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Construction of a Kac algebra action on the AFD factor of type II;

L K32 G s R %& ?’-} (Takehiko Yamanouchi }

The purpose of this note is to announce the result obtained in [9]. Namely we describe
a construction of an “outer” action of a finite-dimensional Kac algebra on the AFD factor
of type II,.

§ 1. Kac algebras and their actions

Throughout this note, fix a finite-dimensional Hopf C*-algebra K=(M, I, &, ¢), i.e.,

(i) M is a finite-dimensional C*-algebra;

(ii) I' is a coproduct of M, i.e., an injective homomorphism from M into M ® M
satisfying the coassociativity: (I'Q¢)oI'=(¢® I')o I;

(iii) € is a counit of M, i.e., a homomorphism from M into C satisfying (e®t)ol =
(t®e)o =y

(iv) k is an antipode of M, i.e., a linear mapping from M into itself satisfying maq o
(k@e)oI'(a)=mpmo(t®k)oI'(a) =¢e(a)- 1, where m ¢ is the multiplication of M;

(v) all the morphisms above are *-preserving.

Note that (1) 2 = ¢, because of finite-dimensionality of M; (2) if ¢ is a functional on

M defined by

Y = @§=1niTI'n'-

along with a decomposition of M:

M= Mnl(C)@ EBMT%(C),
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where M,,(C) is the full matrix algebra of size n and Tr, denotes the ordinary trace on
M,(C), then ¢ is a left-invariant (hence, right-invariant) trace on M: (p®¢)oI'(a) =
(¢ ®¢)oI'(a) = ¢(a)-1. The system (M, I', k, ¢) is a Kac algebra in the sense of
Enock-Schwartz, and ¢ is called the Haar weight. We shall mainly Work with K=(M, I,
K, @) instead if (M, I, k, €), since we often consider M to be represented on the Hilbert
space L?(y) with respect to this specific ¢. Once a Kac algebra K is given, we immediately

obtain three new Kac algebras as follows:

(1) The commutant of K, denoted by K' = (M', I'", £', ¢'). Here M’ is the com-
mutant of M in L%(p). The coproduct I'" is defined by I''(y) = (J @ J)['(JyJ)(J @ J)

(y € M') with J as the modular conjugation of . &' and ¢’ are defined similarly.

(2) The reflection of K, denoted by K? = (M, I'?, «, ¢). The coproduct I'” is given

by I'° = 0 o I', where ¢ is the flip: 0(z Qy) =y Q.

(3) The dual of K, denoted by K" = (M, I'| k7, ¢"). This is constructed as follows.
By considering the adjoint maps of I', k, m a¢ and so on, the dual space M* caﬂn be turned
into a Kac algebra. Meanwhile, since ¢ is faithful, M* can be identified with M by the
correspondence a € M + ¢, € M* where po(b) = p(ab). We write K" = (M’ I7,
K, ¢") for M with this new Kac algebra structure through this identification, and use
4notation f * g, f* for the multiplication and the involution of K. M"too is considered to

be represented on L2(¢p) via the representation A\: A(f)g = f *g.

Combination of these Kac algebras (1) - (3) produces more new Kac algebras such as

K", K*? and so on.

Definition. (Nakagami-Takesaki, Enock) An action of K=(M, T, &, ¢) on a von
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Neumann algebra A is an injective unital *-homomorphism 3 from A into A ® M such

that

B B=(QI)op. (%)

Here are some simple examples of Kac algebra actions.

(1)Gisa (ﬁrﬁte) group. Let a : G — Aut(A) be an action of G in the ordinafy
sense. Then the map f: s € G — a,(a) € A (a € A) can be viewed as a *-homomorphism
from A into A ® £°(G). Moreover, it enjoys property (*) above. Thus f is an action of
the commutative Kac algebra ¢°°(G) on A. In fact, it is an easy exercise to check that we

have a bijective correspondence:

{a: a:G— Aut(A)} bljc_e_cﬂon {B: Bis an action of the Kac algebra £°(G) on A}.

(2) Amapae A— a®1 € A® M is clearly an action of K. This is called the trivial
action.

(3) Due to coassociativity of a coproduct, I" itself is an action of K on M. This fact
is crucial in the following discussion.

