Construction of a Kac algebra action on the AFD factor of type II_1 The purpose of this note is to announce the result obtained in [9]. Namely we describe a construction of an "outer" action of a finite-dimensional Kac algebra on the AFD factor of type II_1 . ### § 1. Kac algebras and their actions Throughout this note, fix a finite-dimensional Hopf C^* -algebra $\mathbf{K} = (\mathcal{M}, \Gamma, \kappa, \varepsilon)$, i.e., - (i) \mathcal{M} is a finite-dimensional C^* -algebra; - (ii) Γ is a coproduct of \mathcal{M} , i.e., an injective homomorphism from \mathcal{M} into $\mathcal{M} \otimes \mathcal{M}$ satisfying the coassociativity: $(\Gamma \otimes \iota) \circ \Gamma = (\iota \otimes \Gamma) \circ \Gamma$; - (iii) ε is a counit of \mathcal{M} , i.e., a homomorphism from \mathcal{M} into \mathbf{C} satisfying $(\varepsilon \otimes \iota) \circ \Gamma = \iota$; - (iv) κ is an antipode of \mathcal{M} , i.e., a linear mapping from \mathcal{M} into itself satisfying $m_{\mathcal{M}} \circ (\kappa \otimes \iota) \circ \Gamma(a) = m_{\mathcal{M}} \circ (\iota \otimes \kappa) \circ \Gamma(a) = \varepsilon(a) \cdot 1$, where $m_{\mathcal{M}}$ is the multiplication of \mathcal{M} ; - (v) all the morphisms above are *-preserving. Note that (1) $\kappa^2 = \iota$, because of finite-dimensionality of \mathcal{M} ; (2) if φ is a functional on \mathcal{M} defined by $$\varphi = \bigoplus_{i=1}^k n_i \operatorname{Tr}_{n_i}$$ along with a decomposition of \mathcal{M} : $$\mathcal{M} \cong M_{n_1}(\mathbf{C}) \oplus \cdots \oplus M_{n_k}(\mathbf{C}),$$ where $M_n(\mathbf{C})$ is the full matrix algebra of size n and Tr_n denotes the ordinary trace on $M_n(\mathbf{C})$, then φ is a left-invariant (hence, right-invariant) trace on \mathcal{M} : $(\varphi \otimes \iota) \circ \Gamma(a) = (\iota \otimes \varphi) \circ \Gamma(a) = \varphi(a) \cdot 1$. The system $(\mathcal{M}, \Gamma, \kappa, \varphi)$ is a Kac algebra in the sense of Enock-Schwartz, and φ is called the Haar weight. We shall mainly work with $\mathbf{K} = (\mathcal{M}, \Gamma, \kappa, \varphi)$ instead if $(\mathcal{M}, \Gamma, \kappa, \varepsilon)$, since we often consider \mathcal{M} to be represented on the Hilbert space $L^2(\varphi)$ with respect to this specific φ . Once a Kac algebra \mathbf{K} is given, we immediately obtain three new Kac algebras as follows: - (1) The commutant of \mathbf{K} , denoted by $\mathbf{K}' = (\mathcal{M}', \Gamma', \kappa', \varphi')$. Here \mathcal{M}' is the commutant of \mathcal{M} in $L^2(\varphi)$. The coproduct Γ' is defined by $\Gamma'(y) = (J \otimes J)\Gamma(JyJ)(J \otimes J)$ $(y \in \mathcal{M}')$ with J as the modular conjugation of φ . κ' and φ' are defined similarly. - (2) The reflection of **K**, denoted by $\mathbf{K}^{\sigma} = (\mathcal{M}, \Gamma^{\sigma}, \kappa, \varphi)$. The coproduct Γ^{σ} is given by $\Gamma^{\sigma} = \sigma \circ \Gamma$, where σ is the flip: $\sigma(x \otimes y) = y \otimes x$. - (3) The dual of \mathbf{K} , denoted by $\mathbf{K}^{\hat{}} = (\mathcal{M}^{\hat{}}, \Gamma^{\hat{}}, \kappa^{\hat{}}, \varphi^{\hat{}})$. This is constructed as follows. By considering the adjoint maps of