Construction of a Kac algebra action on the AFD factor of type II_1

The purpose of this note is to announce the result obtained in [9]. Namely we describe a construction of an "outer" action of a finite-dimensional Kac algebra on the AFD factor of type II_1 .

§ 1. Kac algebras and their actions

Throughout this note, fix a finite-dimensional Hopf C^* -algebra $\mathbf{K} = (\mathcal{M}, \Gamma, \kappa, \varepsilon)$, i.e.,

- (i) \mathcal{M} is a finite-dimensional C^* -algebra;
- (ii) Γ is a coproduct of \mathcal{M} , i.e., an injective homomorphism from \mathcal{M} into $\mathcal{M} \otimes \mathcal{M}$ satisfying the coassociativity: $(\Gamma \otimes \iota) \circ \Gamma = (\iota \otimes \Gamma) \circ \Gamma$;
- (iii) ε is a counit of \mathcal{M} , i.e., a homomorphism from \mathcal{M} into \mathbf{C} satisfying $(\varepsilon \otimes \iota) \circ \Gamma = \iota$;
- (iv) κ is an antipode of \mathcal{M} , i.e., a linear mapping from \mathcal{M} into itself satisfying $m_{\mathcal{M}} \circ (\kappa \otimes \iota) \circ \Gamma(a) = m_{\mathcal{M}} \circ (\iota \otimes \kappa) \circ \Gamma(a) = \varepsilon(a) \cdot 1$, where $m_{\mathcal{M}}$ is the multiplication of \mathcal{M} ;
 - (v) all the morphisms above are *-preserving.

Note that (1) $\kappa^2 = \iota$, because of finite-dimensionality of \mathcal{M} ; (2) if φ is a functional on \mathcal{M} defined by

$$\varphi = \bigoplus_{i=1}^k n_i \operatorname{Tr}_{n_i}$$

along with a decomposition of \mathcal{M} :

$$\mathcal{M} \cong M_{n_1}(\mathbf{C}) \oplus \cdots \oplus M_{n_k}(\mathbf{C}),$$

where $M_n(\mathbf{C})$ is the full matrix algebra of size n and Tr_n denotes the ordinary trace on $M_n(\mathbf{C})$, then φ is a left-invariant (hence, right-invariant) trace on \mathcal{M} : $(\varphi \otimes \iota) \circ \Gamma(a) = (\iota \otimes \varphi) \circ \Gamma(a) = \varphi(a) \cdot 1$. The system $(\mathcal{M}, \Gamma, \kappa, \varphi)$ is a Kac algebra in the sense of Enock-Schwartz, and φ is called the Haar weight. We shall mainly work with $\mathbf{K} = (\mathcal{M}, \Gamma, \kappa, \varphi)$ instead if $(\mathcal{M}, \Gamma, \kappa, \varepsilon)$, since we often consider \mathcal{M} to be represented on the Hilbert space $L^2(\varphi)$ with respect to this specific φ . Once a Kac algebra \mathbf{K} is given, we immediately obtain three new Kac algebras as follows:

- (1) The commutant of \mathbf{K} , denoted by $\mathbf{K}' = (\mathcal{M}', \Gamma', \kappa', \varphi')$. Here \mathcal{M}' is the commutant of \mathcal{M} in $L^2(\varphi)$. The coproduct Γ' is defined by $\Gamma'(y) = (J \otimes J)\Gamma(JyJ)(J \otimes J)$ $(y \in \mathcal{M}')$ with J as the modular conjugation of φ . κ' and φ' are defined similarly.
- (2) The reflection of **K**, denoted by $\mathbf{K}^{\sigma} = (\mathcal{M}, \Gamma^{\sigma}, \kappa, \varphi)$. The coproduct Γ^{σ} is given by $\Gamma^{\sigma} = \sigma \circ \Gamma$, where σ is the flip: $\sigma(x \otimes y) = y \otimes x$.
- (3) The dual of \mathbf{K} , denoted by $\mathbf{K}^{\hat{}} = (\mathcal{M}^{\hat{}}, \Gamma^{\hat{}}, \kappa^{\hat{}}, \varphi^{\hat{}})$. This is constructed as follows. By considering the adjoint maps of Γ , κ , $m_{\mathcal{M}}$ and so on, the dual space \mathcal{M}^* can be turned into a Kac algebra. Meanwhile, since φ is faithful, \mathcal{M}^* can be identified with \mathcal{M} by the correspondence $a \in \mathcal{M} \mapsto \varphi_a \in \mathcal{M}^*$, where $\varphi_a(b) = \varphi(ab)$. We write $\mathbf{K}^{\hat{}} = (\mathcal{M}^{\hat{}}, \Gamma^{\hat{}}, \kappa^{\hat{}}, \varphi^{\hat{}})$ for \mathcal{M} with this new Kac algebra structure through this identification, and use notation f * g, f^{\sharp} for the multiplication and the involution of $\mathbf{K}^{\hat{}}$. $\mathcal{M}^{\hat{}}$ too is considered to be represented on $L^2(\varphi)$ via the representation λ : $\lambda(f)g = f * g$.

