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Introduction
As is well known, there are two important aspects of Gaussian space: stochastic

analysis and quantum field theory. Needless to say, in these theories most principal
roles are played respectively by Brownian motion and Fock space both of which are
realized on Gaussian space. Thus it is widely accepted that Gaussian space is one of
the most important concepts of infinite dimensional analysis such as Euclidean space in
finite dimensional case. Moreover, since $1970s$ distribution theories on Gaussian space
have developed considerably into a most flourishing field of mathematics.

On the other hand, it is remarkable that some pioneering works were made by japanese
mathematicians in $1960s$ toward ”harmonic analysis on Gaussian space.” A central
object was perhaps the infinite dimensional rotation group $O(E;H)$ proposed by H.
Yoshizawa after his study of unitary representations of free groups. During that decade
a series of important works appeared discussing infinite dimensional Laplacian, infinite
dimensional rotation group, infinite dimensional motion group, and special functions
as matrix elements of their unitary representations, see K\^ono [9], [10], Orihara [26],
Umemura [27], Umemura and K\^ono [28]. Furthermore, it was shown by Hida, Kubo,
Nomoto and Yoshizawa [5] and Yoshizawa [30] that the infinite dimensional rotation
group plays also an important role in describing projective invariance of Brownian mo-
tion, see also [31]. However, little progress has been made afterward and, in particular,
no special attention has been paid to application of distribution theories born in $1970s$ .

In recent years the so-called white noise calculus, a distribution theory on Gaussian
space initiated by Hida [3] and axiomatized to some extent by Kubo and Takenaka
[11], has developed considerably keeping a profound contact with stochastic (causal)
analysis and Feynman path integrals, see e.g., [7]. Meanwhile, establishing a general
theory of operators on white noise functionals using integral kernel operators and Fock
expansion, we have started a study of harmonic analysis on Gaussian space, see also
[21]. One of the main consequences of our operator theory is that every continuous
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linear operator on white noise functionals (this class contains all bounded operators on
Fock space) admits an infinite series expansion in terms of creation and annihilation
operators. This theory is highlighted in [22] and [23], see also \S 6.

The main purpose of this paper is to recapitulate the operator theory on Gaussian
space with illustrating application to some questions of harmonic analysis, in particular,
to description of rotation-invariant operators.

In his important work [27] Umemura showed that “rotation-invariant operators” are
generated by a single operator, namely, by the number operator $N$ . However, we can
not help ourselves feeling that the structure of the rotation-invariant operators is even
poorer, comparing to the finite dimensional case. Moreover, during the derivation of
the number operator from finite dimensional Laplacians by limit argument, Umemura
abandoned polynomial terms simply by reason of divergence. We shall observe that
white noise calculus explains it to some extent. In fact, in our sense the rotation-
invariant operators on Gaussian space are gerenated by two Laplacians, the number
operator $N$ and the Gross Laplacian $\Delta_{G}$ . Note, however, that there is no contradiction
between Umemura’s work and our result. The point is very simple: the Gross Laplacian
is not symmetric and the proper $L^{2}$-domain of $\Delta_{G}^{*}$ is $\{0\}$ . Furthermore, a white noise
analogue of Euclidean norm is given by $R=2N+\Delta_{G}+\Delta_{G}^{*}$ . We shall observe that $R$

is extracted from the “divergent terms” in Umemura’s argument. Thus, within white
noise calculus the structure of rotation-invariant operators is more similar to the finite
dimensional case.

1. Gaussian Space

Let $T$ be a topological space with a Borel measure $\nu(dt)=dt$ and let $H=L^{2}(T, \nu;R)$

be the real Hilbert space of au v-square integrable functions on $T$ . The inner product
is denoted by \langle ., $\cdot$ ) and the norm by $|\cdot|_{0}$ . We often regard $T$ as time-parameter space
e.g., when $T=R,$ $Z$ , and as space-time-parameter space in quantum field theory e.g.,
when $T=R^{D},$ $Z^{D}$ .

Let $A$ be a positive selfadjoint operator on $H$ with Hilbert-Schmidt inverse. Then
there exist an increasing sequence of positive numbers $0<\lambda_{0}\leq\lambda_{1}\leq\lambda_{2}\leq\cdots$ and a
complete orthonormal basis $(e_{j})_{j}^{\infty_{=0}}$ for $H$ such that $Ae_{j}=\lambda_{j}e_{j}$ and

(1-1) $\delta\equiv(\sum_{j=0}^{\infty}\lambda_{j}^{-2})^{1/2}=\Vert A^{-1}\Vert_{HS}<\infty$ .

Let $E$ be the standard CH-spaoe constructed from $(H, A)$ , that is, the $c\infty$ -domain of
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$A$ equipped with the norms:

(1-2) $| \xi|_{p}=|A^{p}\xi|_{0}=(\sum_{j=0}^{\infty}\lambda_{j}^{2p}\langle\xi,$
$e_{j}\}^{2})^{1/2}$ , $\xi\in E$ , $p\in$ R.

Since $A^{-1}$ is of Hilbert-Schmidt type by assumption, $E$ becomes a nuclear Fr\’echet space
and hence

(1-3) $E\subset H=L^{2}(T, \nu;R)\subset E^{*}$

becomes a Gelfand triple. The canonical bilinear form on $E^{*}\cross E$ is also denoted by $(\cdot, )$ .
The dual space $E^{*}$ is always assumed to be equipped with the strong dual topology.

By the Bochner-Minlos theorem there exists a unique probability measure $\mu$ on $E^{*}$

(equipped with the Borel $\sigma- field$ ) such that

(1-4) $\exp(-\frac{1}{2}|\xi|_{0}^{2})=\int_{E^{*}}e^{i\langle x,\xi)}\mu(dx)$ , $\xi\in E$ .

This $\mu$ is called the Gaussian measure and the probability space $(E^{*}, \mu)$ is called the
Gaussian space.

In a different context Gaussian space would mean merely a real (usually infinite di-
mensional) vector space equipped with Gaussian measure. In fact, $L^{2}$ -theory on Gauss-
ian space is free not only from the particular construction of Gelfand triple (standard
CH-space) but also from the underlying space $T$ . However, those particular structures
together with the assumptions below are indispensable for our effective theory of distri-
butions.

By construction each $\xi\in E$ is a function on $T$ determined up to v-null functions.
This hinders us from introducing a delta-function which is essential to our discussion.
Accordingly we are led to the following:
(H1) For each $\xi\in E$ there exists a unique continuous function $\tilde{\xi}$ on $T$ such that $\xi(t)=$

$\sim\xi(t)$ for v-a.e. $t\in T$ .
Once this is satisfied, we always assume that every element in $E$ is a continuous function
on $T$ and do not use the symbol $\sim\xi$ . We further need:
(H2) For each $t\in T$ a linear functional $\delta_{t}$ : $\xirightarrow\xi(t),$ $\xi\in E$ , is continuous, i.e., $\delta_{t}\in E^{*}$ ;
(H3) The map $trightarrow\delta_{t}\in E^{*},$ $t\in T$ , is continuous. (Recall that $E^{*}$ carries the strong

dual topology.)

Under $(H1)-(H2)$ the convergence in $E$ implies the pointwise convergence as functions
on $T$ . If we have (H3) in addition, the convergence is uniform on every compact subset
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of $T$ . Moreover, it is noted that the properties $(H1)-(H3)$ are preserved under forming
tensor products. By another reason (see \S 4) we need one more assumption:

(S) $\lambda_{0}=\inf Spec(A)>1$ .
The constant number

(1-5) $0<\rho\equiv\lambda_{0}^{-1}=\Vert A^{-1}\Vert_{oP}<1$

is important as well as $\delta$ defined in (1-1) to derive various inequalities, though we do
not use them explicitly in this paper.

2. Wiener-It\^o-Segal Isomorphism
For simplicity we put

$(L^{2})=L^{2}(E^{*}, \mu;C)$ .
In this section we recapitulate the famous Wiener-It\^o-Segal isomorphism between $(L^{2})$

and the so-called Boson Fock space over $H_{\mathbb{C}}$ .
The canonical bilinear form on $(E^{\otimes n})^{*}\cross(E^{\otimes n})$ is denoted by $\langle\cdot, \rangle$ again and its

bilinear extension to $(E_{C}^{\otimes n})^{*}\cross(E_{C}^{\otimes n})$ is also denoted by the same symbol. We now
define $\tau\in(E\otimes E)^{*}$ by

(2-1) $\langle\tau, \xi\otimes\eta\}=(\xi, \eta\rangle,$ $\xi,$ $\eta\in E$ .

