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$Abs$tract–The rigorous descriptiton for the attenuation processes is discussed
and the error probability for the optical communication processes is derived and it is
computed in some concrete models. Moreover the effect of squeezing in the attenuation
processes is considered from the quantum information theoretical points of view.

I. INTRODUCTION

The communication theory has been started by Shannon in discrete systems
around 1948 [17] and it is followed by Kolmogorov in the measure theoretic frame-
work [7]. This communication theory is often caUed “the commutative communication
theory” because an system representing a signal has a commutative structure.

It is difficult to fully describe optical communication processes by the commu-
tative communication theory because the optical signal should be a quantum object
having a noncommutative structure. Therefore we need new communication the-
ory “quantum communication theory” expressing quantum effects such as “quantum
noise” associated to optical communication processes. Some rigorous studies related
to quantum communication theory have been progressed in the fields of quantum
entropy theory [10,12,21,22] and quantum control theory [3,5,6,11,26,27,28], rather
independently.

In this paper we review a rigorous mathematical formulation of quantum commu-
nication processes and we derive error probability in each modulation and detection.
Especially we show the rigorous formulation of error probability for a squeezed state
taken as an input state and we discuss the effect of squeezing in the attenuation
process. The whole content in this paper is one of the applications of “Information
Dynamics” proposed by Ohya [13]. At first, in Section II, we review a mathematical
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formulation of the quantum mechanical channel and a mathematical construction of
the channel for optical communication processes [9,10,11,12]. In Section III we review
the general expression for an attenuation process and discuss another simpler expres-
sion [1$,15,16]. In this paper, we apply this expression to the derivation of each error
probability. In Section IV we briefly review some basic facts of quantum coding and
types of channel for the derivation of error probabihty given in Section V. In Sections
V and VI, we give general expressions of the error probabihties in IM-DD (Intensity
Modulation-Direct Detection) and COC (Coherent Optical Communication), respec-
tively. In Section VII we present some numerical results of the error probabilities and
we discuss the efficiency for each modulation and detection. EspeciaJly we emphasis
the effect of squeezing in the attenuation process.

II. QUANTUM MECHANICAL CHANNEL AND

ITS MATHEMATICAL CONSTRUCTION

In this section we review the general definition of a quantum mechanical channel
and its mathematical expression for real optical communication processes [9,10,11,12].

A. Quantum Mechanical Channel
In order to construct the communication theory we have to set at least two dy-

namical systems : an input system and an output system. And each system can be
characterized by each state. That is, once we fix a state in a dynamical system, we can
get almost all properties of this system. Therefore we have only to know the relation
between input states and output states. And a channel describes the effect of state
change in the course of information transmission $[10,13]$ .

In the classical communication theory, each state of input and output systems
is described by a probability distribution. So a channel causes the change of this
probability distribution.

On the other hand, in the quantum communication theory, each state of input
and output system should be discribed by quantum states such as density operators
or general state on noncommutative systems. We mathematicaUy describe quantum
mechanical systems in the framework ofHilbert space. Let $Tt_{1}$ and $\mathcal{H}_{2}$ be the separable
complex Hilbert spaces describing an input space and an output space, respectively.
Let $B(\prime H_{h})(k=1,2)$ be the set of all bounded linear operators on $’\kappa_{h}$ , and $6(H_{h})$ be
the set of $aU$ states (density operators) on the Hilbert spaces $?t\iota$ ; that is, $6(H_{h})=$

$\{\rho\in B(?t_{h})|\rho\geqq 0, \rho=\rho, tr\rho=1\}$

Then a mapping $A^{\cdot}$ : $6(\mathcal{H}_{1})arrow 6(?t_{2})$ is here caUed a quantum mechanical
channel and it is a completely positive (CP) channel if the dual map A : $B(?t_{2})arrow$

$B(H_{1})$ satisfies the completely positivity :

$\sum_{i,j}^{n}B^{*}:A(A;A_{j})B_{j}\geqq 0$ for $\forall B_{i}\in B(?t_{1}),$ $\forall A_{j}\in B(\mathcal{H}_{2})$ and $\forall n\in N.$ (2.1)

Most of physical transformations satisfy the condition completely positivity, so that
this definition is general enough to mathematicaUy construct a concrete realistic chan-
nel for a quantum communication.
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B. Mathematical Construction for Channel $A^{*}$

Let us find a mathematical expression for real optical communication processes by
taking account of the effect of noise and loss in the course of information transmission.

For the purpose, in addition to the Hilbert spaces $?t_{1}$ and $\mathcal{H}_{2}$ , we need two more
Hilbert spaces $\mathcal{K}_{1}$ and $\mathcal{K}_{2}$ describing a noise system and a loss system, respectively.
Then we have the following mathematical structure for optical communication pro-
cesses.

