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Summary: Recently, the study of hypergeometric functions has popped up in diverse quarters as the study

of moduli spaces of algebraic varieties, binomial sums, conformal field theory, statistical mechanics and so

on. In this exposition, we focus on the following topics;

1. A history of the study of hypergeometric functions.

2. Solution sheaf of A-hypergeometric system and the secondary polytope.

3. Derivation of the connection formulas of $\Delta_{1}\cross$ \Delta . $-1$ -hypergeometric function as an application of the

result 2.

1. A history –from Gauss-schwartz theory

Why are the hypergeometric functions interesting? I start with trying to explain a reason. I believe

that it is the best to show you the Gauss-schwartz theory in order to answer to the question.

Let

$\swarrow=x(x-1)(x-t)$ , $t\neq 0,1,$ $\infty\ovalbox{\tt\small REJECT}$

be a family of the elliptic curves $\{C_{t}\}$ . Since the genus of $C_{t}$ is 1, the space ofholomorphic l-forms $H^{0}(C_{t}, \Omega^{1})$

is l-dimensional vector space; the l-form

$\frac{dx}{y}=x^{-1/2}(x-1)^{-1/2}(x-t)^{-1/2}dx$

spans the space of holomorphic l-forms on $C_{t}$ . Let $\alpha_{t}$ and $\beta$ be the generators of the homology group

$H_{1}(C_{t}, Z)$ with the intersection matrix $(\begin{array}{ll}0 1-l 0\end{array})$ . For example, you may take $\alpha_{t}$ and $\beta_{t}$ as in the figure 1.

The period map of $\{C_{t}\}$ is

$p$ : $C\backslash \{0,1, \infty\}\ni t(\int_{a_{\ell}}\frac{dx}{y}\int_{\beta_{\ell}}\frac{dx}{y})=(p_{1}(t),p_{2}(t))$ .

One of the main problem in the algebraic geometry is the classification of algebraic varieties. The period

map plays an important role in this problem by virtue of Torelli’s theorem.

$r$ In ”modern mathematics and polyhedral geometry” edited by T.Hibi (RIMS Kokyuroku, Kyoto Univ.)

数理解析研究所講究録
第 857巻 1994年 9-25



10

Figure 1.

THEOREM (Torelli, see $[G;173p]$ ) A necessary an$d$ sufBcient condition for two compact Riemann surfaces

$C$ and $C’$ be isomorphic, is that they $have$ th$e$ same normalized period matrix under a $sui$table choice of

canonical homology $b$ases.

In our example, the normalized period matrix is $(1,p_{2}(t)/p_{1}(t))$ . In order to get the moduli space through

the period map, we must determine the image of the upper and lower half plane by the map $p_{1}(t)/p_{2}(t)$ .

How to get the image? We can get the image by studying the local and global behaviors of the period map.

The key role is played by the Gauss hypergeometric function.

PROPOSITION 1.1. Assume the configuration of Figure 1 and ${\rm Im} t>0$ . We $\Lambda$ave

$p_{1}(t)=-2i\Gamma(\frac{1}{2})^{2}F(1/2,1/2,1;1-t)$

$p_{2}(t)=-2\Gamma(\frac{1}{2})^{2}t^{-1/2}F(1/2,1/2,1;1/t)$

where we regard $z^{\alpha}$ as the single valued fun$c$tion on $C\backslash (O, -\infty)$ such that $z^{\alpha}=e^{\alpha\log|z|}$ on $z>0$ and

$F(\alpha,\beta,\gamma;t)$ is defined by

$\sum_{k=0}^{\infty}\frac{(\alpha)_{k}(\beta)_{k}}{(1)_{k}(\gamma)_{k}}t^{k}$ , $(\alpha)_{k}=\alpha(\alpha+1)\cdots(\alpha+k-1)$ .

The fun$c$tions $p_{i}(t)$ satisfy the Gauss hypergeometric differential equation

$\theta_{1}^{2}-t(\theta_{t}+1/2)^{2}$ , $\theta_{t}=t^{\underline{d}}$

$dt$

Moreover, $(p_{1}(t),p_{2}(t))$ is the fundament$al$ set ofsolutions.

Next, we consider the following configuration and take the following cycles;
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Figure 2.
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$0$

Figure 3.

We define the following period map;

$(p_{1}’(t),p_{2}’(t))=( \int_{\alpha t}\frac{dx}{y}\int_{\beta_{1}’}\frac{dx}{y})$ .

These functions can also be expressed by the Gauss hypergeometric functions.