In other words,

(2-2) $\langle\tau,$ $\omega$) $= \int_{T}\omega(t, t)dt$ , $\omega\in E\otimes E$ .

The fact that any $\omega\in E\otimes E$ is a continuous function on $T\cross T$ follows from $(H1)-(H3)$ .
This distribution is called trace.

For $x\in E^{*}$ we define: $x^{\otimes n}:\in(E^{\otimes n})_{sym}^{*}$ inductively as follows:

(2-3) $\{\begin{array}{l}x^{\otimes 0}\cdot.=lx^{\otimes l}\cdot.=xx^{\otimes n}.\cdot=x\otimes.\cdot x^{\otimes(n-l)}\cdot.-(n-l)\tau\otimes\cdot.x^{\otimes(n-2)}\wedge\wedge.\cdot\end{array}$

$n\geq 2$ .

In other words, : $x^{\otimes n}$ : is defined as a unique element in $(E^{\otimes n})_{sym}^{*}$ satisfying

(2-4) $\{:x^{\otimes n}:,$ $\xi^{\otimes n}\rangle=\frac{|\xi|_{0}^{n}}{2^{n/2}}H_{n}(\frac{\langle x,\xi)}{\sqrt{2}|\xi|_{0}})$ , $\xi\in E$ , $\xi\neq 0$ ,
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where $H_{n}$ denotes the Hermite polynomial of degree $n$ . Or equivalently, : $x^{\otimes n}$ : is defined
by generating function:

(2-5) $\phi_{\xi}(x)\equiv\sum_{n=0}^{\infty}\{:x^{\otimes n}:,$ $\frac{\xi^{\otimes n}}{n!}\}=\exp(\langle x, \xi\rangle-\frac{1}{2}\langle\xi, \xi\rangle)$ , $\xi\in E$ .

Note that the right hand side of (2-5) is a “normalized” exponential function and the
identity is valid also for $\xi\in E_{C}$ . We call $\phi_{\xi}$ an exponential vector.

The orthogonal relation of Hermite polynomials leads us to the following

(2-6) $\int_{E^{*}}\{:$ $x^{\otimes m}:,$ $f_{m}\rangle$ \langle : $x^{\otimes n}:,$ $g_{n}\rangle\mu(dx)=n!\langle f_{m}, g_{n}\rangle\delta_{mn}$ , $f_{m}\in E_{\mathbb{C}}^{\otimes m},$
$g_{n}\wedge\in E_{\mathbb{C}}^{\otimes^{\wedge}n}$ .

Then by usual $L^{2}$-approximation one can define a function $xrightarrow\langle:$ $x^{\otimes n}:,$ $f\rangle,$ $x\in E^{*}$ ,

for any $f\in H_{C}^{\otimes n}\wedge$ in $L^{2}$-sense. Let $\mathcal{H}_{n}(C)$ be the spaoe of all such functions. Then they
become mutually orthogonal closed subspaces of $(L^{2})$ . Sinoe the polynomials, namely
the algebra generated by $\{\langle x, \xi\rangle ; \xi\in E_{C}\}$ is dense in $(L^{2})$ , we come to the following

THEOREM 2.1 ($WIENER- IT\hat{O}$-SEGAL). The Hilbert space $(L^{2})$ admits an orthogonal
sum decomposition:

(2-7) $(L^{2})= \sum_{n=0}^{\infty}\oplus \mathcal{H}_{n}(C)$ .

More precisely, for each $\phi\in(L^{2})$ there exists a unique sequence $f_{n}\in H_{C}^{\otimes n}\wedge,$ $n=$

$0,1,2,$ $\cdots$ , such that

(2-8) $\phi(x)=\sum_{n=0}^{\infty}\langle:x^{\otimes n}:,$ $f_{n}\rangle$ , $x\in E^{*}$ ,

where each $\{:x^{\otimes n}:,$ $f_{n}\rangle$ is a function in $?t_{n}(C)$ and the series is an orthogonal direct
sum. In that case

(2-9) $|| \phi\Vert_{0}^{2}\equiv\int_{E^{*}}|\phi(x)|^{2}\mu(dx)=\sum_{n=0}^{\infty}n!|f_{n}|_{0}^{2}$ .

Furthermore, the above correspondence $\phirightarrow(f_{n})_{n=0}^{\infty}$ gives a unitary isomorphism be-
tween $(L^{2})$ and the Boson Fock space over $H_{C}$ .

According to the Wiener-It\^o decomposition (2-7) we define an operator $N$ by

(2-10) $N\phi=n\phi$ , $\phi\in \mathcal{H}_{n}(C)$ , $n=0,1,2,$ $\cdots$
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Equipped with the maximal domain, $N$ becomes a selfadjoint operator in $(L^{2})$ . This
operator is called the number operator (because 7 $n(C)$ stands for the Hilbert spaoe
of $n$ Bose particles in physical interpretation) and is one of the infinite dimensional
Laplacians on Gaussian space. We shall come back to this topic in \S 6.

3. Infinite Dimensional Rotation Group
Let $O(E;H)$ be the group of all linear homeomorphisms from $E$ onto itself preserving

the norm $|\cdot|_{0}$ , namely 1 $g\xi|_{0}=|\xi|_{0}$ for $\xi\in E$ . In other words, $O(E;H)$ is the group of
automorphisms of the Gelfand triple $E\subset H\subset E^{*}$ . While, sinoe each $g\in O(E;H)$ is
extended to an orthogonal operator on the Hilbert spaoe $H$ , we may regard $O(E;H)$ as
a subgroup of the full orthogonal group $O(H)$ . The group $O(E;H)$ is called the infinite
dimensional rotation gmup (associated with the Gelfand triple $E\subset H\subset E^{*}$ ).

The infinite dimensional rotation group $O(E;H)$ acts on the Gaussian spaoe $E^{*}$ in an
obvious manner:

(3-1) $\langle x, g\xi\rangle=\langle g^{*}x, \xi\rangle$ , $x\in E^{*}$ , $\xi\in E$ .

As is seen immediately from (1-4), the characteristic functional of $\mu$ is invariant under
the action of $O(E;H)$ . Henoe the uniqueness of a characteristic functional implies that
the Gaussian measure $\mu$ is invariant under the action $xrightarrow g^{*}x,$ $x\in E^{*},$ $g\in O(E;H)$ .
We then come to a natural unitary representation of $O(E;H)$ on $(L^{2})$ :

(3-2) $(\Gamma(g)\phi)(x)=\phi(g^{*}x)$ , $\phi\in(L^{2})$ , $g\in O(E;H)$ .

As is easily verified, if $\phi\in(L^{2})$ is expressed as in (2-8), we have

(3-3) $( \Gamma(g)\phi)(x)=\sum_{n=0}^{\infty}\langle:x^{\otimes n}:,$ $g^{\otimes n}f_{n}\}$ .

Henoe each $\mathcal{H}_{n}(C)$ in the Wiener-It\^o decomposition is an invariant subspace. Moreover,

THEOREM 3.1. The Wiener-It\^o decomposition $(L^{2})=\Sigma_{n=0}^{\infty}\oplus \mathcal{H}_{n}(C)$ is an irreducible
decomposition of the unitary representation $(\Gamma, (L^{2}))$ of $O(E;H)$ . Furthermore, all
irreducible subspaces 7 $n(C)$ are mutually inequivalent.

This is a simple consequenoe of the following fundamental result.