Γ , κ , $m_{\mathcal{M}}$ and so on, the dual space \mathcal{M}^* can be turned into a Kac algebra. Meanwhile, since φ is faithful, \mathcal{M}^* can be identified with \mathcal{M} by the correspondence $a \in \mathcal{M} \mapsto \varphi_a \in \mathcal{M}^*$, where $\varphi_a(b) = \varphi(ab)$. We write $\mathbf{K}^{\hat{}} = (\mathcal{M}^{\hat{}}, \Gamma^{\hat{}}, \kappa^{\hat{}}, \varphi^{\hat{}})$ for \mathcal{M} with this new Kac algebra structure through this identification, and use notation f * g, f^{\sharp} for the multiplication and the involution of $\mathbf{K}^{\hat{}}$. $\mathcal{M}^{\hat{}}$ too is considered to be represented on $L^2(\varphi)$ via the representation λ : $\lambda(f)g = f * g$. Combination of these Kac algebras (1) – (3) produces more new Kac algebras such as $\mathbf{K}^{\bullet\prime}$, $\mathbf{K}^{\bullet\sigma}$ and so on. **Definition.** (Nakagami-Takesaki, Enock) An action of $\mathbf{K} = (\mathcal{M}, \ \Gamma, \ \kappa, \ \varphi)$ on a von Neumann algebra \mathcal{A} is an injective unital *-homomorphism β from \mathcal{A} into $\mathcal{A} \otimes \mathcal{M}$ such that $$(\beta \otimes \iota) \circ \beta = (\iota \otimes \Gamma) \circ \beta. \tag{*}$$ Here are some simple examples of Kac algebra actions. (1) G is a (finite) group. Let $\alpha: G \longrightarrow \operatorname{Aut}(\mathcal{A})$ be an action of G in the ordinary sense. Then the map $\beta: s \in G \mapsto \alpha_s(a) \in \mathcal{A}$ ($a \in \mathcal{A}$) can be viewed as a *-homomorphism from \mathcal{A} into $\mathcal{A} \otimes \ell^{\infty}(G)$. Moreover, it enjoys property (*) above. Thus β is an action of the commutative Kac algebra $\ell^{\infty}(G)$ on \mathcal{A} . In fact, it is an easy exercise to check that we have a bijective correspondence: $$\{\alpha:\ \alpha:G\longrightarrow \operatorname{Aut}(\mathcal{A})\}\stackrel{\operatorname{bijection}}{\longrightarrow} \{\beta:\ \beta \text{ is an action of the Kac algebra }\ell^\infty(G) \text{ on } \mathcal{A}\}.$$ - (2) A map $a \in \mathcal{A} \mapsto a \otimes 1 \in \mathcal{A} \otimes \mathcal{M}$ is clearly an action of K. This is called the trivial action. - (3) Due to coassociativity of a coproduct, Γ itself is an action of K on \mathcal{M} . This fact is crucial in the following discussion. **Definition.** For an action β of K on \mathcal{A} , the crossed product $\mathcal{A} \times_{\beta} K$ is by definition generated by $\beta(\mathcal{A})$ and $\mathbf{C}_{\mathcal{H}} \otimes \mathcal{M}^{\wedge}$ (assuming that \mathcal{A} is represented on \mathcal{H}). On the crossed product, there exists an action $\tilde{\beta}$ of \mathbf{K}^{\wedge} , called the dual action of β . $\tilde{\beta}$ maps the generators $\beta(a)$ and $1 \otimes z$ of the crossed product as follows: $\tilde{\beta}(\beta(a)) = \beta(a) \otimes 1$, $\tilde{\beta}(1 \otimes z) = 1 \otimes \Gamma^{\wedge}(z)$. Dual weight construction holds good also in the case of Kac algebra actions. Moreover, Takesaki duality is true. ## § 2. Construction of a pair of II_1 factors Start with a Kac algebra $\mathbf{K} = (\mathcal{M}, \Gamma, \kappa, \varphi)$. Let $A_0 = \mathbf{C}, A_1 = \mathcal{M}$. Since Γ is an action of \mathbf{K} on \mathcal{M} , we may take its crossed product. We set $A_2 = \mathcal{M} \times_{\Gamma} \mathbf{K}$. On A_2 , there is the dual action $\tilde{\Gamma}$ of Γ . So define $A_3 = A_2 \times_{\tilde{\Gamma}} \mathbf{K}^{\hat{\Gamma}'}$. By continuing this procedure, we obtain an increasing sequence $\{A_n\}$ of finite-dimensional C^* -algebras. Remark that we have in general $\mathbf{K}^{\hat{\Gamma}} = \mathbf{K}, \mathbf{K}^{\hat{\Gamma}\sigma} = \mathbf{K}', \mathbf{K}^{\hat{\sigma}'} = \mathbf{K}'$. From this, it follows that $$A_{4n} = A_{4n-1} \times_{\Gamma^{(4n-2)}} \mathbf{K}^{\sigma'} \qquad (n \ge 1),$$ $$A_{4n+1} = A_{4n} \times_{\Gamma^{(4n-1)}} \mathbf{K}^{\circ\sigma} \qquad (n \ge 0),$$ $$A_{4n+2} = A_{4n+1} \times_{\Gamma^{(4n)}} \mathbf{K} \qquad (n \ge 0),$$ $$A_{4n+3} = A_{4n+2} \times_{\Gamma^{(4n+1)}} \mathbf{K}^{\circ\prime} \qquad (n \ge 0),$$ where $\Gamma^{(-1)}$ = the trivial action of $\mathbf{K}^{\hat{\sigma}}$ on $A_0 = \mathbf{C}$, $\Gamma^{(0)} = \Gamma$, and $\Gamma^{(n)}$ = the dual action of $\Gamma^{(n-1)}$. By Takesaki duality, $$A_{2n} \cong \otimes^n M_{\dim \mathcal{M}}(\mathbf{C}) \qquad (n \geq 1).$$ Next we put $B_0 = \mathcal{M}^{\hat{\sigma}}$. Then define B_n inductively by $$B_{4n} = B_{4n-1} \times_{\delta^{(4n-1)}} \mathbf{K}^{\sigma'} \qquad (n \ge 1),$$ $$B_{4n+1} = B_{4n} \times_{\delta^{(4n)}} \mathbf{K}^{\circ\sigma} \qquad (n \ge 0),$$ $$B_{4n+2} = B_{4n+1} \times_{\delta^{(4n+1)}} \mathbf{K} \qquad (n \ge 0),$$ $$B_{4n+3} = B_{4n+2} \times_{\delta^{(4n+2)}} \mathbf{K}^{\circ\prime} \qquad (n > 0),$$ where $\delta^{(0)} = \delta = \Gamma^{\circ \sigma}$, and $\delta^{(n)} =$ the dual action of $\delta^{(n-1)}$. Thus we get another increasing sequence $\{B_n\}$ of finite-dimensional C^* -algebras. Takesaki duality implies $$B_{2n-1} \cong \otimes^n M_{\dim \mathcal{M}}(\mathbf{C}) \qquad (n \geq 1).$$ **Observation 1.** For each $n \geq 0$, A_n can be considered as a subalgebra of B_n . For example, if n = 1, 2, we have $$A_1 = \mathcal{M}, \qquad B_1 = \delta(\mathcal{M}^{\hat{}}) \vee \mathbf{C} \otimes \mathcal{M};$$ $$A_2 = \Gamma(\mathcal{M}) \vee \mathbf{C} \otimes \mathcal{M}^{\hat{}}, \qquad B_2 = \delta(\mathcal{M}^{\hat{}}) \otimes \mathbf{C} \vee \mathbf{C} \otimes \Gamma(\mathcal{M}) \vee \mathbf{C} \otimes \mathbf{C} \otimes \mathcal{M}^{\hat{}}.$$ Hence $\pi_n(a) = 1 \otimes a \ (a \in A_n)$ in general embeds A_n into B_n so that the diagram $$\begin{array}{ccc} B_n & \to & B_{n+1} \\ \uparrow & & \uparrow \\ A_n & \to & A_{n+1} \end{array}$$ commutes. Moreover, we have **Theorem 1.** For each $n \geq 0$, $$\begin{array}{ccc} B_n & \to & B_{n+1} \\ \uparrow & & \uparrow \\ A_n & \to & A_{n+1} \end{array}$$ forms a commuting square. Here, on each B_n , we consider the faithful trace obtained as the dual weight by crossed product construction. **Proof for** n = 0. By Takesaki duality, $B_1 \stackrel{\pi}{\cong} \mathcal{L}(L^2(\varphi))$. By keeping track of how this isomorphism π was constructed, one has that $$\pi(B_0)=\mathcal{M}$$, $\pi(A_1)=\mathcal{M}.