PROPOSITION 1.2 Assume the configuration of Figure 2 and ${\rm Im} t>0$ . We $have$

$p_{1}’(t)=-2_{l}T(1/2)^{2}t^{-1/2}F(1/2,1/2,1;(t-1)/t)$

$p_{2}’(t)=-2 \Gamma(\frac{1}{2})^{2}F(1/2,1/2,1;t)$ .

When the parameter $t$ changes as in Figure 3, the cycles $\alpha_{t}$ and $\beta$ are continuously deformed into $\alpha_{t}’$

and $\alpha\{+\beta_{t}’$ respectively.

Therefore, we have the following connection formula.

PROPOSITION 1.3

$\gamma’(_{p_{2}(t)}^{p_{1}(t)})=(\begin{array}{ll}1 01 l\end{array})(_{p_{2}^{1}(t)}^{p’(t)})$
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Figure 4

where 7’ denotes the analyti$c$ continuation along the $pa$th $\gamma$ .

Here, let me mention the general definition of connection formula. Let $\Phi$ and $\Phi’$ be two fundamental

sets of solutions of an ordinary differential equation of n-th order. Since the functions $\Phi$ and $\Phi’$ are the

fundamental sets of solutions, there exists $nxn$ matrix $C$ such that

$\Phi=C\Phi’$ .

The identity above is called the connection formula.

Using the connection formula, we can easily get the monodromy group of the period map.

PROPOSITION 1.4 The monodromy of the period map is isomorpbic to the discrete group $\Gamma(2)$ that is

$c\sigma\rho n\rho rnt\rho d$ by

$(\begin{array}{ll}1 02 1\end{array})=(\begin{array}{ll}1 01 l\end{array}),$ $(\begin{array}{ll}1 20 1\end{array})=(\begin{array}{ll}1 10 1\end{array}),$ $(\begin{array}{ll}1 00 1\end{array})$ .

We have studied the global behavior of the period map. It is also important to study the local behavior

of the solutions of the Guass hypergeometric functions to determin the image.

PROPOSITION 1.5. (see, e.g., [IKSY; chapl]) The set of the functions

$\phi_{1}=F(1/2,1/2,1,\cdot t)$

$\phi_{2}=\log t\cdot F(1/2,1/2,1;t)+O(t)$

is the fundamental set ofsolutions of the Gauss hypergeometric equation $\theta_{t}^{2}-t(\theta_{t}+1/2)^{2}$ around the poin $t$

$t=0$ .

Let $(q_{1}(t), q_{2}(t))$ be a fundamental set of real valued solutions of $\theta_{t}^{2}-t(\theta_{t}+1/2)^{2}$ on $(-\infty, 0)$ . Then

the image of $(-\infty, 0)$ by $q_{2}(t)/q_{1}(t)$ is a part of a line in C. Since $p_{2}(t)/p_{1}(t)$ can be expressed by a linear
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fractional transformation of $q_{2}(t)/q_{1}(t)$ , the image of the segment $(-\infty, 0)$ by $p_{2}(t)/p_{1}(t)$ is a part of a circle

or a line in C. Similarly, the image of the segments $(0,1)$ and $(1, \infty)$ by the map $p_{2}(t)/p_{1}(t)$ are parts of lines

or circles in C. So, the image of the upper half plane is a hyperbolic triangle enclosed by lines or circles. It

follows from Proposition 1.5 and a similar argument at $t=1$ that the each angle of the triangle is $0$ (see

Figure 4).

By virtue of the propositions and the observation above, we have the main theorem of the Gauss-schwartz

theory.

THEOREM (Gauss, Schwartz) Put $\tau=p_{2}(t)/p_{1}(t)$ . The function $\tau$ is the multivalued function on

$P^{1}\backslash \{0,1, \infty\}$ and the image of the $map$ is the upperhalf plane $H=\{z|{\rm Im} z>0\}$ . Moreover, the inverse

map $\lambda(\tau)$ is the single-valued holomorphic $fun$ction on $H$ which sa$tisRae$

$\lambda(\tau+2)=\lambda(\tau)$ , $\lambda(\frac{\tau}{2\tau+1})=\lambda(\tau)$ .

Although, the theorem above was found in the 19th century, Gauss-Schwartz type theorem and Torelli

type theorem have been interested in even in our decades; Gauss-Schwartz type theorem has been studied by

Terada, Deligne, Mostow, Kyoji Saito, Matsuzawa, Oyama, V.V.Vatyrev, Varchenko, Yoshida, Matsumoto,

Sasaki and so on. Moreover, one of the motivation of the theory of the mixed Hodge structure is the Gauss-

schwartz theory and Torelli’s theorem. Unfortunately, it is beyond my ability to give an introduction to

the theory. Anyway, one of the motivation of the study of local and global behaviors of the hypergeometric

functions is the Gauss-schwartz theory. In the following sections, we focus on the study of local and global

behavior of the A-hypergeometric functions defined by Gel’fand, Zelevinsky and Kapranov.