THEOREM 3.2 (UMEMURA [27]). Let $\Xi$ be a symmetric operator on $(L^{2})=L^{2}(E^{*}, \mu)$

which is invariant under the action of $O(E;H)_{f}$ and assume that for any $\xi\in E,$
$e^{i\langle\cdot,\xi\rangle}$

belongs to the domain of $\Xi$ . Then $\Xi$ can be expressed as a jfunction of $N$ .
For the precise meaning of “a function of $N$ ’ see the original paper. Instead we note

here a significant consequence: Let $\Xi$ be a selfadjoint operator on $(L^{2})$ with domain



124

Dom $(\Xi)$ containing all exponential functions of the form $e^{i\langle\cdot,\xi\rangle},$ $\xi\in E$ . If $\Xi$ is invariant
under $O(E;H)$ , then there exists a real sequenoe $(\alpha_{n})_{n=0}^{\infty}$ such that $\Xi\phi=\alpha_{n}\phi$ for
$\phi\in Dom(\Xi)\cap \mathcal{H}_{n}(C)$.

The irreducible representations mentioned in Theorem 3.1 are characterized by Ma-
tsushima, Okamoto and Sakurai [16] and by Okamoto and Sakurai [25].

4. White Noise Functionals
We first need a second quantized operator $\Gamma(A)$ , where $A$ is the same operator as we

used in \S 1 to construct the Gelfand triple $E\subset H=L^{2}(T, \nu;R)\subset E^{*}$ and the Gaussian
spaoe $(E^{*}, \mu)$ . Suppose that $\phi\in(L^{2})$ is given as

(4-1) $\phi(x)=\sum_{n=0}^{\infty}\langle:x^{\otimes n}:,$ $f_{n}\rangle$

according to the Wiener-It\^o-Segal isomorphism. We then put

(4-2) $\Gamma(A)\phi(x)=\sum_{n=0}^{\infty}\langle:x^{\otimes n}:,$ $A^{\otimes n}f_{n}\}$ .

In the previous section we employed the same symbol $\Gamma$ for a particular unitary repre-
sentation of $O(E;H)$ . However, there will occur no confusion due to the fact (3-3). It
is known that $\Gamma(A)$ equipped with the maximal domain becomes a positive selfadjoint
operator on $(L^{2})$ .

Let $(E)$ be the standard CH-spaoe constructed from the pair $((L^{2}), \Gamma(A))$ . Since
$\Gamma(A)$ admits Hilbert-Schmidt inverse by the hypothesis (S) in \S 1, $(E)$ is a nuclear
Ilir\’echet spaoe and

(4-3) $(E)\subset(L^{2})=L^{2}(E^{*}, \mu;C)\subset(E)^{*}$

becomes a complex Gelfand triple. Elements in $(E)$ and $(E)^{*}$ are called a test (white
noise) functional and a genemlized (white noise) functional, respectively. We denote by
\langle \langle ., $\cdot\rangle\rangle$ the canonical bilinear form on $(E)^{*}\cross(E)$ and by $\Vert\cdot\Vert_{p}$ the norm induced from
$\Gamma(A)$ , namely,

(4-4) $|| \phi||_{p}^{2}=\Vert\Gamma(A)^{p}\phi\Vert_{0}^{2}=\sum_{n=0}^{\infty}n!|(A^{\otimes n})^{p}f_{n}|_{0}^{2}=\sum_{n=0}^{\infty}n!$ I $f_{n}|_{p}^{2}$ , $\phi\in(E)$ ,

where $\phi$ and $(f_{n})_{n=0}^{\infty}$ are related as in (4-1). This identity is compatible with (2-9).
By construction each $\phi\in(E)$ is defined only up to $\mu$-null functions. However, it

follows from Kubo-Yokoi’s continuous version theorem [12] that for $\phi\in(E)$ the right
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hand side of (4-1) converges absolutely at each $x\in E^{*}$ and becomes a unique continuous
function on $E^{*}$ which coincides with $\phi(x)$ for $\mu- a.e$ . $x\in E^{*}$ . Thus, $(E)$ is always assumed
to be a spaoe of continuous functions on $E^{*}$ and for $\phi\in(E)$ the right hand side of (4-1)
is understood as pointwisely convergent series as well as in the sense of norms $||\cdot||_{p}$ .

For a generalized white noise functional $\Phi\in(E)^{*}$ there exists a unique sequence
$F_{n}\in(E_{C}^{\otimes n})_{sym}^{*},$ $n=0,1,2,$ $\cdots$ , such that

(4-5) $\langle\langle\Phi, \phi\rangle\rangle=\sum_{n=0}^{\infty}n!\langle F_{n}, f_{n}\rangle$ ,

for $\phi\in(E)$ given as in (4-1). In that case it holds that

(4-6) $|| \Phi\Vert_{-p}^{2}=\sum_{n=0}^{\infty}n!|F_{n}|_{-p}^{2}$ .

This is finite for all sufficiently large $p\geq 0$ and is compatible with (4-4). It is then
convenient to adopt a formal expression:

(4-7) $\Phi(x)=\sum_{n=0}^{\infty}\langle:x^{\otimes n}:,$ $F_{n}\rangle$ .

Conversely, we agree that (4-7) defines a generalized white noise functional $\Phi$ via (4-5)
whenever $\sum_{n=0}^{\infty}n!|F_{n}|_{-p}^{2}<\infty$ for some $p\geq 0$ .

The simplest example of generalized white noise functionals would be white noise
coordinate. For each $t\in T,$ $\Phi_{t}(x)=$ $\langle: x:, \delta_{t}\rangle=\langle x, \delta_{t}\rangle$ belongs to $(E)^{*}$ . For simplicity
we put

(4-8) $x(t)=\langle x,$ $\delta_{t}$), $t\in T$,

which may be regarded as white noise analogue of the usual coordinate $(x_{1}, \cdots x_{D})$ of
Euclidean spaoe $R^{D}$ .

As for exponential vectors (2-5) we remind the following

PROPOSITION 4.1. $\phi_{\xi}\in(E)$ for any $\xi\in E_{C}$ and such exponential vectors span a dense
subspace of $(E)$ .

The S-tmnsform of $\Phi\in(E)^{*}$ is a function on $E_{\mathbb{C}}$ defined by

(4-9) $S\Phi(\xi)=\langle\langle\Phi,$ $\phi_{\xi}\rangle\}=e^{-\langle\xi,\xi\rangle/2}\int_{E^{*}}\Phi(x)e^{\langle x,\xi\rangle}\mu(dx)$, $\xi\in E_{C}$ .
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While, the T-tmnsform is defined by

(4-10) $T\Phi(\xi)=\{\langle\Phi,$ $e^{i\langle\cdot,\xi\rangle} \rangle\rangle=\int_{E^{*}}\Phi(x)e^{i(x,\xi)}\mu(dx)$ , $\xi\in E_{C}$ .

Of course the integral expressions are valid only when the integrands are integrable
functions, in paticular when $\Phi\in(E)$ . There is a simple relation:

(4-11) $T\Phi(\xi)=S\Phi(i\xi)e^{-\langle\xi,\xi)/2}$ , $S\Phi(\xi)=T\Phi(-i\xi)e^{-(\xi,\xi\rangle/2}$ , $\xi\in E_{\mathbb{C}}$ .

5. Integral Kernel Operators and Fock Expansion
For $y\in E^{*}$ we put

(5-1) $D_{y} \phi(x)=\lim_{\thetaarrow 0}\frac{\phi(x+\theta y)-\phi(x)}{\theta}$ , $x\in E^{*}$ , $\phi\in(E)$ .

It is known that the limit always exists and $D_{y}$ becomes a continuous operator (in fact
a derivation) from $(E)$ into itself, i.e., $D_{y}\in \mathcal{L}((E), (E))$ . In particular, for $y=\delta_{t}$ , we
put

(5-2) $\partial_{\ell}=D_{\delta_{t}}$ , $t\in T$.

In most physical literature $\partial_{t}$ is called an annihilation opemtor at point $t\in T$ and is
understood to be (unbounded) operator-valued distribution. However, in our setup $\partial_{t}$

is just a continuos opemtor on $(E)$ for itself. The adjoint $\partial_{t^{*}}\in \mathcal{L}((E)^{*}, (E)^{*})$ is therefore
called creation opemtor. Note also that $\partial_{t}$ is often called Hida’s differential operator as
well. That we are free from smeared creation and annihilation operators is one of the
most significant features of white noise calculus.

The annihilation and creation operators satisfy the canonical commutation relation
in a generalized sense:

(5-3) $[\partial_{s}, \partial_{t}]=0$ , $[\partial_{s}^{*}, \partial_{t^{*}}]=0$ , $[\partial_{s}, \partial_{t^{*}}]=\delta_{s}(t)$ .