$ Thus π transforms the diagram in question into $$\mathcal{M}^{\hat{}} \rightarrow \mathcal{L}(L^2(\varphi))$$ $\uparrow \qquad \uparrow$ $\mathbf{C} \rightarrow \mathcal{M}.$ Hence it suffices to show that this diagram is a commuting square. For this purpose, we need to recall the unitary canonically associated to every Kac algebra, called the fundamental unitary (or the Kac-Takesaki operator). It is defined in the following way. Since the Haar weight φ is left-invariant, the equation $$W(f \otimes g) = \Gamma(g)(f \otimes 1) \qquad (f, g \in \mathcal{M})$$ defines an isometry on $L^2(\varphi) \otimes L^2(\varphi)$. It is actually a unitary that belongs to $\mathcal{M} \otimes \mathcal{M}$. Moreover, W implements the coproduct Γ : $\Gamma(a) = W(a \otimes 1)W^*$, and the coassociativity is shown to be equivalent to the so-called the pentagon equation $$W_{12}W_{23} = W_{23}W_{13}W_{12}.$$ We see below that W contains more information on the given Kac algebra K. First, since $W \in \mathcal{M} \otimes \mathcal{M}$, it has the form $$W = \sum_{i=1}^{d} a_i \otimes \lambda(f_i),$$ where $a_i, f_i \in \mathcal{M}$ (i = 1, 2, ..., n). We may assume that $\{f_1, f_2, ..., f_d\}$ is linearly independent in \mathcal{M} . **Proposition 1.** With the above notation, we have $d = \dim \mathcal{M}$. Thus $\{f_1, f_2, \dots, f_d\}$ is a basis for \mathcal{M} . In fact, for any $f \in \mathcal{M}$, $$f = \sum_{i=1}^d \varphi(fa_i^*) f_i^{\sharp} = \sum_{i=1}^d \varphi(f^{\vee}a_i) f_i = \sum_{i=1}^d \varphi(f^{\vee}a_i^*) f_i^{*}.$$ Moreover, the set $\{a_1, a_2, \ldots, a_d\}$ also forms a basis for \mathcal{M} and satisfies $$a = \sum_{i=1}^{d} \varphi(af_i^{\vee}) a_i = \sum_{i=1}^{d} \varphi(af_i^{\sharp}) a_i^{*} = \sum_{i=1}^{d} \varphi(a^{\vee}f_i^{\sharp}) a_i^{\sharp}$$ for any $a \in \mathcal{M}$. Moreover, $$\Gamma(a) = \sum_{i=1}^{a} a_i \otimes (f_i * a) \qquad (a \in \mathcal{M});$$ $$\hat{\Gamma}(\lambda(f)) = \sum_{i=1}^{d} \lambda(f_i^{\sharp}) \otimes \lambda(a_i^* f)$$ for any $f \in \mathcal{M}$. The algebra $\mathcal{L}(L^2(\varphi))$ coincides with span $\{\lambda(f_i)a_j: 1 \leq i, j \leq d\}$. The unique conditional expectations $E_{\mathcal{M}}$ and $E_{\mathcal{M}^*}$ from $\mathcal{L}(L^2(\varphi))$ onto \mathcal{M} and \mathcal{M}^* with respect to the normalized trace on $\mathcal{L}(L^2(\varphi))$ is respectively given by $$E_{\mathcal{M}}(\sum_{i=1}^{d} \lambda(f_i)b_i) = \sum_{i=1}^{d} \varepsilon(f_i)b_i \qquad (b_i \in \mathcal{M});$$ $$E_{\mathcal{M}}(\sum_{i=1}^{d} \lambda(k_i)a_i) = \sum_{i=1}^{d} \varphi(a_i)\lambda(k_i) \qquad (k_i \in \mathcal{M}).$$ In particular, $$E_{\mathcal{M}}(\lambda(f)) = \varepsilon(f) \cdot 1,$$ $$E_{\mathcal{M}}(a) = \varphi(a) \cdot 1.$$ Thus the diagram $$\mathcal{M}^{\hat{}} \rightarrow \mathcal{L}(L^2(\varphi))$$ $\uparrow \qquad \uparrow$ $\mathbf{C} \rightarrow \mathcal{M}.