Acknowledgement: I’ve learned a lot about the Gauss-schwartz theory from Prof. Keiji Matsumoto, who

has nice works on the Gauss-schwartz theory for the hypergeometric functions on the Grassmann manifold

([MSY]). I would like to say many thanks to him.

References:

[G] P.A.Griffiths, ”Introduction to algebraic curves”, (1992), AMS.

[N] M.Namba, ”Three dramas by functions on the complex domain”, (in Japanese, Asakura shyoten, 1990)

[MSY] K.Matsumoto, Y.Sasaki and M.Yoshida, The monodromy of the period map of a 4-parameter family of

K3 surfaces and the hypergeometric function of type (3,6). International Journal of Mathematics, 3

(1992), 1-164.
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[MSTY] K.Matsumoto, Y.Sasaki, N.Takayama and M.Yoshida, Monodromy of the hypergeometric differential

equation of type (3, 6) I and II, to appear in Duke Math. J. and Ann. Ecole. Norm. Sup. (Pisa).

We have no space to give comprehensive references here. Pleaee see the references of the papers above.

2. A-hypergeometric system

Let us quickly review the theory of A-hypergeometric system defined by Gel’fand, Zelevinsky and

Kapranov ([GZK2]).

Let A $=\{a_{1},$
\ldots ,

$a_{n}\}$ be a set of n-points in $Z^{d}$ which satisfies the conditions:

(2.1) there exists a vector c $\in Z^{d}$ such that

(c,$a_{i})=1$ , i $=1,$ \ldots , n,

(2.2) $Za_{1}+\cdots+Za_{n}=Z^{d}$.

We regard the $a$; as the column vector and denote the $(i,j)$-element of the matrix $(a_{1}, \ldots, a_{n})$ by $a:j$ . Let

$\alpha_{1},$
$\ldots,$

$\alpha_{d}$ be parameters. Put

$p;= \sum_{j=1}^{n}ax\partial_{j}-\alpha_{i}$ , $i=1,$ $\ldots,$
$d$ , $\partial:=\frac{\partial}{\partial_{X}:}$

and let

$D_{A}=O_{A}(\partial_{1}, \ldots, \partial_{n})$ , $O_{A}=O_{n}$

be the sheaf of the differential operators on the A-space $C$“. The A-hypergeometric system $M_{A}$ is defined

by

$M_{A}=\mathcal{D}_{A}/H_{A}$ , $H_{A}= \sum_{=:1}^{d}\mathcal{D}_{Ap_{i}+I_{A}}$

where $I_{A}$ is the left ideal of $D_{A}$ generated by

$\triangle\iota=\prod_{b_{j}>0}\partial_{j^{b_{\dot{f}}}}-\prod_{b,<0}\partial_{j^{-b_{j}}}$
, $b=(b_{1}, \ldots, b_{n})\in ker(a_{1}, \ldots, a_{n})\cap Z$ “.

EXAMPLE 2.1 Put

$A=(\begin{array}{llll}0 0 1 11 0 1 00 1 0 1\end{array})$ .

Then the left ideal $H_{A}$ is generated by

$p_{1}=x_{3}\partial_{3}+x_{4}\partial_{4}-\alpha_{1}$

$p_{2}=x_{1}\partial_{1}+x_{3}\partial_{3}-\alpha_{2}$

(2.3)
$p_{3}=x_{2}\partial_{2}+x_{4}\partial_{4}-\alpha_{3}$

$\partial_{1}\partial_{4}-\partial_{2}\partial_{3}$ .
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The solution of this system $c$an be expressed by using the Gauss hypergeometri $c$ function, because we can

easily see that the function

$\int_{C}(x_{1}+x_{3}z)^{\alpha_{1}}(x_{2}+x_{4}z)^{\alpha_{2}}z^{\alpha’-1}dz$

is the solution of the system of differential equations (2.3) ([GZK3; $260p]$ ). We also note that the following

function is the solutions of the system above;

$x_{1}^{\alpha_{2}-\alpha_{1}}x_{2}^{\alpha_{S}}x_{3}^{\alpha_{1}}f$( $\alpha_{2}-\alpha_{1},$ $\alpha_{3},$ $\alpha_{1}$ ; z)

where
$x_{1}x_{4}$

$Z=-$
$x_{2}x_{3}$

and

$f(a, b, c;z)= \sum_{k=1}^{\infty}z^{k}/(\Gamma(a+k+1)\Gamma(b-k+1)\Gamma(c-k+1)\Gamma(k+1))$ .