Combination of these Kac algebras (1) – (3) produces more new Kac algebras such as $\mathbf{K}^{\bullet\prime}$, $\mathbf{K}^{\bullet\sigma}$ and so on.

Definition. (Nakagami-Takesaki, Enock) An action of $\mathbf{K} = (\mathcal{M}, \ \Gamma, \ \kappa, \ \varphi)$ on a von

Neumann algebra \mathcal{A} is an injective unital *-homomorphism β from \mathcal{A} into $\mathcal{A} \otimes \mathcal{M}$ such that

$$(\beta \otimes \iota) \circ \beta = (\iota \otimes \Gamma) \circ \beta. \tag{*}$$

Here are some simple examples of Kac algebra actions.

(1) G is a (finite) group. Let $\alpha: G \longrightarrow \operatorname{Aut}(\mathcal{A})$ be an action of G in the ordinary sense. Then the map $\beta: s \in G \mapsto \alpha_s(a) \in \mathcal{A}$ ($a \in \mathcal{A}$) can be viewed as a *-homomorphism from \mathcal{A} into $\mathcal{A} \otimes \ell^{\infty}(G)$. Moreover, it enjoys property (*) above. Thus β is an action of the commutative Kac algebra $\ell^{\infty}(G)$ on \mathcal{A} . In fact, it is an easy exercise to check that we have a bijective correspondence:

$$\{\alpha:\ \alpha:G\longrightarrow \operatorname{Aut}(\mathcal{A})\}\stackrel{\operatorname{bijection}}{\longrightarrow} \{\beta:\ \beta \text{ is an action of the Kac algebra }\ell^\infty(G) \text{ on } \mathcal{A}\}.$$

- (2) A map $a \in \mathcal{A} \mapsto a \otimes 1 \in \mathcal{A} \otimes \mathcal{M}$ is clearly an action of K. This is called the trivial action.
- (3) Due to coassociativity of a coproduct, Γ itself is an action of K on \mathcal{M} . This fact is crucial in the following discussion.

Definition. For an action β of K on \mathcal{A} , the crossed product $\mathcal{A} \times_{\beta} K$ is by definition generated by $\beta(\mathcal{A})$ and $\mathbf{C}_{\mathcal{H}} \otimes \mathcal{M}^{\wedge}$ (assuming that \mathcal{A} is represented on \mathcal{H}). On the crossed product, there exists an action $\tilde{\beta}$ of \mathbf{K}^{\wedge} , called the dual action of β . $\tilde{\beta}$ maps the generators $\beta(a)$ and $1 \otimes z$ of the crossed product as follows: $\tilde{\beta}(\beta(a)) = \beta(a) \otimes 1$, $\tilde{\beta}(1 \otimes z) = 1 \otimes \Gamma^{\wedge}(z)$. Dual weight construction holds good also in the case of Kac algebra actions. Moreover, Takesaki duality is true.

§ 2. Construction of a pair of II_1 factors

Start with a Kac algebra $\mathbf{K} = (\mathcal{M}, \Gamma, \kappa, \varphi)$. Let $A_0 = \mathbf{C}, A_1 = \mathcal{M}$. Since Γ is an action of \mathbf{K} on \mathcal{M} , we may take its crossed product. We set $A_2 = \mathcal{M} \times_{\Gamma} \mathbf{K}$. On A_2 , there is the dual action $\tilde{\Gamma}$ of Γ . So define $A_3 = A_2 \times_{\tilde{\Gamma}} \mathbf{K}^{\hat{\Gamma}'}$. By continuing this procedure, we obtain an increasing sequence $\{A_n\}$ of finite-dimensional C^* -algebras. Remark that we have in general $\mathbf{K}^{\hat{\Gamma}} = \mathbf{K}, \mathbf{K}^{\hat{\Gamma}\sigma} = \mathbf{K}', \mathbf{K}^{\hat{\sigma}'} = \mathbf{K}'$. From this, it follows that