Definition. For an action § of K on A, the crossed product A x 3 K is by definition
generated by (A) and Cy ® M™ (assuming that A is represented on H). On the crossed
product, there exists an action 3 of K™, called the dual action of 8. 3 maps the generators
B(a) and 1Q z of the crossed product as follows: 3(8(a)) = B(a)®1, f(1®2) = 1@ I"(2).
Dual weight construction holds good also in the case of Kac algebra actions. Moreover,
Takesaki duality is true.

§ 2. Construction of a pair of II; factors
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Start with a Kac algebra K=(M, I', k, ¢). Let 49 = C, 4; = M. Since I' is an
action of K on M, we may take its crossed product. We .set Ay =MxrK. On A,, there
is the dual action I' of I". So define A3 = Aj X 7 K*'. By continuing this procedure, we
obtain an increasing sequence {A,} of finite-dimensional C*-algebras. Remark that we
have in generai K=K, K7?=K',K?'=K'?. From this, it follows that

Agn = Agn—1 Xpun-n K%' (n21),
Agnt1 = Agn Xpan-n K7 (n _Z 0),
Agnt2 = Agny1 Xram K (n20),
Atnts = Asny2 X pun+ny K V (n > 0),

where I'(~1) = the trivial action of K¢ on.Ao =C,I'® = I and I"®) = the dual action

of I'®=1), By Takesaki duality,
Agn 2 Q@"Maim m(C)  (n21).

Next we put By = M. Thén define B, inductively by
Bin = Byn_1 Xsan-1y K7' (n>1),
Bynt1 = Byn Xg4m) K™ (n >0),
Biny2 = Bynt1 Xsan+y K (n>0),
Bynys = Binta Xgant2) K (n2>0),

where §(©) =6=1I"7, and 6(™) = the dual action of §(*~1), Thus we get another increasing

sequence {B,} of finite-dimensional C*-algebras. Takesaki duality implies

Bin—1 = Q" Mdim m(C) (n>1).
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Observation 1. For each n > 0, A,, can be considered as a subalgebfa of B,,. For

example, if n = 1,2, we have

A=M, B;=6§M)VCOM;

Ay =T'(M)V CM™, B; = §(MNHRCV CRIN(M)V CRCRM™.
Hence 7,(a) =1® a (a € A,) in general embeds A, into B, so that the diagram

B, — Bn+1

T T
An — An+1

commutes. Moreover, we have
Theorem 1. For each n > 0,

. Bn - Bn+1

7 7
An - An+1

forms a commuting square. Here, on each B,,, we consider the faithful trace obtained as
the dual weight by crossed product construction.
Proof for n = 0. By Takesaki duality, B; = L(L%*(p)). By keeping track of how this

isomorphism 7 was constructed, one has that
W(Bo) = MA, : W(Al) =M.

Thus 7 transforms the diagram in question into

M™ = L(L2(y))
7 T
C - M.

Hence it suffices to show that this diagram is a commuting square. For this purpose, we
need to recall the unitary canonically associated to every Kac algebra, called the funda-
mental unitary (or the Kac-Takesaki operator). It is defined in the following way. Since

the Haar weight ¢ is left-invariant, the equation

W(ifeg)=Ig)(fel) (f,geM)
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defines an isometry on L%(p) ® L?(p). It is actually a unitary that belongs to M @ M".
Moreover, W implements the coproduct I': I'(a) = W(a ® 1)W*, and the coassociativity

is shown to be equivalent to the so-called the pentagon equation
Wi12Waz = Wos W13 Wi,

We see below that W contains more information on the given Kac zﬂgebra K. First, since

W € M ® M, it has the form
WY e
=1
where a;, fi € M (i = 1,2,...,n). We may assume that {fi1, f2,...,fa} is linearly
independent in M.

Proposition 1. With the above notation, we have d = dim M. Thus {fi, fa,..., fa}

is a basis for M. In fact, for any f € M,

d d
f=2 elfa)fi= Zso<fv Dfi= 3 e(fVanfr.

=1

Moreover, the set {a1,az,...,a4} also forms a basis for M and satisfies

d d d
a=Y plaf)ai =) p(aff)al =) p(a” fl)a}
=1 1=1 =1
for any a € M. Moreover,

I'(a) = Q(fixa)  (a€ M)

llMa.

d
o) = Z MfHe A(a*f)

for any f € M. The algebra L£(L?(¢)) coincides with span{\(f;)a; : 1 < 4,7 < d}. The

unique conditional expectations Eaq and E r¢ from L£(L?()) onto M and M" with respect
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to the normalized trace on L£(L?(yp)) is respectively given by

d d
Em(Q_Mfb) =) e(fbi (b € M);

d d
EM*(Z A(ki)a;) = Z p(ai) (ki) (ki € M).