We denote the sheaf of holomorphic solutions

$\{f\in O \S lf=0, \forall\ell\in H_{A}\}$

by $\mathcal{H}om_{D_{A}}(M_{A}, O_{A})$ . In fact, any element $h$ of $\mathcal{H}om_{\mathcal{D}_{A}}(M_{A}, \mathcal{O}_{A})$ satisfies

$\ell h(1)=h(\ell\cdot 1)=h(0)=0$ , $\forall\ell\in H_{A}$ .

So, $h(1)$ is the solution.

The left $\mathcal{D}_{A}$ -module $M_{A}$ is holonomic system. The most fundamental result about the holonomic system

is the following theorem due to Kashiwara.

THEOREM 2.1. (M.Kashiwara [K1]) Let $M$ be a holonomi$c$ system on $C^{n}$ . There exists a decomposition

of $C^{n}$ into analyti$csets\cup X_{\mu}$ such that the sheaf

$?iom_{D}.(M, O_{n})_{1_{X_{l}}}$

is locally constan $t$ sheaf of in$ite$ ran$k$; the sheaf $\mathcal{H}om_{D}.(M, O_{n})$ is called the constructible sheaf of Rnite

ran$k$ .

In order to convice you this theorem, let me give you an example.

EXAMPLE 2.2. Put $n=1$ and consider the holonomic system

$D_{1}/\mathcal{D}_{1}p$ , $p=\theta_{l}^{2}-x(\theta_{l}+1/2)^{2}$ , $\theta_{l}=x\frac{d}{dx},\mathcal{D}_{1}=O_{1}(d/dx\rangle$ .
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We decompose $C^{1}$ into the sets

$X_{a}=C\backslash \{0,1\})X\rho=\{0\},$ $X_{\gamma}=\{1\}$ .

It follows from Proposition 1.5 and $a$ similar argument around the point $x=1$ that the sheaf

$\mathcal{H}om_{D_{1}}(D_{1}/D_{1}p, O_{1})$ , $O_{1}=C\{x\}$

is locally constant sheaf of rank 2 on $X_{\alpha}$ , of rank 1 on $X\rho$ and of rank 1 on $X_{\gamma}$ respectively.

There exists an open dense stratum in the stratification $\cup X_{\mu}$ . The stratum is called the generi$c$ stratum.

Gel’fand, Zelevinsky and Kapranov proved the following theorem.

THEOREM 2.2. $([GZK2,GZK1])$ Let $M_{A}$ be the A-hypergeometric system. The generic stratum $X_{A}’$ is the

complement of the zero se$t$ of $tbe$ princip$aI$ A-determinan$tE_{A}$ . Moreover, the solution sheaf is the locally

constan $t$ sheaf ofrank $vol(A)$ on the generic stra$tumX_{A}’$ .

When we look at these 2 theorems, a natural question arises; study the A-hypergeometric system on the

non-generic stratas. Gel’fand, Kapranov and Zelevinsky gave an answer to this question in a quite abstract

way; they express the solution sheaf by the twisted cohomology ([GZK3; $270p$ , line 9]). Here, we will give a

description of the structure of the solution sheaf by using the secondary polytope in an elementary way.

3. Secondary polytope

Let $(\omega_{1}, \ldots,\omega_{n})$ be a vector in $R^{n}$ . Consider the convex hull $H$ of the points

$\{(a_{1},\omega_{1}), \ldots, (a_{n},\omega_{n})\}$

where $a$: are vectors in $Z^{d}$ . Let

$\pi$ : $R^{d+1}\ni(y_{1}, \ldots,y_{d+1})(y_{1}, \ldots,y_{d})\in R^{d}$

be the projection. The projection by $\pi$ of the lower part of the convex hull $H$ induces the polyhedral

subdivision of conv$(A)$ . The polyhedral subdivision obtained by this way is called the regular polyhedral

subdivision. When the polyhedral subdivision is the triangulation of $A$ , the polyhedral subdivision is called

the regular triangulation. The set of all regular polyhedral subdivisions is poset (partially ordered set) by

the refinement.

Let $T$ be the set of all triangulations of $A$ . Here, by the triangulation of $A$ , we mean a triangulation of

conv$(A)$ of which vertices are in $A$ . The secondary polytope $\Sigma(A)$ is defined by

$\Sigma(A)=conv_{A\epsilon\tau}\phi_{A}$ ,
$\phi_{A}=\sum_{\tau\epsilon A}vol(\tau)(e_{\tau_{1}}+\cdots+e_{\tau_{\ell}})\in R^{n}$
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where $e_{i}$ denotes the i-th standard basis vector in $R^{n}$ .