The precise meaning of the last identity is:

(5-4) $[D_{y}, D_{\xi}^{*}]=\langle y, \xi\rangle I$ , $y\in E^{*}$ , $\xi\in E$ .

Note that both $D_{y}$ and $D_{\xi}^{*}$ belong to $\mathcal{L}((E), (E))$ and their compositions are meaningful,
see (5-7) and Theorem 5.1 below.
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With each $\kappa\in(E_{\mathbb{C}}^{\otimes(l+m)})^{*}$ we may associate an integml kernel opemtor whose formal
expression is given by

(5-5) $–l,m \int_{T^{l+m}}\kappa(s_{1}, \cdots s_{l},t_{1}, \cdots t_{m})\partial_{s_{1}}^{*}\cdots\partial_{s_{l}}^{*}\partial_{t_{1}}\cdots\partial_{t_{m}}ds_{1}\cdots ds_{l}dt_{1}\cdots dt_{m}$ ,

where $\kappa$ is called the kernel distribution. More presicely, it is defined through two
canonical bilinear forms:

(5-6) $\langle\{--(\kappa)\phi,$ $\psi\rangle\rangle=\langle\kappa,$ $\langle\langle\partial_{s_{1}}^{*}\cdots\partial_{s_{l}}^{*}\partial_{t_{1}}\cdots\partial_{t_{m}}\phi,$ $\psi\rangle\rangle\rangle$ , $\phi,\psi\in(E)$ .

It is proved $that–(\kappa)\in \mathcal{L}((E), (E)^{*})$ , see [8] for further details. For example,

(5-7) $–0,1 \int_{T}y(t)\partial_{t}dt=D_{y}$ , $y\in E^{*}$ .

TnEOREM 5.1 ([8]). Let $\kappa\in(E_{\mathbb{C}}^{\otimes(l+m)})^{*}$ . $Then—\iota_{m}(\kappa)\in \mathcal{L}((E), (E))$ if and only if
$\kappa\in(E_{C}^{\otimes l})\otimes(E_{C}^{\otimes m})^{*}\cong \mathcal{L}(E_{\mathbb{C}}^{\otimes m}, E_{C}^{\otimes l})$ .

By virtue of (5-3) we may assume that the kernel distribution $\kappa$ is symmetric
with respect to the first $l$ and the last $m$ variables independently. We denote by
$(E_{\mathbb{C}}^{\otimes(l+m)})_{sym(l,m)}^{*}$ the spaoe of such distributions. The importanoe of an integral kernel
operator is due to the following

THEOREM 5.2 ([20], [21], [22]). For any $\Xi\in \mathcal{L}((E), (E)^{*})$ there exists a unique family
of kernel distributions $\kappa_{l,m}\in(E_{C}^{\otimes(l+m)})_{sym(l,m)}^{*}$ such that

(5-8) $\Xi\phi=\sum_{l,m=0}^{\infty}--l,m$ ’
$\phi\in(E)$ ,

where the right hand side converges in $(E)^{*}$ . Moreover, if $\Xi\in \mathcal{L}((E), (E))$ , then $\kappa_{l,m}\in$

$((E_{C}^{\otimes l})\otimes(E_{C}^{\otimes m})^{*})_{sym(l,m)}$ and the infinite series (5-8) converges in $(E)$ .

The unique expression of $\Xi\in \mathcal{L}((E), (E)^{*})$ given in Theorem 5.2 is called the Fock
expansion of $\Xi$ and denoted simply by

(5-9) $\Xi=\sum_{l,m=0}^{\infty}---\iota_{m}(\kappa_{l,m})$ .

A few simple examples will be found in the rest of the paper, for further discussion see
e.g., [20], [21], [22].
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For $\Xi\in \mathcal{L}((E), (E)^{*})$ a function on $E_{C}\cross E_{C}$ defined by

(5-10) $-\wedge--(\xi, \eta)=\langle\{\Xi\phi_{\xi},$ $\phi_{\eta}\rangle\}$ , $\xi,$ $\eta\in E_{C}$ ,

is called the symbol of $\Xi$ . For example, for $\Xi$ with Fock expansion (5-9) we have

(5-11) $e^{-\langle\xi,\eta\rangle_{-}^{\underline{\underline{\wedge}}}}( \xi,\eta)=\sum_{1,m=0}^{\infty}\langle\kappa\iota_{m},$
$\eta^{\otimes l}\otimes\xi^{\otimes m}\rangle$ , $\xi,$ $\eta\in E_{\mathbb{C}}$ .

Hence, in order to find kernel distributions $\kappa_{l,m}$ from a given $\Xi\in((E), (E)^{*})$ one need
only to compute the Taylor expansion of $e-\langle\xi,\eta\rangle_{-}^{\wedge}--(\xi, \eta)$.

6. Infinite Dimensional Laplacians
Consider the following two integral kernel operators:

(6-1) $\Delta_{G-0,2}^{-}=-(\tau)=\int_{TxT}\tau(s, t)\partial_{s}\partial_{t}dsdt=\int_{T}\partial_{t^{2}}dt$,

(6-2) $N=—1,1( \tau)=\int_{T\cross T}\tau(s, t)\partial_{s}^{*}\partial_{t}dsdt=\int_{T}\partial_{t^{*}}\partial_{t}dt$,

where $\tau\in(E\otimes E)_{sym}^{*}$ was defined in (2-1). (It is easily verified that $—1,1(\tau)$ coincides
with $N$ introduced in \S 2.) The operators $\Delta_{G}$ and $N$ are called the Gmss Laplacian
and the number operator, respectively. By Theorem 5.1 both $\Delta_{G}$ and $N$ belong to
$\mathcal{L}((E), (E))$ . In fact, $\tau\in E\otimes E^{*}$ sinoe the corresponding operator under the isomorphism
$\mathcal{L}(E, E)\cong E\otimes E^{*}$ is the identity. Note that

(6-3) $\Delta_{G-2,0}^{*-}=-(\tau)$

and that the number operator is symmetric, i.e., $N^{*}$ is a continuous extension of $N$ to
$(E)^{*}$ .

The action of the above operators on $\psi_{n}(x)=\langle:x^{\otimes n}:,$ $\xi^{\otimes n}\rangle,$ $\xi\in E_{C},$ $n=0,1,$ $\cdots$ is
easily derived:

$N\psi_{n}=N^{*}\psi_{n}=n\psi_{n}$ ,

(6-4) $\Delta_{G}\psi_{n}=n(n-1)(\xi,$ $\xi\rangle$ $\psi_{n-2}$ ,
$(\Delta_{G}^{*}\psi_{n})(x)=\{:x^{\otimes(n+2)}:,$ $\tau\otimes\xi^{\otimes n}\rangle$ .

It is also possible to express these Laplacians in terms of discrete coordinate. For
simplicity we put

(6-5) $D_{j}=D_{e_{j}}$ , $j=0,1,2,$ $\cdots$ .
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PROPOSITION 6.1. For $\phi\in(E)$ we have

(6-6) $\Delta_{G}\phi=\sum_{j=0}^{\infty}D_{j}^{2}\phi$ , $N \phi=\sum_{j=0}^{\infty}D_{j}^{*}D_{j}\phi$ ,

where the right hand sides converge in $(E)$ .
By the above result together with the definitions we might be convinced that both

$\Delta_{G}$ and $N$ are white noise analogies of a finite dimensional Laplacian.
We then find a relation between two Laplacians $N$ and $\Delta_{G}$ . It is known [11] that.the

pointwise multiplication gives rise to a continuous bilinear map from $(E)\cross(E)arrow(E)$ .
Henoe each $\Phi\in(E)^{*}$ is identified with multiplication operator $\phiarrow\Phi\phi=\phi\Phi,$ $\phi\in(E)$ ,
by

(6-7) $\langle\langle\Phi\phi, \psi\rangle\rangle=\langle\langle\Phi, \phi\psi\rangle\rangle$ , $\phi,$ $\psi\in(E)$ .

Thus $\Phi\in \mathcal{L}((E), (E)^{*})$ . Moreover, $\Phi\in \mathcal{L}((E), (E))$ if and only if $\Phi\in(E)$ .
LEMMA 6.2. It holds that

(6-8) $D_{j}+D_{j}^{*}=\langle x, e_{j}\rangle$ ,

where the right hand side is identified with multiplication opemtor.