(Noise) $\zeta\in 6(\mathcal{K}_{1})$

1
$6(\mathcal{H}_{1})\ni\rhoarrow A^{\cdot}\rho\in 6(?t_{2})$

1
(Loss) $6(\mathcal{K}_{2})$

Fig. 1 Quantum Mechanical Channel

Let $\rho\in 6(H_{1})$ and $\xi\in 6(\mathcal{K}_{1})$ be quantum states representing an input state
and a noise state, respectively. We need the following three mappigs to construct a
general form of a channel for optical communication processes :

(1) the map $a$ is an amplification from $B(H_{2})$ to $B(H_{2}\otimes \mathcal{K}_{2})$ given by $a(A)=A\otimes I$

for any $A\in B(H_{2})$ , where $I$ is an identity operator on $\mathcal{K}_{2}$ ,
(2) the map $\Pi$ is a completely positive map from $B(\mathcal{H}_{2}\otimes \mathcal{K}_{2})$ to $B(H_{1}\otimes \mathcal{K}_{1})$ with

$\Pi(I)=I$ describing the physical mechanism of the transformation,
(3) the map $\Gamma$ is given by $\Gamma(Q)=tr_{\mathcal{K}_{1}}\zeta Q$ for any $Q\in B(\mathcal{H}_{1}\otimes \mathcal{K}_{1})$ . Here, $tr_{\mathcal{K}_{1}}$

is the partial trace : $<\Phi_{1},$
$tr_{\mathcal{K}_{1}}Q\Phi_{2}>\equiv\sum_{n}<\Phi_{1}\otimes\Psi_{n},$

$Q\Phi_{2}\emptyset\Psi_{n}>$ for any

$Q\in B(7t_{1}\otimes \mathcal{K}_{1})$ , any $\Phi_{1},$ $\Phi_{2}\in?t_{1}$ , and any CONS $\{\Psi_{n}\}$ of $\mathcal{K}_{1}$ .
Then we define a mapping A &om $B(?t_{2})$ to $B(\mathcal{H}_{1})$ such that

A $=\Gamma 0$ II $oa$ . (2.2)

$A$

$B(Tt_{2})$ $arrow$ $B(H_{1})$

$a\downarrow$ $\uparrow r$

$B(Tt_{2}\otimes \mathcal{K}_{2})arrow^{\Pi}B(\mathcal{H}_{1}\otimes \mathcal{K}_{1})$

Fig. 2 A

We next consider the dual maps of $a,$ $\Pi,$ $\Gamma$ ;

(1’) the dual map $a$ of $a$ is a map from $6(\mathcal{H}_{2}\otimes \mathcal{K}_{2})$ to $6(H_{2})$ such that $a^{*}(\theta)=tr_{\mathcal{K}_{2}^{\theta}}$

for any $\theta\in 6(\mathcal{H}_{2}\otimes \mathcal{K}_{2})$ ,
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(2’) the dual map $\Pi$ : $6(?t_{1}\otimes \mathcal{K}_{1})arrow 6(\mathcal{H}_{2}\otimes \mathcal{K}_{2})$ is given by tr $\Pi^{*}(\theta)W=$

tr $\theta\Pi(W)$ for any $\theta\in 6(?t_{1}\Phi \mathcal{K}_{1})$ and any $W\in B(?t_{2}\otimes \mathcal{K}_{2})$ ,
(3’) the dual map I” : $6(\mathcal{H}_{1})arrow 6(\mathcal{H}_{1}\otimes \mathcal{K}_{1})$ is given by $\Gamma^{*}(\rho)=\rho\otimes\zeta$

$A^{\cdot}$

$6(?t_{1})$ $arrow$ $6(Tt_{2})$

$r\cdot\downarrow$ $\uparrow\circ$

6$(?t\iota\otimes \mathcal{K}_{1})arrow^{\Pi_{.}}6(\mathcal{H}_{2}\otimes \mathcal{K}_{2})$

Fig. 3 Channel $A^{\cdot}$

Therefore, once we know the noise 6 and the mechanism of the transformation $\Pi$ ,
we can write down a channel explicitly as

$A^{\cdot}=a$ $0\Pi 0\Gamma^{\cdot}$ . (2.3)

so that
$A^{\cdot}(\rho)=tr_{\mathcal{H}_{2}^{\Pi(\rho\otimes\xi)}}$ (2.4)

for any $\rho\in 6(H_{1})[10]$ .
Let us show that this mathematical expression A indeed becomes a CP quantum

mechanical channel. We have only to show the completely positivity of the mapping
A. We show the completely positivity of the mapping $\Gamma$ by the following proof. Next
we prove the completely positivity of the mapping $\Gamma$ .