THEOREM 3.1. ([GZKI], see also [BFS]) The face la$tti$ce of $\Sigma(A)$ is anti-isomorphic to the poset of the

all $reg$ular polyhedra1 subdivisions of A. Especially, the vertices of $\Sigma(A)$ are in $one- tc\succ one$ correspondence

with the regular triangulations.

An algorithm of enumerating all regular triangulations is given by [BFS].

EXAMPLE 3.1. The k-simplex $\Delta_{k}$ is the convex hull of

$e_{1},$ $\ldots,$ $e_{k+1}$

where $e_{i}$ denotes the i-th standard basis vector of $R^{k+1}$ . We consider the general prism $\Delta_{1}x\Delta_{n-1}$ in

$R^{2}\oplus R^{n}=R^{2+n}$ of which vertices are

$e_{i}\oplus e_{j}$ , $(i=1,2,1\leq j\leq n, e_{i}\in R^{2}, e_{j}\in R^{n})$ .

Let

$\tau^{(i)}=\{(1,1), (1,2), \ldots, (1, n-i+1), (2, n-i+1), (2, n-i+2), \ldots, (2, n)\}$

be the n-simplex where $(p, q)$ denotes the point $e_{p}\oplus e_{q}$ . The collection

$T=\{\tau^{(1)}, \ldots, \tau^{(n)}\}$

is a triangulation of $A_{n}$ and will be cited as the stair-case triangulation. The n-simplex $\tau^{(i)}$ is often figured,

for example in case of $n=4$ , as follows;

$\tau^{(1)}=(11 12 l3 l424)$ $\tau^{(2)}=(11 12 l323 24),$ $\tau^{(3)}=(\begin{array}{llll}11 l2 22 23 24\end{array}),$ $\tau^{(4)}=(\begin{array}{llll}11 2l 22 23 24\end{array})$

Let us note that the general prism $\Delta_{1}xA_{n-1}$ admits the action of the group of all permutations of

n-letters $6_{n}$ ;

$\sigma:\Delta_{1}x\Delta_{n-1}\ni e_{i}\oplus e_{j} e_{i}\oplus e_{\sigma(j)}\in\Delta_{1}x\Delta_{n-1}$ , $\sigma\in 6_{n}$ .

So, we get $n!$ triagulations $\{T^{\sigma}\}$ . All triangulations of $\Delta_{1}x\Delta_{n-1}$ can be obtained in this way. Moreover,

they are regular triangulations. Specializing the result of [BFS], we have the following result.

PROPOSITION 3.1 ([BFS]) The secondary polytope $\Sigma(\Delta_{1}xA_{n-1})$ is $(n-1)$-dimensional zonotope which

is the Minkowskii sum of $(_{2}^{n})$ segments.
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Figure 6.

We illustrate Theorem 3.1 and Proposition 3.1 in case of $n=3$ and $n=4$ .

4. Formal restriction

Let $\{\Gamma^{(1)}, \Gamma^{(2)}, \ldots\}$ be a regular polyhedral subdivision of $A$ and we fix it. We assume $\Gamma^{(1)}=\{1, \ldots, m\}$

by changing the indices of vertices and put $\Gamma=\Gamma^{(1)}$ . Let $M_{\Gamma}$ be the hypergeometric $\mathcal{D}$-module defined by

$\Gamma$ on $C^{m}$ . We will describe the solution sheaf of $M_{A}$ on a non-generic stratum by using the $M_{\Gamma}$ , which we

will call the formal restriction.

Put

$X_{\Gamma}=\{x|x_{m+1}=\cdots=x_{n}=0\}$
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and let

$j$ : $X_{\Gamma}arrow X_{A}=\mathbb{C}^{n}$

be the embedding. The restriction of $M_{A}$ to $X_{\Gamma}$ as $D$-moudle ([K1]) is defined by

$j \cdot M_{A}=j^{-1}(D_{A}/(H_{A}+\sum_{:=1}^{m}x:^{v_{A})}$ .

Note that there exists a natural morphism from $M_{\Gamma}$ to $j\cdot M_{A}$ , because $H_{\Gamma} \subseteq H_{A}+\sum_{:}^{m_{=1}}x_{i}\mathcal{D}_{A}$ . The natural

morphism is the isomorphism on the generic stratum on $X_{\Gamma}$ .

THEOREM 4.1. ([T1]) Let $F_{\tau}$ be the minimal integral supporting function of the facet $\tau$ of the cone

spanned by $\Gamma$ .
(a) Suppose the conditions

(1) $\sum_{1=1}^{m}Za:=Z^{d}$ ,

(2) (normality) $\sum_{:}^{m_{=1}}Z_{\geq 0}a;=(\sum_{:}^{m_{=1}}R_{\geq 0}a_{i})\cap Z^{d}$ ,

(3) $F_{\tau}(\alpha)\not\in Z_{\geq 0}$ for all face$ts\tau$ of the cone spanned by $\Gamma$ ,

are satisfied, then the morphism

$r$ : $M_{\Gamma}arrow j\cdot M_{A}$

is $s$urjective.