PROOF. For $\xi,$ $\eta\in E_{\mathbb{C}}$ we have

$\langle\langle(D_{j}+D_{j}^{*})\phi_{\xi},$ $\phi_{\eta}\rangle\rangle=\langle\langle D_{j}\phi_{\xi},$ $\phi_{\eta}\rangle\}+\langle\langle\phi_{\xi},$ $D_{j}\phi_{\eta}\rangle\rangle$

$=(\langle e_{j}, \xi\rangle+\langle e;, \eta))\langle\langle\phi_{\xi},$ $\phi_{\eta}\rangle\rangle$

$=\langle e_{j}, \xi+\eta\rangle e^{\langle\xi,\eta\rangle}$ .

On the other hand, sinoe $\phi_{\xi}\phi_{\eta}=\phi_{\xi+\eta}e^{\langle\xi,\eta\rangle}$ we see that

$\langle\{\{x,$
$e_{j}$ ) $\phi_{\xi},$ $\phi_{\eta}\rangle\rangle=\langle\{\langle x, e_{j}\rangle,$ $\phi_{\xi}\phi_{\eta}\rangle\rangle=\{\langle\langle x, e_{j}\rangle,$ $\phi_{\xi+\eta}\rangle\}e^{(\xi,\eta\rangle}=\langle e_{j},$ $\xi+\eta$) $e^{(\xi,\eta\rangle}$ .

Combining the above two expressions, we come to

$\langle\langle(D_{j}+D_{j}^{*})\phi_{\xi},$ $\phi_{\eta}\rangle\rangle=\langle\langle\{x,$ $e_{j}\rangle$ $\phi_{\xi},$ $\phi_{\eta}\rangle\rangle$ .

Then the assertion follows from Proposition 4.1. QED
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PROPOSITION 6.3. It holds that

(6-9) $-N= \Delta_{G}-\sum_{j=0}^{\infty}\langle x,$ $e_{j}$ ) $D_{j}$ ,

where $\langle x, e_{j}\rangle$ is regarded as multiplication opemtor.

This is an immediate consequence of Proposition 6.1 and Lemma 6.2.

7. Rotation-invariant Operators
The main purpose of this section is to characterize all rotation-invariant operators by

means of Fock expansion (Theorem 5.2), though the result was first proved in [19] using
a weaker form of Fock expansion.

We say that $\Xi\in \mathcal{L}((E), (E)^{*})$ is rotation-invariant if

(7-1) $\Gamma(g)^{*}\Xi\Gamma(g)=\Xi$ for all $g\in O(E;H)$ .

Note here that $\Gamma(g)\in \mathcal{L}((E), (E))$ . By definition, if $\Xi$ is rotation-invariant, so is $\Xi^{*}$ .
The condition (7-1) for $\Xi\in \mathcal{L}((E), (E))$ is equivalent to the following

(7-2) $\Gamma(g)\Xi=\Xi\Gamma(g)$ for all $g\in O(E;H)$ ,

which is the usual rotation-invariance.
It is rather straightforward to see that $N$ and $\Delta_{G}$ are rotation-invariant. (This fact

follows from Lemma 7.4 and Proposition 7.5 below.) Therefore $\Delta_{G}^{*}$ is also rotation-
invariant, while $N^{*}$ is the extension of $N$ . The goal of this section is the following
significant characterization of rotation-invariant operators.

THEOREM 7.1. Let $\Xi\in \mathcal{L}((E), (E)^{*})$ and let $\Xi=\sum_{l},-(\kappa_{1,m})$ be its Fock expan-
sion. Then $\Xi$ is rotation-invariant if and only if $all–(\kappa_{l,m})$ are rotation-invariant.

THEOREM 7.2. Let $\kappa\in(E_{\mathbb{C}}^{\otimes(l+m)})^{*}$ and assume $that–(\kappa)$ is rotation-invariant. If
$l+m$ is odd, $then^{-}-(\kappa)=0$ . If $l+m$ is even, $then—\iota_{m}(\kappa)$ is a linear combination of
$(\Delta_{G}^{*})^{\alpha}N^{\beta}\Delta_{G}^{\gamma}$ with $\alpha,$

$\beta,$
$\gamma$ being non-negative integers such that $\alpha+\beta+\gamma\leq(l+m)/2$ .

THEOREM 7.3. Let $\kappa\in(E_{c}^{\otimes l})\otimes(E_{\mathbb{C}}^{\otimes m})^{*}$ and assume $that^{-}--l,m(\kappa)$ is rotation-invariant.
If $l+m$ is odd, $then^{-}--\iota_{m}(\kappa)=0$ . If $l+m$ is even, $then—\iota_{m}(\kappa)$ is a linear combination
of $N^{\beta}\Delta_{G}^{\gamma}$ with $\beta,$

$\gamma$ being non-negative integers such that $\beta+\gamma\leq(l+m)/2$ .
In other words, any rotation-invariant operator $\Xi\in \mathcal{L}((E), (E)^{*})$ is generated by $\Delta_{G}^{*}$ ,

$\Delta_{G}$ and $N$ , and any rotation-invariant operator $\Xi\in \mathcal{L}((E), (E))$ is generated by $\Delta_{G}$

and $N$ . It is also easily checked that

(7-3) $[\Delta_{G}, N]=2\Delta_{G}$ .



131

Henoe any product of $\Delta_{G}^{*},$ $\Delta_{G}$ and $N$ (whenever it is well defined on $(E)$ ) may be
rearranged as a sum of $(\Delta_{G}^{*})^{\alpha}N^{\beta}\Delta_{G}^{\gamma}$ with $\alpha,$ $\beta,\gamma$ being non-negative integers. This is
also related to the normal ordering of creation and annihilation operators.
PROOF OF THEOREM 7.1. Suppose we are given $\Xi\in \mathcal{L}((E), (E)^{*})$ with Fock expansion

(7-4) $\Xi=\sum_{1,m=0}^{\infty}---\iota_{m}(\kappa_{1,m})$ ,

where $\kappa_{l,m}\in(E_{\mathbb{C}}^{\otimes(l+m)})_{sym(l,m)}^{*}$ . Sinoe $\Gamma(g)\phi_{\xi}=\phi_{g\xi}$ for $\xi\in E_{C}$ , we obtain

(7-5) $(\Gamma(g)^{*}\Xi\Gamma(g))^{\sim}(\xi, \eta)=\langle\langle\Xi\Gamma(g)\phi_{\xi},$ $\Gamma(g)\phi_{\eta}\rangle\rangle$

$=\langle\langle\Xi\phi_{g\xi},$ $\phi_{g\eta}\rangle\rangle$

$=_{-}(g\xi,g\eta)\underline{\underline{\wedge}}$ , $\xi,$ $\eta\in E_{C}$ .

Moreover, from (5-10) we see that

(7-6) $- \underline{\underline{\wedge}}(g\xi,g\eta)=e^{\langle g\xi,g\eta\rangle}\sum_{l,m=0}^{\infty}\langle\kappa_{l,m},$
$(g\eta)^{\otimes l}\otimes(g\xi)^{\otimes m}\rangle$

$=e^{\langle\xi,\eta\}} \sum_{l,m=0}^{\infty}\langle(g^{\otimes(l+m)})^{*}\kappa,$
$\eta^{\otimes l}\otimes\xi^{\otimes m}\rangle$ .

It then follows from (7-5) and (7-6) that

$\Gamma(g)^{*}\Xi\Gamma(g)=\sum_{l,m=0}^{\infty}--l,m-((g^{\otimes(l+m)})^{*}\kappa_{l,m})$

is the Fock expansion. In particular,

$\Gamma(g)^{*-}--l,m(\kappa)\Gamma(g)=--l,m-((g^{\otimes(1+m)})^{*}\kappa)$ .