For any $A_{i}$ $\in B(?t_{1}\otimes \mathcal{K}_{1})$ , any $B_{j}$ $\in B(7t_{1})$ , any CONS $\{\Phi_{h}^{1}\}$ of $\mathcal{H}_{1}$ , any
CONS $\{\Psi_{l}^{1}\}$ of $\mathcal{K}_{1}$ , any $\zeta\in 6(\mathcal{K}_{1})$ , any $\Phi\in 7t_{1}$ and any $n\in N$

$<\Phi,$ $\sum_{i,j}^{n}B_{i}^{\cdot}\Gamma(A:A_{j})B_{j}\Phi>$

$= \sum_{i,j}^{n}<B_{i}\Phi,tr_{\mathcal{K}_{\iota^{\zeta A_{i}A_{j}B_{j}\Phi>}}}$

$= \sum_{i,j}^{\mathfrak{n}}\sum_{m}<B:\Phi\otimes\Psi_{m}^{1},$
$(I\otimes\zeta)A_{i}^{\cdot}A_{j}B_{j}\Phi\otimes\Psi_{m}^{1}>$

$= \sum_{:,j}^{n}\sum_{m}\sum_{h,l}<B;\Phi\otimes\Psi_{m}^{1},$
$(I\otimes\zeta)A_{i}^{\cdot}\Phi_{h}^{1}\otimes\Psi_{l}^{1}><\Phi_{h}^{1}\otimes\Psi_{l}^{1},$ $A_{j}B_{j}\Phi\otimes\Psi_{m}^{1}>$

$= \sum_{i,j}^{\prime\iota}\sum_{h,l}<\Phi_{h}^{1}\otimes\Psi_{l}^{1},$
$A_{j}(|B_{j}\Phi><B;\Phi|\otimes I)(I\otimes\zeta)A_{:}^{*}\Phi_{h}^{1}\otimes\Psi_{l}^{1}>$

$= \sum_{h,l}\sum_{:,j}^{n}<\Phi_{h}^{1}\otimes\Psi_{l}^{1},$ $A_{j}(B_{j}\otimes I)(|\Phi><\Phi|\otimes I)$
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$\cross(B_{i}^{*}\otimes I)(I\otimes\zeta^{\frac{1}{2}})(I\otimes\zeta^{\frac{1}{2}})A_{i}^{*}\Phi_{h}^{1}\otimes\Psi_{l}^{1}>$

$= \sum_{m}\sum_{h,l}\sum_{i}^{n}<\Phi_{h}^{1}\otimes\Psi_{l}^{1},$
$A_{j}(I\otimes\zeta^{\frac{1}{2}})(B_{j}\otimes I)\Phi\otimes\Psi_{m}^{1}>$

$\cross\sum_{j}^{n}I\otimes\zeta^{\iota})(B_{i}\otimes I)\Phi\otimes\Psi_{m}^{1}>$

$= \sum_{m}\sum_{h,l}|\sum_{:}^{n}<\Phi_{h}^{1}\otimes\Psi_{l}^{1},$
$A_{j}(I\otimes\zeta^{\frac{1}{2}})(B_{j}\otimes I)\Phi\otimes\Psi_{m}^{1}>|^{2}\geqq 0$

We can prove the completely positivity of the mapping $a$ as similarly as above.
Therefore the mapping A given by Eq.(2.2) is completely positive, that is, the

mapping $A^{\cdot}$ is a quantum mechanical CP channel.

$\Pi I$ . ATTENUATION PROCESS

In real communication processes we suffer the loss of the information in the course
of information transmission. Therefore we construct a more concrete model of the
channel $A^{*}$ by taking into account this attenuation of the information. We at first
give the general expression for an attenuation process by using the Hamiltonian of
each system $[10,12]$ . Secondly, we discuss another simpler expression related to the
concept “lifting” $[1,13]$ .
A. General Expression for an Attenuation Process $[1\theta,12J$

Each quantum system composed of photons is described by the Hamoltonian
$H=a^{*}a+1/2$ , where $a$ and $a$ are creation and annihilation operators of a pho-
ton, respectively. By solving the Schrodinger equation $Hx(q)=Ex(q)$ , we can easily
get the eigenvalue $E_{n}$ ; $E_{n}=n+1/2(n=0,1,2, \ldots)$ and the eigenvector $ae_{n}(q)$

; $x_{\iota}(q)=(1/(\pi^{1/2}n!)^{1/2})H_{n}(\sqrt 8q\exp(-q^{2}/2)$, where $H.(q)$ is the nth Hermite
function. The Hilbert space of each system is the closed linear span of the linear
combinations $z_{n}(q)(n=0,1,2, \ldots)$ .