(b) Let $T$ be a regular trian$g$ulation which is a refinement of the regular polyhedral $subdivision\cup\Gamma^{(k)}$ . If the

$p$arameter $\alpha$ is T-nonresonant and the conditions (1), (2), (3) are satisRed, then we $have$ the isomorphism

$\mathcal{H}om_{D_{A}}(M_{A}, O_{A})_{1x_{r}}=\mathcal{H}omv_{r^{\backslash }}(j^{*}M_{A}, \mathcal{O}_{\Gamma})=\mathcal{H}om_{D_{\Gamma}}$ ($Mr$ , Or)

on the generic stratum $ofX_{\Gamma}$ . Moreover, we have

$M_{\Gamma}=j’M_{A}$

on the generic stratum of $X_{\Gamma}$ .

In [T1], the condition (3) is given by using the b-function defined by Mutsumi Saito ([S1]). M.Saito

kindly told me that the condition can be expressed by using the supporting function of the cone. Moreover, he

sent me the proof of Theorem 4.1 without the normality condition during the preparation of this exposition

(September 2, 1993).

EXAMPLE 4.1. Put $\Gamma=\Delta_{1}x\Delta_{n-1}\backslash \{(1, n)\}$ . The decomposition

$\Gamma\cup(_{21}$

22 ... $2n1n)$
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Figure 7.

is the regular polyhedral subdivision. $\Gamma$ is the cone over $\Delta_{1}x\Delta_{\mathfrak{n}-2}$ and

$u_{2n}^{\alpha_{*}-1}M_{\Gamma}u_{2n}^{-\alpha.+1}=M_{A_{1}xA.-*}$ .

So, the solution sheaf of the $\Delta_{1}x\Delta_{n-1}$-hypergeometric system is isomorphic to the solution sheaf of the

$\Delta_{1}x\Delta_{n-}$ -hypergeometric system on the hyperplane $u_{1n}=0$ . Here, we denote the independent variables

by $u_{1j}$ and the parameters by $(-\beta_{2}, \alpha_{1}-1, \ldots, \alpha_{n}-1)$ . Note that the generic stratum of $M_{A_{1}xA.-1}$ is given

in Proposition 5.1.

EXAMPLE 4.2. We, again, consider the A-hypergeometric system of the general prism $\Delta_{1}x\Delta_{n-1}$ . The

line defined by the origin and the point (1, n) is a face of the cone defined by the general prism. We denote

the torus orbit corresponding to the line by $O_{v}$ . The normal bundle $T_{O}^{l}C^{2n}$ is an irreducible component

of the characteristic variety of the $\Delta_{1}xA_{n-1}$ -hypergeometric system and the multiplicity is 1 by virtue of

[GZK2]. So, the index of the hypergeometric system is $n-1$ at a generic point $x_{0}$ in $u_{1n}=0$ . It follows

from the index theorem of Kashiwara that we have

$n-1= \sum_{:=0}^{2\mathfrak{n}}\dim_{C}(-1)^{i}\mathcal{E}xt_{\mathcal{D}_{A}}^{i}(M_{A_{1}xA.-1}, O)_{x_{O}}$ .

On the other hand,

$\dim_{C}\mathcal{H}om_{A}(M_{A_{1}xA.-1}, \mathcal{O})_{x_{O}}=n-1$

from Example 4.1 and

$\dim_{C}\mathcal{E}xt_{D_{A}}^{i}(M_{A_{1}xA.-1},O)_{\iota_{O}}=0$

for $i\geq 2$ because of the tegular holonomicity of the system ([Hot]). Therefore, the first cohomology

$\mathcal{E}xt_{D_{A}}^{1}(M_{A_{1}xA.-1}, O)$ also vanishes on the generic stratum of $u_{1n}=0$ .

We have studied a structure of the constructible sheaf $\mathcal{H}om_{\mathcal{D}_{A}}(M_{A}, O_{A})$ . Our study can be applied to

derivation of connection formulas among hypergeometric series. Gel‘fand, Zelevinsky and Kapranov showed
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that each regular triangulation of $A$ determines a fundament$a1$ set of solutions expressed by series; we can

attach a set of series solutions to each vertex of the secondary polytope. So, it is a natural question to find

connection formulas among them. It is very difficult to find them in general case, because the fundamental

groupoid of the generic stratum $X_{A}’$ is unknown. Fortunately, the topology of the generic stratum of the

$\Delta_{1}x\Delta_{n-1}$-hypergeometric system is relatively easy. We can explicitly derive connection formulas in that

case.