It then follows from the uniqueness of the Fock expansion that $\Xi$ is rotation-invariant
if and only $if–(\kappa_{l,m})$ is rotation-invariant for all $l,$ $m=0,1,2,$ $\cdots$ . QED

We say that $F\in(E_{C}^{\otimes n})^{*}$ is mtation-invariant if $(g^{\otimes n})^{*}F=F$ for all $g\in O(E;H)$ .
During the proof of Theorem 7.1 we have established the following

LEMMA 7.4. Let $\kappa\in(E_{c}^{\otimes(l+m)})_{sym(l,m)}^{*}$ . $Then–(\kappa)$ is rotation-invariant if and only
if $\kappa$ is rotation-invariant.

Thus the proofs of Theorems 7.2 and 7.3 are essentially reduced to listing up the
rotation-invariant distributions. The full list is, in fact, described satisfactorily as below,
though the long combinatorial proof is omitted, see [19].
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PROPOSITION 7.5. Assume that $F\in(E_{C}^{\otimes n})^{*}$ is mtation-invariant. If $n$ is odd, then
$F=0$ . If $n$ is even, say $n=2m$, then $F$ is a linear combination of $(\tau^{\otimes m})^{\sigma},$ $\sigma\in \mathfrak{S}_{n}$ .
Moreover, the dimension of rotation-invariant distributions in $(E_{C}^{\otimes n})^{*}$ is $(n-1)!!$ .

Here is notation. For $F\in(E_{\mathbb{C}}^{\otimes n})^{*}$ and $\sigma\in \mathfrak{S}_{n}$ we define $F^{\sigma}$ by

$\langle F^{\sigma}, \xi_{1}\otimes\cdots\otimes\xi_{n}\rangle=\langle F,$ $\xi_{\sigma(1)}\otimes\cdots\otimes\xi_{\sigma(n)}\rangle$ , $\xi_{1},$ $\cdots\xi_{n}\in E_{\mathbb{C}}$ .

PROOF OF THEOREM 7.2. Let $\kappa\in(E_{C}^{\otimes(l+m)})_{sym(l,m)}^{*}$ and suppose that $—\iota_{m}(\kappa)$ is
rotation-invariant. Then, $\kappa$ is rotation-invariant by Lemma 7.4. If $l+m$ is odd, it
follows from Proposition 7.5 that $\kappa=0$ and henoe $—\iota_{m}(\kappa)=0$ .

We next consider the case when $l+m$ is even. It follows again from Proposition 7.5
that $\kappa$ is a linear combination of $(\tau^{\otimes(l+m)/2})^{\sigma},$ $\sigma\in \mathfrak{S}_{l+m}$ . For each $\sigma\in \mathfrak{S}_{l+m}$ we may
find $\sigma’\in \mathfrak{S}_{l}\cross \mathfrak{S}_{m}$ such that

$(\tau^{\otimes(1+m)/2})^{\sigma\sigma’}$

$= \sum e_{1_{1}}^{\otimes 2}\otimes\cdots\otimes e_{1_{\alpha}}^{\otimes 2}\otimes e_{j_{1}}\otimes\cdots\otimes e_{j_{\beta}}\otimes e_{j_{1}}\otimes\cdots\otimes e_{j_{\beta}}\otimes e_{k}^{\otimes_{1}2}\otimes\cdots\otimes e_{k_{\gamma}}^{\otimes 2}$

$=\tau^{\otimes\alpha}\otimes\lambda_{\beta}\otimes\tau^{\otimes\gamma}$

for some non-negative integers $\alpha,$
$\beta,\gamma$ with $2\alpha+\beta=l$ and $2\gamma+\beta=m$ , where

$\lambda_{\beta}=\sum_{j_{I},\cdots,j_{\beta}=0}^{\infty}e_{j_{1}}\otimes\cdots\otimes e_{j_{\beta}}\otimes e_{j_{1}}\otimes\cdots\otimes e_{j_{\beta}}$ .

In view of (6-1) we have

$\Delta_{G-0,2(\tau)=\sum_{j=0}^{\infty}-0,2}^{-}=--$ , $\Delta_{G-2}^{*-}=-,0(\tau)=\sum_{j=0}^{\infty}---2,0(e_{j}\otimes e_{j})$ .

Then a straightforward computation implies that

$-l,m-\otimes(l+m)/2\sigma--l,m\otimes(1+m)/2--\rho,\rho(\lambda_{\beta})\Delta_{G}^{\gamma}$ .

Note $that—\rho,\rho(\lambda_{\beta})$ is a polynomial of the number operator $N$ of degree $\beta$ , in fact,

$—\rho,\rho(\lambda_{\beta})=N(N-1)\cdots(N-(\beta-1))$ .

Henoe $—\iota_{m}((\tau^{\otimes(l+m)/2})^{\sigma})$ is a linear combination of $(\Delta_{G}^{*})^{\alpha}N^{\beta}\Delta_{G}^{\gamma}$ with $\alpha+\beta+\gamma\leq$

$(l+m)/2$ and therefore, so is $—\iota_{m}(\kappa)$ . QED
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For the proof of Theorem 7.3, taking Theorem 7.2 into account, we only need to show
that $\Delta_{G}^{*}$ does not appear if $\Xi\in \mathcal{L}((E), (E))$ . But this is an easy consequenoe of the
fact (see (6-4)) that $\Delta_{G}^{*}\phi\not\in(E)$ for any $\phi\in(E)$ with $\phi\neq 0$ .

By Theorem 3.2 any bounded operator on $(L^{2})$ commuting with all $\Gamma(g),$ $g\in O(E;H)$ ,
is a function of the number operator $N$ . However, it is clear that the Gross Laplacian
is not a function of $N$ , see e.g., (6-4). In other words, the Gross Laplacian can not be
grasped whenever we restrict ourselves to operators on $(L^{2})$ . This is also illustrated by
the fact that $\Delta_{G}^{*}=0$ on its proper $L^{2}$-domain, i.e., on the spaoe of all $\phi\in(E)$ with
$\Delta_{G}^{*}\phi\in(L^{2})$ .

We here recall Umemura’s heuristic argument of deriving the number operator from fi-
nite dimensional Laplacians. First the finite dimensional Laplacian $\sum_{j=1}^{D}\partial^{2}/\partial x_{j}^{2}$ should
be modified using the mapping $\phirightarrow(2\pi)^{D/2}e^{|x|^{2}/4}\phi$ which is a unitary isomorphism
from $L^{2}(R^{D}, dx)$ onto the $L^{2}$ -spaoe over $R^{D}$ with Gaussian measure. The resultant
expression is;

(7-7) $\sum_{j=1}^{D}(\frac{\partial^{2}}{\partial x_{j}^{2}}-x_{j}\frac{\partial}{\partial x_{j}}+\frac{x_{j}^{2}}{4}-\frac{1}{2})$ .

( $E^{*}$ is a projective limit of $R^{D}$ with Gaussian measure.) Then, taking the “convergent
terms,” Umemura defined an infinite dimensional Laplacian by

(7-8) $\Delta=\sum_{j=1}^{\infty}(\frac{\partial^{2}}{\partial x_{j}^{2}}-x_{j}\frac{\partial}{\partial x_{j}})$ .

This operator acts on cylindrical functions of the form:

$\phi(x)=f(\langle x, e_{1}\rangle, \cdots \langle x, e_{n}\rangle)$ , $x\in E^{*}$ ,

where $x_{j}=\langle x, e_{j}\rangle$ . It is then easily verified that $\Delta=-N$ . In fact, (7-8) is comparable
to (6-9).

Umemura [27] showed that $N$ (or equivalently $\Delta$ ) is the essentially unique rotation-
invariant operator. However, as was shown above, within white noise calculus $N$ is
decomposed into two rotation-invariant operators. Furthermore, we shall see that the
“divergent terms” in (7-7) involves another rotation-invariant operator. Consider white
noise analogue of the Euclidean norm:

$R(x)=\langle:x^{\otimes 2}:,$ $\tau\rangle$ .
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This is a generalized white noise functional (see \S 4) and admits another expression:

$R(x)= \sum_{j=0}^{\infty}\langle:x^{\otimes 2}:,$
$e_{j}\otimes e_{j\rangle}$

$= \sum_{j=0}^{\infty}(\{x\otimes x, e_{j}\otimes e_{j}\rangle-\langle\tau, e_{j}\otimes e_{j}))$

$= \sum_{j=0}^{\infty}(\langle x, e_{j}\rangle^{2}-1)$ .