In particular,
Em(Mf)) =¢(f) -1,

Eac(a) = pla) - 1.
Thus the diagram |
M = L(L(p))

1
C - M.

is a commuting square.

Therefore, Proposition 1 proves the preceeding Theorem for the case n = 0.

Let Ay and B, be the approximately finite-dimensional (AF) C*- algebras obtained -
from the sequences {A,} and {B,}, respectively. The algebra A is regarded as a C*-
subalgebra of B, in an obvious way. By, is the d*°-UHF algebra and thus has the unique
faithful factorial tracial state 7. We denote by Q the von Neumann algebra 7,.(B)"
generated by the GNS representation 7, of 7 on By, which is the AFD factor of type I1;.
Set P = m,(Ax)” C Q. The algebra P is again the AFD factor of type II;. Therefore,
we have constructed a factor-subfactor pair of the AFD factors P and Q.

§ 3. Construction of an action § on P

To motivate an idea, we digress and consider a problem of constructing an action «
of a group G on a von Neumann algebra A when G is given. One way to do this is

(i) to find a Hilbert space H on which G admits a unitary repesentation u so that

u(s)Au(s)* = A for any s € G;



29

(ii) then define s = Adu(s).
In terms of the correspondence

bijection

{a: a:G— Aut(A4)} "—  {B: Bis an action of the Kac algebra £°(G) on A},

this procedure is the same as

(i) to find a Hilbert space H for which there exists a unitary R € L(H) ® £°(G)
satisfying (¢ ® I'¢)(R) = Ri2R;3 (I'g is the coproduct of £°(G)) and R(A ® C)R* C
A® L2(G);

(i1) then define f(a) = R(a ® 1)R*.

For a general K=(M, I, k, ¢), the idea is the same. Namely we

(1) find a unitary R € L(H) ® M satisfying (¢« ® I')(R) = R12R;3 and R(A® C)R* C
A®M;

(ii) then define B(a) = R(a ® 1)R*.

So we will look for such a unitary R below to construct an action f on the factor P.

First, let us look at the embedding, say v, of By into Q:
'y:Bo:MA‘——-)BoogQ.

Secondly, with W as the fundamental unitary of K, consider S = ocWo which lies in
M QM. Put R=(y®tm)(S) € Q@M.
Theorem 2. The unitary R satisfies (¢QI'7)(R) = R;2R13 and R(PQC)R* C PQM.
Thus the equation
B(X)=R(X®1R* (X €P)
defines an action of the reflection K? on P. Moreover, the inclusion P C Q is spatially

isomorphic to P C P x5 K°.
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- To ensure that B is not a trivial action, we show that it is outer, i.e., the relative
commutant S(P)' NP x g K is trivial. This is done by proving the following theorem.

Theorem 3. With the notation as before, we have
Ep,(Bnt1 N A;z+1) cC,

where Ep, is the unique conditional expectation from Q onto B, with respect to the
normalized trace on Q.
The essential part of the proof of this theorem is to prove the assertion when n = 0.

If n =0, then, as we noted,

M™ = L(L*(p)) By — Bi
7 7 = 1 T
CcC - M. C — A

From this, we see that the assertion of the theorem is equivalent to Ex-(M') C C. Thus

it suffices to prove that the diagram

M= L(L*))

7 T
C - M

is also a commuting square. But this can be verified exactly the same way as before.

§ 4. The Jones index of P C Q

To compute the Jones index [Q : P], it is enough by Theorem 2 to calculate [P x g K7 :
P]. For this purpose, we describe the Jones projection ep of this inclusion. First, it can
be shown that JA(P)J = P' ® C, where J is the modular conjugation of the normalized
trace on the crossed product. Hence the extension of P C P x5 K7 is P ® L(L%*(y)). So

ep belongs to P ® L(L?(p)). It can be proven that it has the form

ep =1Qp,
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where p is a minimal projection in £(L%(y)). In fact, p is the projection corresponding to

the one-dimensional representation of M, i.e., the counit €. Thus
Trace(ep) = (dim M) ™.

Therefore, [Px K7 : P] = dim M.
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