$$A_{4n} = A_{4n-1} \times_{\Gamma^{(4n-2)}} \mathbf{K}^{\sigma'} \qquad (n \ge 1),$$

$$A_{4n+1} = A_{4n} \times_{\Gamma^{(4n-1)}} \mathbf{K}^{\circ\sigma} \qquad (n \ge 0),$$

$$A_{4n+2} = A_{4n+1} \times_{\Gamma^{(4n)}} \mathbf{K} \qquad (n \ge 0),$$

$$A_{4n+3} = A_{4n+2} \times_{\Gamma^{(4n+1)}} \mathbf{K}^{\circ\prime} \qquad (n \ge 0),$$

where $\Gamma^{(-1)}$ = the trivial action of $\mathbf{K}^{\hat{\sigma}}$ on $A_0 = \mathbf{C}$, $\Gamma^{(0)} = \Gamma$, and $\Gamma^{(n)}$ = the dual action of $\Gamma^{(n-1)}$. By Takesaki duality,

$$A_{2n} \cong \otimes^n M_{\dim \mathcal{M}}(\mathbf{C}) \qquad (n \geq 1).$$

Next we put $B_0 = \mathcal{M}^{\hat{\sigma}}$. Then define B_n inductively by

$$B_{4n} = B_{4n-1} \times_{\delta^{(4n-1)}} \mathbf{K}^{\sigma'} \qquad (n \ge 1),$$

$$B_{4n+1} = B_{4n} \times_{\delta^{(4n)}} \mathbf{K}^{\circ\sigma} \qquad (n \ge 0),$$

$$B_{4n+2} = B_{4n+1} \times_{\delta^{(4n+1)}} \mathbf{K} \qquad (n \ge 0),$$

$$B_{4n+3} = B_{4n+2} \times_{\delta^{(4n+2)}} \mathbf{K}^{\circ\prime} \qquad (n > 0),$$

where $\delta^{(0)} = \delta = \Gamma^{\circ \sigma}$, and $\delta^{(n)} =$ the dual action of $\delta^{(n-1)}$. Thus we get another increasing sequence $\{B_n\}$ of finite-dimensional C^* -algebras. Takesaki duality implies

$$B_{2n-1} \cong \otimes^n M_{\dim \mathcal{M}}(\mathbf{C}) \qquad (n \geq 1).$$

Observation 1. For each $n \geq 0$, A_n can be considered as a subalgebra of B_n . For example, if n = 1, 2, we have

$$A_1 = \mathcal{M}, \qquad B_1 = \delta(\mathcal{M}^{\hat{}}) \vee \mathbf{C} \otimes \mathcal{M};$$

$$A_2 = \Gamma(\mathcal{M}) \vee \mathbf{C} \otimes \mathcal{M}^{\hat{}}, \qquad B_2 = \delta(\mathcal{M}^{\hat{}}) \otimes \mathbf{C} \vee \mathbf{C} \otimes \Gamma(\mathcal{M}) \vee \mathbf{C} \otimes \mathbf{C} \otimes \mathcal{M}^{\hat{}}.$$

Hence $\pi_n(a) = 1 \otimes a \ (a \in A_n)$ in general embeds A_n into B_n so that the diagram

$$\begin{array}{ccc}
B_n & \to & B_{n+1} \\
\uparrow & & \uparrow \\
A_n & \to & A_{n+1}
\end{array}$$

commutes. Moreover, we have

Theorem 1. For each $n \geq 0$,

$$\begin{array}{ccc}
B_n & \to & B_{n+1} \\
\uparrow & & \uparrow \\
A_n & \to & A_{n+1}
\end{array}$$

forms a commuting square. Here, on each B_n , we consider the faithful trace obtained as the dual weight by crossed product construction.