$ is a commuting square. Therefore, Proposition 1 proves the preceding Theorem for the case n = 0. Let A_{∞} and B_{∞} be the approximately finite-dimensional (AF) C^* - algebras obtained from the sequences $\{A_n\}$ and $\{B_n\}$, respectively. The algebra A_{∞} is regarded as a C^* subalgebra of B_{∞} in an obvious way. B_{∞} is the d^{∞} -UHF algebra and thus has the unique faithful factorial tracial state τ . We denote by \mathcal{Q} the von Neumann algebra $\pi_{\tau}(B_{\infty})''$ generated by the GNS representation π_{τ} of τ on B_{∞} , which is the AFD factor of type II_1 . Set $\mathcal{P} = \pi_{\tau}(A_{\infty})'' \subseteq \mathcal{Q}$. The algebra \mathcal{P} is again the AFD factor of type II_1 . Therefore, we have constructed a factor-subfactor pair of the AFD factors \mathcal{P} and \mathcal{Q} . #### \S 3. Construction of an action β on $\mathcal P$ To motivate an idea, we digress and consider a problem of constructing an action α of a group G on a von Neumann algebra \mathcal{A} when G is given. One way to do this is (i) to find a Hilbert space \mathcal{H} on which G admits a unitary repesentation u so that $u(s)\mathcal{A}u(s)^*=\mathcal{A}$ for any $s\in G$; (ii) then define $\alpha_s = \mathrm{Ad}u(s)$. In terms of the correspondence $\{\alpha: \alpha: G \longrightarrow \operatorname{Aut}(\mathcal{A})\} \stackrel{\text{bijection}}{\longrightarrow} \{\beta: \beta \text{ is an action of the Kac algebra } \ell^{\infty}(G) \text{ on } \mathcal{A}\},$ this procedure is the same as - (i) to find a Hilbert space \mathcal{H} for which there exists a unitary $R \in \mathcal{L}(\mathcal{H}) \otimes \ell^{\infty}(G)$ satisfying $(\iota \otimes \Gamma_G)(R) = R_{12}R_{13}$ (Γ_G is the coproduct of $\ell^{\infty}(G)$) and $R(\mathcal{A} \otimes \mathbf{C})R^* \subseteq \mathcal{A} \otimes \ell^{\infty}(G)$; - (ii) then define $\beta(a) = R(a \otimes 1)R^*$. For a general $\mathbf{K} = (\mathcal{M}, \, \Gamma, \, \kappa, \, \varphi)$, the idea is the same. Namely we - (i) find a unitary $R \in \mathcal{L}(\mathcal{H}) \otimes \mathcal{M}$ satisfying $(\iota \otimes \Gamma)(R) = R_{12}R_{13}$ and $R(\mathcal{A} \otimes \mathbf{C})R^* \subseteq \mathcal{A} \otimes \mathcal{M}$; - (ii) then define $\beta(a) = R(a \otimes 1)R^*$. So we will look for such a unitary R below to construct an action β on the factor \mathcal{P} . First, let us look at the embedding, say γ , of B_0 into \mathcal{Q} : $$\gamma: B_0 = \mathcal{M} \hookrightarrow B_\infty \subseteq \mathcal{Q}.$$ Secondly, with W as the fundamental unitary of K, consider $S = \sigma W \sigma$ which lies in $\mathcal{M} \cap \otimes \mathcal{M}$. Put $R = (\gamma \otimes \iota_{\mathcal{M}})(S) \in \mathcal{Q} \otimes \mathcal{M}$. Theorem 2. The unitary R satisfies $(\iota \otimes \Gamma^{\sigma})(R) = R_{12}R_{13}$ and $R(\mathcal{P} \otimes \mathbf{C})R^* \subseteq \mathcal{P} \otimes \mathcal{M}$. Thus the equation $$\beta(X) = R(X \otimes 1)R^* \qquad (X \in \mathcal{P})$$ defines an action of the reflection \mathbf{K}^{σ} on \mathcal{P} . Moreover, the inclusion $\mathcal{P} \subseteq \mathcal{Q}$ is spatially isomorphic to $\mathcal{P} \subseteq \mathcal{P} \times_{\beta} \mathbf{K}^{\sigma}$. To ensure that β is not a trivial action, we show that it is outer, i.e., the relative commutant $\beta(\mathcal{P})' \cap \mathcal{P} \times_{\beta} \mathbf{K}^{\sigma}$ is trivial. This is done by proving the following theorem. **Theorem 3.