Then, it is apparent that $R$ is involved in the “divergent terms” of (7-7). Moreover, as
multiplication operator, $R$ is related to the Laplacians:

$R=2N+\Delta_{G}+\Delta_{G}^{*}$ .

We have thus observed an interesting contrast between rotation-invariant operators on
white noise functionals and those on a finite dimensional Euclidean space.

8. Regular One-parameter Subgroups
We begin with general notion. Let $\mathfrak{X}$ be a nuclear Fr\’echet space with defining Hilbert-

ian seminorms $\{||\cdot\Vert_{\alpha}\}_{\alpha\in A}$ , taking $X=E$ or $\mathfrak{X}=(E)$ into consideration. Let $GL(X)$ be
the group of all linear homeomorphisms from SC onto itself. A one-parameter subgroup
$\{g_{\theta}\}_{\theta\in R}\subset GL(\mathfrak{X})$ is called differentiable if

(8-1) $X \xi=\lim_{\thetaarrow 0}\frac{g_{\theta}\xi-\xi}{\theta}$

converges in ec for any $\xi\in$ X. In that case $X$ becomes a linear operator from ec into
itself and, as usual, is called the infinitesimal generator of $\{g_{\theta}\}_{\theta\in R}\subset GL(\mathfrak{X})$.

It is known that a subset of a nuclear space is compact if and only if it is closed and
bounded. Then simple application of the Banach-Steinhaus theorem leads us to the
following

LEMMA 8.1. Let $\{g_{\theta}\}_{\theta\in R}\subset GL(\mathfrak{X})$ be a differentiable one-parameter subgroup. Then
its infinitesimal genemtor $X$ is always continuous, $i.e$ ., $X\in \mathcal{L}(X, X)$ . Moreover, the
convergence (8-1) is uniform on every compact (or equivalently, bounded) subset of X,
namely,

(8-2) $\lim_{\thetaarrow 0}\sup_{\xi\in K}\Vert\frac{g_{\theta}\xi-\xi}{\theta}-X\xi\Vert_{\alpha}=0$
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for any $\alpha\in \mathcal{A}$ and any compact (or bounded) subset $K\subset X$ .
By a standard argument one may prove the uniqueness of an infinitesimal generator

of a differentiable one-parameter subgroup. However, in general, not every $X\in \mathcal{L}(X, X)$

can be an infinitesimal generator of a differentiable one-parameter subgroup of $GL(X)$ .
We give here a sufficient condition.

PROPOSITION 8.2. Let $X\in \mathcal{L}(\mathfrak{X}, X)$ and assume that there exists $r>0$ such that
$\{(rX)^{n}/n!\}_{n=0}^{\infty}$ is equicontinuous, namely, for every $\alpha\in \mathcal{A}$ there exist $C=C(\alpha)\geq 0$

and $\beta=\beta(\alpha)\in \mathcal{A}$ such that

$\sup_{n\geq 0}\frac{1}{n!}\Vert(rX)^{n}\xi||_{\alpha}\leq C||\xi\Vert_{\beta}$ , $\xi\in X$ .

Then there exists a differentiable one-pammeter subgroup $\{g_{\theta}\}_{\theta\in R}\subset GL(X)$ with in-
finitesimal generator $X$ .

In that case we observe a stronger property than stated in (8-2): for any $\alpha\in A$ there
exists $\beta\in \mathcal{A}$ such that

$\lim_{\thetaarrow 0_{||}}\sup_{\xi||_{\beta}\leq 1}\Vert\frac{g_{\theta}\xi-\xi}{\theta}-X\xi\Vert_{\alpha}=0$ .

Such a differentiable one-parameter subgroup $\{g_{\theta}\}_{\theta\in R}\subset GL(X)$ is called regular. Al-
though it is not yet clear whether the notion of a regular one-parameter subgroup plays
an essential role in white noise calculus, we feel it practically useful.

Here are simple examples in case of $X=(E)$ .
EXAMPLE 8.3 (TRANSLATION OPERATOR). For $y\in E^{*}$ We put

$T_{y}\phi(x)=\phi(x+y)$ , $x\in E^{*}$ , $\phi\in(E)$ .

It is known that $T_{y}\in \mathcal{L}((E), (E))$ . Moreover, $\{T_{\theta y}\}_{\theta\in R}$ is a regular one-parameter
subgroup of $GL((E))$ with infinitesimal generator $D_{y}$ . Incidentally, the Fock expansion
of $T_{y}$ is given as

$T_{y}= \sum_{n=0}^{\infty}\frac{1}{n!}--(y^{\otimes n})$ .

$Sinoe–(y^{\otimes n})=D_{y}^{n}$ , it follows from Theorem 5.2 that

$\phi(x+y)=\sum_{n=0}^{\infty}\frac{1}{n!}(D_{y}\phi)(x)$ ,
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where the series converges in $(E)$ and therefore pointwisely as well. This is the Taylor
expansion of $\phi\in(E)$ .
EXAMPLE 8.4 (WEYL FORM OF CCR). For $\xi\in E$ we define

(8-4) $\{_{Q^{\xi}\phi(x)=e^{i(x,\xi\rangle}\phi x)}P_{\xi}\phi(x)=\exp(-\frac{1}{(2}\langle x,$

$\xi$ } $- \frac{1}{4}\langle\xi, \xi\rangle)\phi(x+\xi)$ ,

It can be checked that both belong to $GL((E))$ and give rise to unitary representations
of the additive group $E$ . Moreover, put

$\{\begin{array}{l}p_{\xi}=\frac{l}{2}(D_{\xi}-D_{\xi}^{*})q_{\xi}=i(D_{\xi}+D_{\xi}^{*})\end{array}$

Then, $\{P_{\theta\xi}\}_{\theta\in R}$ and $\{Q_{\theta\xi}\}_{\theta\in R}$ are regular one-parameter subgroups of $GL((E))$ with
infinitesimal generators $p_{\xi}$ and $q_{\xi}$ , respectively.

We have introduced white noise coordinate system $\{x(t)\}$ in \S 4. By a similar argument
as in the proof of Lemma 6.2 one can prove easily that

(8-5) $x(t)=\partial_{t}+\partial_{t}^{*}$ , $t\in T$,

where $x(t)$ is regarded as multiplication operator. Henoe a white noise analogy of an
infinitesimal generator of finite dimensional rotations is given as

(8-6) $x(s)\partial_{t}-x(t)\partial_{S}=(\partial_{s}^{*}+\partial_{S})\partial_{t}-(\partial_{t}^{*}+\partial_{t})\partial_{s}=\partial_{s}^{*}\partial_{\ell}-\partial_{t^{*}}\partial_{s}$ .

This is, in fact, an operator in $\mathcal{L}((E), (E)^{*})$ and we shall investigate its definite meaning
in Theorem 8.6 below.

For $X\in \mathcal{L}(E_{C}, E_{\mathbb{C}})$ we define an operator $d\Gamma(X)$ as follows. Suppose that $\phi\in(E)$ is
given as

$\phi(x)=\sum_{n=0}^{\infty}\langle:x^{\otimes n}:,$ $f_{n}\rangle$ , $x\in E^{*}$ .

Then we put

$d \Gamma(X)\phi(x)=\sum_{n=0}^{\infty}\langle:x^{\otimes n}:,$ $\gamma_{n}(X)f_{n}\}$ ,

where
$\{\gamma_{n}(X)=\sum_{0\gamma o(X)=}n-1I^{\otimes k}\otimes X\otimes I^{\otimes(n-l-k)}$

$n\geq 1$ ,
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It is checked easily that $d\Gamma(X)\in \mathcal{L}((E), (E))$ . Formally, $d\Gamma(X)$ is an infinitesimal
generator of $\{\Gamma(g_{\theta})\}_{\theta\in R}$ , where $\{g_{\theta}\}_{\theta\in R}$ is a one-parameter subgroup with $X$ being the
infinitesimal generator. However, it is not clear whether or not $\{\Gamma(g_{\theta})\}_{\theta\in R}$ becomes a
differentiable one-parameter subgroup of $GL((E))$ for any differentiable one-parameter
subgroup $\{g_{\theta}\}_{\theta\in R}\subset GL(E)$ . In this connection regularity introduced above seems
useful. In fact, we have the following result.