Proof for n = 0. By Takesaki duality, $B_1 \stackrel{\pi}{\cong} \mathcal{L}(L^2(\varphi))$. By keeping track of how this isomorphism π was constructed, one has that

$$\pi(B_0)=\mathcal{M}$$
, $\pi(A_1)=\mathcal{M}.$

Thus π transforms the diagram in question into

$$\mathcal{M}^{\hat{}} \rightarrow \mathcal{L}(L^2(\varphi))$$
 $\uparrow \qquad \uparrow$
 $\mathbf{C} \rightarrow \mathcal{M}.$

Hence it suffices to show that this diagram is a commuting square. For this purpose, we need to recall the unitary canonically associated to every Kac algebra, called the fundamental unitary (or the Kac-Takesaki operator). It is defined in the following way. Since the Haar weight φ is left-invariant, the equation

$$W(f \otimes g) = \Gamma(g)(f \otimes 1) \qquad (f, g \in \mathcal{M})$$

defines an isometry on $L^2(\varphi) \otimes L^2(\varphi)$. It is actually a unitary that belongs to $\mathcal{M} \otimes \mathcal{M}$. Moreover, W implements the coproduct Γ : $\Gamma(a) = W(a \otimes 1)W^*$, and the coassociativity is shown to be equivalent to the so-called the pentagon equation

$$W_{12}W_{23} = W_{23}W_{13}W_{12}.$$

We see below that W contains more information on the given Kac algebra K. First, since $W \in \mathcal{M} \otimes \mathcal{M}$, it has the form

$$W = \sum_{i=1}^{d} a_i \otimes \lambda(f_i),$$

where $a_i, f_i \in \mathcal{M}$ (i = 1, 2, ..., n). We may assume that $\{f_1, f_2, ..., f_d\}$ is linearly independent in \mathcal{M} .

Proposition 1. With the above notation, we have $d = \dim \mathcal{M}$. Thus $\{f_1, f_2, \dots, f_d\}$ is a basis for \mathcal{M} . In fact, for any $f \in \mathcal{M}$,

$$f = \sum_{i=1}^d \varphi(fa_i^*) f_i^{\sharp} = \sum_{i=1}^d \varphi(f^{\vee}a_i) f_i = \sum_{i=1}^d \varphi(f^{\vee}a_i^*) f_i^{*}.$$

Moreover, the set $\{a_1, a_2, \ldots, a_d\}$ also forms a basis for \mathcal{M} and satisfies

$$a = \sum_{i=1}^{d} \varphi(af_i^{\vee}) a_i = \sum_{i=1}^{d} \varphi(af_i^{\sharp}) a_i^{*} = \sum_{i=1}^{d} \varphi(a^{\vee}f_i^{\sharp}) a_i^{\sharp}$$

for any $a \in \mathcal{M}$. Moreover,

$$\Gamma(a) = \sum_{i=1}^{a} a_i \otimes (f_i * a) \qquad (a \in \mathcal{M});$$

$$\hat{\Gamma}(\lambda(f)) = \sum_{i=1}^{d} \lambda(f_i^{\sharp}) \otimes \lambda(a_i^* f)$$

for any $f \in \mathcal{M}$. The algebra $\mathcal{L}(L^2(\varphi))$ coincides with span $\{\lambda(f_i)a_j: 1 \leq i, j \leq d\}$. The unique conditional expectations $E_{\mathcal{M}}$ and $E_{\mathcal{M}^*}$ from $\mathcal{L}(L^2(\varphi))$ onto \mathcal{M} and \mathcal{M}^* with respect

to the normalized trace on $\mathcal{L}(L^2(\varphi))$ is respectively given by

$$E_{\mathcal{M}}(\sum_{i=1}^{d} \lambda(f_i)b_i) = \sum_{i=1}^{d} \varepsilon(f_i)b_i \qquad (b_i \in \mathcal{M});$$

$$E_{\mathcal{M}}(\sum_{i=1}^{d} \lambda(k_i)a_i) = \sum_{i=1}^{d} \varphi(a_i)\lambda(k_i) \qquad (k_i \in \mathcal{M}).$$

In particular,

$$E_{\mathcal{M}}(\lambda(f)) = \varepsilon(f) \cdot 1,$$

$$E_{\mathcal{M}}(a) = \varphi(a) \cdot 1.$$

Thus the diagram

$$\mathcal{M}^{\hat{}} \rightarrow \mathcal{L}(L^2(\varphi))$$
 $\uparrow \qquad \uparrow$
 $\mathbf{C} \rightarrow \mathcal{M}.$

is a commuting square.