Let $\mathcal{F}$ be a field and suppose that a group $G$ acts on $\mathcal{F}$ . A set of matrices $\{C(g)\in GL(m, \mathcal{F})|g\in G\}$

that satisfies the condition

$C(gh)=C(h)C(g)^{h}$ , $g,$ $h\in G$

is called the multiplicative l-cocycle of the group $G$ .

The connection formulas of the $\Delta_{1}x\Delta_{n-1}$ -hypergeometric functions can be expressed by those of the

$\Delta_{1}x\Delta_{n-2}$-hypergeometric functions and the set of the formulas is given as a multiplicative l-cocycle of $6_{n}$ ,

where we can understand $6_{n}$ as the group generated by restructurings of triangulations.

5. Connection formulas of the $\Delta_{1}x\Delta_{n-1}$ -hypergeometric function

Put

$\chi_{1j}=0\oplus e_{j}$ , $\chi_{2j}=1\oplus e_{j}$ , $j=1,$ $\ldots,$
$n$

and

$A_{n}=\{\chi_{11}, \ldots,\chi_{1n},\chi_{21}, \ldots,\chi_{2n}\}=\Delta_{1}x\Delta_{n-1}$ .

We consider the $\Delta_{1}xA_{n-1}$-hypergeometric system $M_{A}$ . with the parameter $(-\beta_{2}, \alpha_{1}-1, \ldots, \alpha_{n}-1)$ . We

denotes the independent variables by

$u=(_{u_{21}^{11}}^{u}$ ... $u_{2n}^{1n}u)$

to clarify the symmetry of the system. We can easily see the following from Theorem 2.2.

PROPOSITION 5.1. Put

$X_{A}’=\{u\in \mathbb{C}^{2n}|:j\}$ .

Then

$\dim_{C}\mathcal{H}om_{D_{A}}(M_{A}., O_{A}.)=vol(\Delta_{1}x\Delta_{n-1})=n$ on $X_{A}’$ .
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Next, following the method of [GZK2], we give the fundamental set of solutions expressed by series

determined by the stair case triangulation $T$. Let $\gamma^{(\tau)}\in C^{2n}$ be the solution of the linear equation

$A\gamma^{(\tau)}=(\begin{array}{l}-\beta_{2}\alpha_{1}-1-\alpha_{n}1\end{array})$ , $A=(\chi_{11}, \ldots, \chi_{1n},\chi_{21}, \ldots, \chi_{2n})$

with the constraint
$\gamma_{i}^{(\tau)}=0$ when $i\not\in\tau\in T$.

Define series

$\phi_{\tau}=\sum_{k\epsilon kerAnZ^{2*}}u^{\gamma^{(r)}+k}/\prod_{:=1}^{2n}\Gamma(\gamma^{(\tau)}:+k_{i}+1)$.

Specializing the result of [GZK2; Th3,5], we have the following.

PROPOSITION 5.2. If the stair-case triangulation is T-nonresonant, then

$\{\phi_{\tau}|\tau\in T\}$

is a fundament$aI$ set of solu tions of $M_{A}.$ .

The functions $\phi_{\tau}$ are defined on a small open set. We will define an analytic continuation of the function

to larger domains. In order to do it, we decompose $C^{2n}$ into simply connected domains.

Let us denote the coordinates of $R^{2n}$ by $\{\theta:j\}$ . We consider the hyperplane arrangement in $R^{2n}$ defined

by

(5.1) $\{\begin{array}{l}\theta_{ij}=-\pi,0,\pi\theta_{1}.\cdot-\theta_{2}.\cdot=\pm k\pi,(k=0,1,2)(\theta_{1i}-\theta_{2i})-(\theta_{1j}-\theta_{2j})=\pm k\pi,(k=0,l,2,3,4)\end{array}$

We denote the set of maximal dimensinal cells that are contained in the domain

$\{(\theta):j|-\pi<\theta_{ij}<\pi\}$

by $S$ . For $s\in S$ , put

$D(s)=\{(r_{ij}e^{i\theta_{ij}})|\theta_{1j}\in s, r_{1j}>0\}$ .

The domain $D(s)$ is simply connected and is contained in the generic stratum $X_{A}’$ . We can define unique

analytic continuation of the function $\phi_{\tau}$ to $D(s)$ , which we denote by $\varphi_{\tau}$ . Put

$\Phi=(\varphi_{\tau 11)}, \ldots,\varphi_{\tau 1\cdot)})$ , $\Phi^{\sigma}=(\varphi_{\tau 11)}\cdot, \ldots, \varphi_{\tau 1\cdot)}\cdot)$ , $\sigma\in 6_{n}$ .
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The function $\Phi^{\sigma}$ is also the fundamental set of solutions of the system $M_{A}.$ . Define the connection matrix

$C(\sigma)$ by

$\Phi=C(\sigma)\Phi^{\sigma}$ .

