D}_{Uarrow Y}arrow T^{*}Y$ is proper. There is also a notion of almost ellipticity.

However the relative ellipticity condition is more complicated than in the absolute case; it
cannot be read on the principal symbol of operators alone and is harder to manipulate (and

less stable).

Under this relative ellipticity and finiteness condition, it was shown by Houzel-

Schapira that the direct image $f_{+}M_{U}=Rf_{*}(M^{L}\otimes_{\emptyset}\mathscr{D}_{Uarrow Y})$ is coherent and its characteristic set

is contained in the set $Z^{(}=\overline{f}(SSM\cap SS\mathscr{D}_{Uarrow Y})$ . The relative index formula of Boutet de

Monvel-Malgrange is in this case the straightforward generalization of (5) $bis$ :

$[f_{+}M_{U}]_{Z}^{to_{t}p}=f_{e*}F_{e^{-1}}[M]_{Z}^{top}=$

We refer to the paper of Boutet de Monvel-Malgrange for the proof of the relative
index formula and give here only the briefest indication. As above one may simplify the
situation replacing $M$ by $M_{R}$ and embedding in a numeric space; we may thus reduce to the
case $U=Y\cross Q_{8}$ where $Q_{\epsilon}$ is a fixed complex ellipsoid, neighborhood of a real ball. In any
case, it is practical to use a resolution of $M$ by ’vertical“ D-modules of the type $N\otimes_{\emptyset_{X!Y}^{\mathscr{D}_{X}}}$ ,

and make use of vertical filtrations, ie. double filtrations of the form $M_{pq}=M_{p}\mathscr{D}_{X/Y}^{q}$ . The
graded object associated to this is a vertical $\mathscr{D}_{H\Gamma\Gamma^{*}Y}$ -module to which we may apply the

theory above (with parameters): its direct image is coherent, and it is the first term of a
spectral sequence which converges to $grf_{+}M_{U}$ . There still remains some work to do to

compare the K-theoretical element associated to the “vertical” graded object\dagger ’ $gr^{v}M$ , which
lives on $T_{H/T^{*}Y^{\sim}Y}^{*}-H\cross T^{*}Y$ and $[M]_{Z}^{top}$ which lives on $T^{*}X$ (in fact they are bot compared to

their “cones\dagger t which live along the zero section of $H$ in $H\cross T^{*}Y$) and check that they give the

same element by the K-theoretical image

12 equivalently any sestion $s$ of $M$ at a point of $\partial lI$ is killed by a vertical operator $P\in 9_{X/Y}$ non characteristic

for $\partial U$ .
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