Therefore, Proposition 1 proves the preceding Theorem for the case n = 0.

Let A_{∞} and B_{∞} be the approximately finite-dimensional (AF) C^* - algebras obtained from the sequences $\{A_n\}$ and $\{B_n\}$, respectively. The algebra A_{∞} is regarded as a C^* subalgebra of B_{∞} in an obvious way. B_{∞} is the d^{∞} -UHF algebra and thus has the unique faithful factorial tracial state τ . We denote by \mathcal{Q} the von Neumann algebra $\pi_{\tau}(B_{\infty})''$ generated by the GNS representation π_{τ} of τ on B_{∞} , which is the AFD factor of type II_1 . Set $\mathcal{P} = \pi_{\tau}(A_{\infty})'' \subseteq \mathcal{Q}$. The algebra \mathcal{P} is again the AFD factor of type II_1 . Therefore, we have constructed a factor-subfactor pair of the AFD factors \mathcal{P} and \mathcal{Q} .

\S 3. Construction of an action β on $\mathcal P$

To motivate an idea, we digress and consider a problem of constructing an action α of a group G on a von Neumann algebra \mathcal{A} when G is given. One way to do this is

(i) to find a Hilbert space \mathcal{H} on which G admits a unitary repesentation u so that $u(s)\mathcal{A}u(s)^*=\mathcal{A}$ for any $s\in G$;

(ii) then define $\alpha_s = \mathrm{Ad}u(s)$.

In terms of the correspondence

 $\{\alpha: \alpha: G \longrightarrow \operatorname{Aut}(\mathcal{A})\} \stackrel{\text{bijection}}{\longrightarrow} \{\beta: \beta \text{ is an action of the Kac algebra } \ell^{\infty}(G) \text{ on } \mathcal{A}\},$ this procedure is the same as

- (i) to find a Hilbert space \mathcal{H} for which there exists a unitary $R \in \mathcal{L}(\mathcal{H}) \otimes \ell^{\infty}(G)$ satisfying $(\iota \otimes \Gamma_G)(R) = R_{12}R_{13}$ (Γ_G is the coproduct of $\ell^{\infty}(G)$) and $R(\mathcal{A} \otimes \mathbf{C})R^* \subseteq \mathcal{A} \otimes \ell^{\infty}(G)$;
 - (ii) then define $\beta(a) = R(a \otimes 1)R^*$.

For a general $\mathbf{K} = (\mathcal{M}, \, \Gamma, \, \kappa, \, \varphi)$, the idea is the same. Namely we

- (i) find a unitary $R \in \mathcal{L}(\mathcal{H}) \otimes \mathcal{M}$ satisfying $(\iota \otimes \Gamma)(R) = R_{12}R_{13}$ and $R(\mathcal{A} \otimes \mathbf{C})R^* \subseteq \mathcal{A} \otimes \mathcal{M}$;
 - (ii) then define $\beta(a) = R(a \otimes 1)R^*$.

So we will look for such a unitary R below to construct an action β on the factor \mathcal{P} . First, let us look at the embedding, say γ , of B_0 into \mathcal{Q} :

$$\gamma: B_0 = \mathcal{M} \hookrightarrow B_\infty \subseteq \mathcal{Q}.$$

Secondly, with W as the fundamental unitary of K, consider $S = \sigma W \sigma$ which lies in $\mathcal{M} \cap \otimes \mathcal{M}$. Put $R = (\gamma \otimes \iota_{\mathcal{M}})(S) \in \mathcal{Q} \otimes \mathcal{M}$.

Theorem 2. The unitary R satisfies $(\iota \otimes \Gamma^{\sigma})(R) = R_{12}R_{13}$ and $R(\mathcal{P} \otimes \mathbf{C})R^* \subseteq \mathcal{P} \otimes \mathcal{M}$. Thus the equation

$$\beta(X) = R(X \otimes 1)R^* \qquad (X \in \mathcal{P})$$

defines an action of the reflection \mathbf{K}^{σ} on \mathcal{P} . Moreover, the inclusion $\mathcal{P} \subseteq \mathcal{Q}$ is spatially isomorphic to $\mathcal{P} \subseteq \mathcal{P} \times_{\beta} \mathbf{K}^{\sigma}$.