It follows from the definition that the matrix $C(\sigma)$ is constant on each $D(s)|$ So, the matrix $C(\sigma)$ is the

Heaviside function on the hyperplane arrangement (5.1). The set of matrices $\{C(\sigma)\}$ is the multiphicative

l-cocycle of $6_{n}$ and they can be expressed as follows;

THEOREM 5.1. ([T1]) Assume the T-nonraeonan $t$ condition and the condition $\alpha_{i},\beta_{j}\not\in Z$. Define $pxp$

matrix $C_{p}$ by the recurrence relations

$C_{p}(s:;\alpha_{1}, \ldots, \alpha_{p};\beta_{1},\beta_{2};1, \ldots,p)=1\oplus C_{p-1}(s_{i};\alpha_{1}, \ldots, \alpha_{p-1}; \beta_{1},h+\alpha_{p}-1;1, \ldots,p-1)$

for $1\leq i<p-1$ ,

$C_{p}(s_{p-1} ; \alpha_{1}, \ldots, \alpha_{p};\beta_{1},\beta_{2};1, \ldots,p)=C_{p-1}(s_{p-2}; \alpha_{2}, \ldots, \alpha_{p};\beta_{1}+\alpha_{1}-1,\beta_{2}; 2, \ldots,p)\oplus 1$

and

$C_{2}(s_{1} ; \alpha_{1}, \alpha_{2};\beta_{1},\beta_{2};i,j)=(:j$ $q:j(-h_{2^{)}}-\alpha_{1})q_{ij}(\alpha,\beta_{1}))$

where $\sum_{:}^{n_{=1}}\alpha;+\beta_{1}+\beta_{2}=n$ and

$q:j( \alpha_{1},\beta_{2})=\frac{m_{(-j^{-})^{--1}}^{2\alpha_{1}}:.-1}{\frac{[ij]^{-2\alpha_{1}-2\beta_{2}}}{(-[:j])^{-2a_{1}-2\rho_{2}}}-1}[ij]^{-\beta_{2}}\frac{u_{1j^{2}}^{\beta}u_{2i^{2}}^{\beta}}{u_{1:^{2}}^{\beta}u_{2j^{2}}^{\beta}}$, $[ij]= \frac{u_{1j}u_{2:}}{u_{1i}u_{2j}}$ .

Then, the matrix

$C_{n}(s:;\alpha_{1}, \ldots, \alpha_{n}; \beta_{1},\beta_{2}; 1, \ldots, n)$

is the connection matrix among the solutions $\Phi$ an$d\Phi^{\delta i}$ where $s;=(i, i+1)\in 6_{n}$ .

Notice that the function $q:j(a, b)$ is the Heaviside function defined on the hyperplane arrangement (5.1).

The proof of this theorem is based on Theorem 4.1. In order to explain how to use the description on

the constructible sheaf (e.g. Theorem 4.1) to prove functional identities of hypergeometric functions, we,

finally, show you a small example.

EXAMPLE 5.1.

Problem: Prove the identity

$f( \alpha_{2}-\alpha_{1}, \alpha_{3}, \alpha_{1}; z)=\frac{\Gamma(\alpha_{1}+1)}{\Gamma(-\alpha_{2}+1)}(1-z)^{\alpha_{S}}f(\alpha_{2}-\alpha_{1},$ $\alpha_{3},$
$- \alpha_{2};.\frac{z}{z-1})$
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where
$x_{1}x_{4}$

$Z=-$
$x_{2}x_{3}$

and

$f(a, b, c;z)= \sum_{k=1}^{\infty}z^{k}/(\Gamma(a+k+1)\Gamma(b-k+1)\Gamma(c-k+1)\Gamma(k+1))$ .

Answer: We can see that the each side $xx_{1}^{\alpha_{2}-\alpha_{1}}x_{2}^{\alpha}’ x_{3}^{\alpha_{1}}$ of the formula above satisfies the A-hypergeometric

system of Example 2.1 by a little tedious or by a clever way (pull up the functions on the Grassmann manifold

$G(2,4))$ . It follows from Theorem 4.1 that

$\dim_{\mathbb{C}}\mathcal{H}om_{\mathcal{D}_{A_{2}}}(M_{A_{2}}, O_{A_{2}})_{1_{*s=0}}\leq 1$ .

So, it is enough to prove the formula on $x_{4}=0$ and it can be easily checked. $[$

Acknowledgement: I would like to express my gratitude to Professor T.Hibi who has encouraged me to
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