LEMMA 8.5. If $\{g_{\theta}\}_{\theta\in R}$ is a regular one-parameter subgroup of $GL(E)$ with infinitesimal
genemtor $X$ , then $\{\Gamma(g_{\theta})\}_{\theta\in R}$ is a regular one-parameter subgroup of $GL((E))$ with
infinitesimal generator $d\Gamma(X)$ .

For the proof we need a long calculation, see [8]. As is easily seen, the infinitesimal
generator $X$ of $\{g_{\theta}\}_{\theta\in R}\subset O(E;H)$ is skew-symmetric in the sense that

$\langle X\xi, \eta\rangle=-\langle\xi, X\eta\rangle$ , $\xi,$ $\eta\in E$ .

Henoe by a simple argument one comes to the following result including the meaning of
$x(s)\partial_{t}-x(t)\partial_{s}$ introduced in (8-6).

THEOREM 8.6 ([8]). Let $\{g_{\theta}\}_{\theta\in R}$ be a regular one-parameter subgroup of $O(E;H)$ with
infinitesimal genemtor X. Then, $\{\Gamma(g_{\theta})\}_{\theta\in R}$ is a regular one-parameter subgroup of
$GL((E))$ with infinitesimal genemtor $d\Gamma(X)$ . Moreover, there exists a skew-symmetric
distribution $\kappa\in E\otimes E^{*}$ such that

$d \Gamma(X)=\int_{T\cross T}\kappa(s, t)(\partial_{s}^{*}\partial_{t}-\partial_{t^{*}}\partial_{s})dsdt$ .

9. Further Topics
Group of Diffeomorphisms

The proof of characterizing the rotation-invariant operators (see \S 7) owes essentially
to Proposition 7.5. Although we omitted the proof, it requires only a subgeroup of
$O(E;H)$ consisting of rotations $g$ such that $ge_{j}=e_{j}$ except finitely many $e_{j}$ , namely,
which act identically on the subspaoe generated by $\{e_{j}, e_{j+1}, \cdots\}$ for some $j$ . Henoe it
is interesting to investigate operators which are invariant under another subgroups of
$O(E;H)$ .

One of the most interesting would be the case of $T$ being a (Riemannian) manifold
with smooth (Riemannian) volume as measure $\nu$ . A diffeomorphism $\gamma$ of $T$ is called
admissible to the Gelfand triple $E\subset L^{2}(T, \nu)\subset E^{*}$ or to the operator $A$ on $L^{2}(T, \nu)$ if

$g_{\gamma} \xi(t)=(\frac{d\nu(\gamma^{-1}t)}{d\nu(t)})^{1/2}\xi(\gamma^{-1}t)$, $\xi\in E$ ,
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gives rise to an infinite dimensional rotation $g_{\gamma}\in O(E;H)$ . In other words, $\gamma$ is ad-
missible if $E$ is stable under $g_{\gamma}$ . We denote by $Diff_{A}(T)$ the group of admissible dif-
feomorphisms of $T$ . Then it would be very interesting to investigate $Diff_{A}(T)$-invariant
operators in $\mathcal{L}((E), (E)^{*})$ . The study of $Diff_{A}(T)$ as subgroup of $O(E;H)$ is also deeply
connected with unitary representation theory of a diffeomorphism group, see e.g., [2].

In the special case of $T=R$ with Lebesgue measure and $A=1+t^{2}-d^{2}/dt^{2}$ , we see
that

$\int_{R}\partial_{t}dt$ .

is invariant under $Diff_{A}(T)$ as well as $N$ and $\Delta_{G}$ . We conjecture that the converse is
also true.

Kuo’s Fourier Transform

As in the case of finite dimension “Fourier transform” should be important in harmonic
analysis on Gaussian space. One might think that T-transform introduced in \S 4 would
be one of the candidates of Fourier transform on Gaussian space. However, T-transform
is not a mapping from $(E)^{*}$ into itself and therefore we can not discuss the relation with
differential operators, multiplication opertors, Laplacians and rotations.

Answering a question posed by Hida [3], [4], about a decade ago Kuo invented a
Fourier transform by formal calculus and proved that it intertwines differential operators
and multiplication operators as usual Fourier transform:

$S\partial_{t}=ix(t)\mathfrak{F}$ , $Sx(t)=i\partial_{t}S$ ,

in a slightly formal form, see e.g., [6] for a precise statement. There is now a firm ground
for Kuo’s Fourier transform (see [13]) and $S=T^{-1}S$ is one of the equivalent definitions
of Kuo’s Fourier transform, for T- and S-transforms see \S 4. Finally we note that Kuo’s
Fourier transform is the unique (up to a constant factor) continuous linear operator
on $(E)^{*}$ which possesses the intertwing property mentioned above. The constant is
determined, for example by $\mathfrak{F}1=\delta_{0}$ , see [6] for details.

Volterra Laplacian and L\’evy Laplacian

In the eary years of this century Volterra, G\^ateaux and L\’evy discussed “Laplacians”
acting on functions of infinitely (or rather continuously) many variables, see the book of
L\’evy [15]. Later on various attempts have been made to reformulate their works with
modern language, namely, within the framework of Hilbert spaces or Banach spaces. It
seems also interesting to discuss those operators whithin our setup.

Let $F$ be a C-valued function on $E$ of $C^{2}$ -class in the sense of Fr\’echet. Sinoe $E$ is
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nuclear, for each $\xi\in E$ there exists $F”(\xi)\in(E\otimes E)^{*}$ such that

$\frac{d^{2}}{d\theta^{2}}|_{\theta=0}F(\xi+\theta\eta)=\langle F’’(\xi),$ $\eta\otimes\eta\rangle$ , $\xi,$ $\eta\in E$ .

ThenF is called an LV-functional if F hasa special form:

$\langle F’’(\xi),$ $\eta\otimes\zeta\rangle=\int_{T}F_{sing}’’(\xi;t)\eta(t)\zeta(t)dt+\int_{TxT}F_{reg}’’(\xi;s, t)\eta(s)\zeta(t)dsdt$ ,

where $F_{sing}^{\prime l}(\xi;\cdot)\in L_{1^{1}oc}(T)$ and $F_{reg}^{\prime l}(\xi;\cdot, \cdot)\in L_{1\propto}^{1}(T\cross T)$ . We call $F_{sing}’’$ the singular part

and $F_{reg}^{n}$ the regular part of $F^{n}$ .
Let $F$ be an LV-functional. If the regular part of $F^{n}$ defines a traoe class operator on

$H$ , we define
$\Delta_{V}F(\xi)=TkaceF_{reg}’’(\xi)=\int_{T}F_{reg}^{u}(\xi;t,t)dt$ ,

where the integral expression is valid under certain regularity condition. While, if
$F_{sing}^{l/}(\xi;\cdot)\in L^{1}(T)$ , we put

$\Delta_{L}F(\xi)=\int_{T}F_{sing}’’(\xi;t)dt$.

The operators $\Delta_{V}$ and $\Delta_{L}$ are called Volterm Laplacian and L\’evy Laplacian, respec-
tively.

Recall that the S-transform of $\Phi\in(E)^{*}$ , denoted by $S\Phi$ , is a C-valued function on
$E_{C}$ and therefore on $E$ by restriction. Thus we may discuss the actions of $\Delta_{V}$ and $\Delta_{L}$

on white noise functionals and obtain

$\Delta_{V}S\phi(\xi)=S\Delta_{G}\phi(\xi)$ , $\Delta_{L}S\phi(\xi)=0$ , $\xi\in E$ , $\phi\in(E)$ .

Thus we understand that the Volterra Laplacian is an extension of $\Delta_{G}$ . While, it is
further proved that the L\’evy Laplacian acts as zero operator on $(L^{2})$ . However, it is
known that $\Delta_{L}$ acts effectively on a spaoe of generalized white noise functionals.

The L\’evy Laplacian is also connected with “asymptotic spherical mean” on Hilbert
spaoe and this justifies the name of Laplacian, see [17]. In their quite recent paper
Accardi, Gibilisco and Volovich [1] investigate a relation between the L\’evy Laplacian
and Yang-Mills equations. These works suggest that the L\’evy Laplacian plays a more
interesting role in infinite dimensional harmonic analysis than we have expected so far.
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