To ensure that β is not a trivial action, we show that it is outer, i.e., the relative commutant $\beta(\mathcal{P})' \cap \mathcal{P} \times_{\beta} \mathbf{K}^{\sigma}$ is trivial. This is done by proving the following theorem.

Theorem 3. With the notation as before, we have

$$E_{B_n}(B_{n+1}\cap A'_{n+1})\subseteq \mathbf{C},$$

where E_{B_n} is the unique conditional expectation from Q onto B_n with respect to the normalized trace on Q.

The essential part of the proof of this theorem is to prove the assertion when n = 0. If n = 0, then, as we noted,

$$\begin{array}{ccccc} \mathcal{M}^{\hat{}} & \rightarrow & \mathcal{L}(L^2(\varphi)) & & B_0 & \rightarrow & B_1 \\ \uparrow & & \uparrow & & \cong & \uparrow & & \uparrow \\ \mathbf{C} & \rightarrow & \mathcal{M}. & & \mathbf{C} & \rightarrow & A_1. \end{array}$$

From this, we see that the assertion of the theorem is equivalent to $E_{\mathcal{M}^{\hat{}}}(\mathcal{M}') \subseteq \mathbb{C}$. Thus it suffices to prove that the diagram

$$\begin{array}{ccc} \mathcal{M}^{\wedge} & \to & \mathcal{L}(L^{2}(\varphi)) \\ \uparrow & & \uparrow \\ \mathbf{C} & \to & \mathcal{M}' \end{array}$$

is also a commuting square. But this can be verified exactly the same way as before.

\S 4. The Jones index of $\mathcal{P} \subseteq \mathcal{Q}$

To compute the Jones index $[\mathcal{Q}:\mathcal{P}]$, it is enough by Theorem 2 to calculate $[\mathcal{P} \times_{\beta} \mathbf{K}^{\sigma}:\mathcal{P}]$. For this purpose, we describe the Jones projection $e_{\mathcal{P}}$ of this inclusion. First, it can be shown that $\tilde{J}\beta(\mathcal{P})\tilde{J}=\mathcal{P}'\otimes\mathbf{C}$, where \tilde{J} is the modular conjugation of the normalized trace on the crossed product. Hence the extension of $\mathcal{P}\subseteq\mathcal{P}\times_{\beta}\mathbf{K}^{\sigma}$ is $\mathcal{P}\otimes\mathcal{L}(L^{2}(\varphi))$. So $e_{\mathcal{P}}$ belongs to $\mathcal{P}\otimes\mathcal{L}(L^{2}(\varphi))$. It can be proven that it has the form

$$e_{\mathcal{P}} = 1 \otimes p$$

where p is a minimal projection in $\mathcal{L}(L^2(\varphi))$. In fact, p is the projection corresponding to the one-dimensional representation of \mathcal{M} , i.e., the counit ε . Thus

$$\operatorname{Trace}(e_{\mathcal{P}}) = (\dim \mathcal{M})^{-1}.$$

Therefore, $[\mathcal{P} \times_{\beta} \mathbf{K}^{\sigma} : \mathcal{P}] = \dim \mathcal{M}$.

References

- [1] R. Blattner, Automorphic group representations, Pacific J. Math. 8 (1958) 665-677.
- [2] M. Enock, Produit croisé d'une algèbre de von Neumann par une algèbre de Kac,
 J. Functional Analysis 26 (1977) 16-47.
- [3] M. Enock and J.M. Schwartz, Une dualité dans les algèbres de von Neumann, Bull.
 Soc. Math. France Suppl. Mem. 44 (1975) 1–144.
- [4] ————, Produit croisé d'une algèbre de von Neumann par une algèbre de Kac II, Publ. R.I.M.S. Kyoto Univ. 16 (1980) 189-232.
- [5] P. de la Harpe, F. Goodman and V.F.R. Jones, Coxeter graphs and towers of algebras, M.S.R.I. Publ. 14 (1989) Springer-Verlag, New York.
- [6] J.M. Schwartz, Sur la structure des algèbres de Kac I, J. Functional Analysis 34 (1979) 370-406.
- [7] ———, Sur la structure de algèbres de Kac II, Proc. London Math. Soc. (3) 41 (1980) 465–480.
- [8] M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math. 131 (1973) 249-310.
- [9] T. Yamanouchi, Construction of an outer action of a finite-dimensional Kac algebra on the AFD factor of type II₁, To appear in International J. Math..