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On a new class of solutions of Painlev\’e equations

京大数理研 河合 隆裕 (KAWAI, Takahiro)

京大理 竹井 義次 (TAKEI, Yoshitsugu)

The so-called exact WKB analysis, that is the analysis based on the systematic

use of Borel resummed WKB solutions, provides us with a new tool in the global

study of differential equations containing a large parameter. -An evidence is our

recip\’e for computing the monodromy groups of second-order Fuchsian equations;

making use of exact WKB analysis, we find that the monodromy group can be

expressed in terms of characteristic exponents at regular singular points and some

contour integrals (related to WKB solutions) on the Riemann surface determined

by the operator in question. Furthermore exact WKB analysis is applicable also to

the problem of monodromy preserving deformations; the condition that the mon-

odromy of a Fuchsian equation should be preserved inevitably causes a degeneracy

of the Riemann surface and of the contour integrals on it. Since the condition for

monodromy preserving deformations is described by the associated Painlev\’e equa-

tion, this phenomenon suggests the possibility of exact WKB analysis for Painlev\’e

equations, which is the main subject of our recent research.

In our formulation a large parameter $\eta$ is introduced also into Painlev\’e equations,

the explicit form of which is as follows:

$P_{I}$ : $\frac{d^{2}\lambda}{dt^{2}}$

$=$ $\eta^{2}(6\lambda^{2}+t)$ .
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$P_{II}: \frac{d^{2}\lambda}{dt^{2}}=\eta^{2}(2\lambda^{3}+t\lambda+\alpha)$ .

$P_{III}: \frac{d^{2}\lambda}{dt^{2}}=1(\frac{d\lambda}{dt})^{2}-\frac{1}{t}\frac{d\lambda}{dt}+8\eta^{2}[2\alpha_{\infty}\lambda^{3}+\frac{\alpha_{\infty}’}{t}\lambda^{2}-\frac{\alpha_{0}’}{t}- 2\frac{\alpha_{0}}{\lambda}]$ .

$P_{IV}: \frac{d^{2}\lambda}{dt^{2}}=\frac{1}{2\lambda}(\frac{d\lambda}{dt})2-\frac{2}{\lambda}+2\eta^{2}[\frac{3}{4}\lambda^{3}+2t\lambda^{2}+(t^{2}+4\alpha_{1})\lambda-\frac{4\alpha_{0}}{\lambda}]$ .

$P_{V}: \frac{d^{2}\lambda}{dt^{2}}=(\frac{1}{2\lambda}+\frac{1}{\lambda- 1}I(\frac{d\lambda}{dt})2-\frac{1}{t}\frac{d\lambda}{dt}+\frac{(\lambda- 1)^{2}}{t^{2}}(2\lambda-\frac{1}{2\lambda})$

$+ \eta^{2}\frac{2\lambda(\lambda- 1)^{2}}{t^{2}}[(\alpha_{0}+\alpha_{\infty})-\frac{\alpha_{0}}{\lambda^{2}}+\frac{\alpha_{2}t}{(\lambda- 1)^{2}}-\frac{\alpha_{1}t^{2}(\lambda+1)}{(\lambda- 1)^{3}}]$ .

$P_{VI}: \frac{d^{2}\lambda}{dt^{2}}=\frac{1}{2}(\frac{1}{\lambda}+\frac{1}{\lambda- 1}+\frac{1}{\lambda- t})(\frac{d\lambda}{dt})2-(\frac{1}{t}+\frac{1}{t- 1}+\frac{1}{\lambda- t})\frac{d\lambda}{dt}$

$+ \frac{2\lambda(\lambda- 1)(\lambda- t)}{t^{2}(t- 1)^{2}}[1-\frac{\lambda^{2}- 2t\lambda+t}{4\lambda^{2}(\lambda- 1)^{2}}$

$+ \eta^{2}\{(\alpha_{0}+\alpha_{1}+\alpha_{t}+\alpha_{\infty})-\frac{\alpha_{0}t}{\lambda^{2}}+\frac{\alpha_{1}(t- 1)}{(\lambda- 1)^{2}}-\frac{\alpha_{t}t(t- 1)}{(\lambda- t)^{2}}\}]$ .

As is easily seen, these equations $P_{J}(J=I, \ldots, VI)$ admit formal power series solu-

tions with respect to $\eta^{-1}$ determined in an algebraic manner. The existence of such

formal power series solutions is actually related to the degeneracy in monodromy

preserving deformations mentioned above. Now our first assertion is that not only

these solutions but also the following formal solutions with exponential perturbative

terms should exist for $P_{J}$ :

$\lambda=\lambda^{(0)}(t, \eta^{-1})+e^{-\phi(t)\eta}\lambda^{(1)}(t, \eta^{-1})+e^{-2\phi(t)\eta}\lambda^{(2)}(t, \eta^{-1})+\cdots$ ,

where each $\lambda^{(j)}(t, \eta^{-1})=\sum_{k}\eta^{-k}\lambda_{k}^{(j)}(t)$ is a formal power series of $\eta^{-1}$ , in particular
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$\lambda^{(0)}(t, \eta^{-1})$ itself is a solution of $P_{J}$ . Note that in this expression $\phi(t)$ and every

coefficient $\lambda_{k}^{(1)}(t)$ of $\lambda^{(1)}$ should satisfy some first-order differential equations and

that the other $\lambda_{k}^{(j)}s(j\geq 2)$ can be determined uniquely by $\lambda^{(0)},$ $\lambda^{(1)}$ and $\phi$ in an

algebraic manner.

Taking account of these formal solutions, we can develop exact WKB analysis

for Painlev\’e equations in a pretty satisfactory manner. More concretely, we first

introduce the notion of “turning points” and “Stokes curves” for Painlev\’e equations,

and then consider the connection formula of $\lambda^{(0)}$ . In the expression of the connection

formula the above formal solutions with exponential terms play an important role. In

fact, for the first Painlev\’e equation $P_{I}$ the connection formula of $\lambda^{(0)}$ can be written

down quite explicitly in terms of these formal solutions. As for the other Painlev\’e

equations, we can also discuss them by making use of some reduction theorem; near

a point on Stokes curves the Painlev\’e equation $P_{J}(J=II, \ldots, VI)$ can be locally

transformed to $P_{I}$ (more precisely, the formal solutions of $P_{J}$ are transformed to

those of $P_{I}$ ). For the details we refer to our forthcoming article on the structure of

Painlev\’e transcendents (cf. the r\’esum\’e article in the RIMS K\^oky\^uroku “Microlocal

Analysis –Today and Future”).