** With the notation as before, we have $$E_{B_n}(B_{n+1}\cap A'_{n+1})\subseteq \mathbf{C},$$ where E_{B_n} is the unique conditional expectation from Q onto B_n with respect to the normalized trace on Q. The essential part of the proof of this theorem is to prove the assertion when n = 0. If n = 0, then, as we noted, $$\begin{array}{ccccc} \mathcal{M}^{\hat{}} & \rightarrow & \mathcal{L}(L^2(\varphi)) & & B_0 & \rightarrow & B_1 \\ \uparrow & & \uparrow & & \cong & \uparrow & & \uparrow \\ \mathbf{C} & \rightarrow & \mathcal{M}. & & \mathbf{C} & \rightarrow & A_1. \end{array}$$ From this, we see that the assertion of the theorem is equivalent to $E_{\mathcal{M}^{\hat{}}}(\mathcal{M}') \subseteq \mathbb{C}$. Thus it suffices to prove that the diagram $$\begin{array}{ccc} \mathcal{M}^{\wedge} & \to & \mathcal{L}(L^{2}(\varphi)) \\ \uparrow & & \uparrow \\ \mathbf{C} & \to & \mathcal{M}' \end{array}$$ is also a commuting square. But this can be verified exactly the same way as before. # \S 4. The Jones index of $\mathcal{P} \subseteq \mathcal{Q}$ To compute the Jones index $[\mathcal{Q}:\mathcal{P}]$, it is enough by Theorem 2 to calculate $[\mathcal{P} \times_{\beta} \mathbf{K}^{\sigma}:\mathcal{P}]$. For this purpose, we describe the Jones projection $e_{\mathcal{P}}$ of this inclusion. First, it can be shown that $\tilde{J}\beta(\mathcal{P})\tilde{J}=\mathcal{P}'\otimes\mathbf{C}$, where \tilde{J} is the modular conjugation of the normalized trace on the crossed product. Hence the extension of $\mathcal{P}\subseteq\mathcal{P}\times_{\beta}\mathbf{K}^{\sigma}$ is $\mathcal{P}\otimes\mathcal{L}(L^{2}(\varphi))$. So $e_{\mathcal{P}}$ belongs to $\mathcal{P}\otimes\mathcal{L}(L^{2}(\varphi))$. It can be proven that it has the form $$e_{\mathcal{P}} = 1 \otimes p$$ where p is a minimal projection in $\mathcal{L}(L^2(\varphi))$. In fact, p is the projection corresponding to the one-dimensional representation of \mathcal{M} , i.e., the counit ε . Thus $$\operatorname{Trace}(e_{\mathcal{P}}) = (\dim \mathcal{M})^{-1}.$$ Therefore, $[\mathcal{P} \times_{\beta} \mathbf{K}^{\sigma} : \mathcal{P}] = \dim \mathcal{M}$. ## References - [1] R. Blattner, Automorphic group representations, Pacific J. Math. 8 (1958) 665-677. - [2] M. Enock, Produit croisé d'une algèbre de von Neumann par une algèbre de Kac, J. Functional Analysis 26 (1977) 16-47. - [3] M. Enock and J.M. Schwartz, Une dualité dans les algèbres de von Neumann, Bull. Soc. Math. France Suppl. Mem. 44 (1975) 1–144. - [4] ————, Produit croisé d'une algèbre de von Neumann par une algèbre de Kac II, Publ. R.I.M.S. Kyoto Univ. 16 (1980) 189-232. - [5] P. de la Harpe, F. Goodman and V.F.R. Jones, Coxeter graphs and towers of algebras, M.S.R.I. Publ. 14 (1989) Springer-Verlag, New York. - [6] J.M. Schwartz, Sur la structure des algèbres de Kac I, J. Functional Analysis 34 (1979) 370-406. - [7] ———, Sur la structure de algèbres de Kac II, Proc. London Math. Soc. (3) 41 (1980) 465–480. - [8] M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math. 131 (1973) 249-310. - [9] T. Yamanouchi, Construction of an outer action of a finite-dimensional Kac algebra on the AFD factor of type II₁, To appear in International J. Math..