Then a model for optical attenuation processes is considered as follows : When
$n_{1}$ photons are transmitted from the input system, $n_{2}$ photons $hom$ the noise system
add to the signal. Then $m_{1}$ photons are lost to the loss system through the channel,
and $m_{2}$ photons are detected in the output system. The Hilbert spaces and their
coordinates in this model are denoted in Table I below.

Table. I Quantum Systems
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According to the conservation of energy $(n_{1}+n_{2}=m_{1}+m_{2})$ , we suppose the
following linear transformation [20] among the coordinates $q_{1},t_{1},$ $q_{2},$ $t_{2}$ of the input,
noise, output, and loss systems, respectively :

$\{\begin{array}{l}q_{2}=\alpha q_{1}+\beta t_{1}t_{2}=-\beta q_{1}+\alpha t_{1}\end{array}$ $(\alpha^{2}+\beta^{2}=1)$

By using this linear transformation, we define the mapping $\Pi=U(\cdot)U^{\cdot}$ by

$U(x_{n_{1}}^{(1)}\otimes y_{\iota_{2}}^{(1)})(q_{2},t_{2})=x_{n_{1}}^{(2)}\otimes y_{n_{2}}^{(2)}(\alpha q_{2}-\beta t_{2}, \beta q_{2}+\alpha t_{2})$

$= \sum_{j=0}^{\mathfrak{n}_{1}+n_{2}}C_{j}^{n_{1\prime}n_{2}}x_{j}^{(2)}\otimes y_{n_{1}}^{(2)_{+n_{2}-j}}(q_{2},t_{2})$ ($.1)

where $C_{j}^{n_{1},n_{2}}$ is given by

$C_{j}^{\pi_{1},n_{2}}= \int\int x_{n_{1}}(\otimes y_{n_{2}}(\alpha q_{2}-\beta t_{2}, \beta q_{2}+\alpha t_{2})$ $a_{e_{j}^{(2)}\otimes y_{n_{1}}^{(2)_{+n_{2}-j}}(q_{2},t_{2})}dq_{2}dt_{2}$

$= \sum_{\prime=L}^{K}(-1)\frac{\sqrt{n_{1}!n_{2}!j!(n_{1}+n_{2}-j)!}}{r!(n_{1}-r)!(j-r)!(n_{2}-j+r)!}\alpha^{n_{2}-j+2}’\beta^{n_{1}+j-2}$
’ (3.2)

where $K= \min\{j, n_{1}\},$ $L=maz\{j-n_{2},0\}$ .
Then the CP channel A is expressed as

$A^{\cdot}\rho=tr_{\mathcal{H}_{2}^{U(\rho}}\otimes\zeta)U^{*}$ (3.3)

Here note that $\alpha^{2}$ can be regarded as the tranmission efficiency $\eta$ for the channel $A^{*}$ .
In this paper, we let a noise state $\zeta$ a vacuum state for simplicity. That is,

$\zeta=|y_{0}^{(1)}><y_{0}^{(1)}|=|0><0|\in 6(\mathcal{K}_{1})$ is a noise state due to the “ zero point
fluctuation” of electromagnetic field ( $y_{0}^{(1)}$ is a vaccum state vector in $\mathcal{K}_{1}$ ).

B. Lifiing

The concept of “lifting” can be applied to the expression for an attenuation
process [1,13,15].

Definition 3.1 [1, IS]; Let $\prime rt,$
$\mathcal{K}$ be Hilbert spaces and let $H\otimes \mathcal{K}$ be a fixed tensor

product of $H$ and $\mathcal{K}$ . A lifting $\mathcal{E}^{*}$ from $?t$ to $\mathcal{H}\otimes \mathcal{K}$ is a continuous map

$\mathcal{E}^{\cdot}$ : $6(\mathcal{H})arrow 6(\mathcal{H}\otimes \mathcal{K})$ (3.4)

If $\mathcal{E}^{*}$ is affine, we $caU$ it a linear lifting ; if it maps pure states into pure states,
we $caU$ it pure.

When we may take $\mathcal{H}=?t_{1}=?t_{2}$ and $\mathcal{K}=\mathcal{K}_{1}=\mathcal{K}_{2}$ ,

$\mathcal{E}^{\cdot}$ : $\rho\in 6(?t)arrow\Pi(\rho\otimes\xi)\in 6(\mathcal{H}\otimes \mathcal{K})$
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is a lifting, and we can rewrite the channel:

$A^{*}\rho=tr_{\mathcal{K}^{\mathcal{E}^{*}\rho}}$ . (3.5)

By using the lifting, we can define a mapping V from $\mathcal{H}$ to $\mathcal{H}\otimes \mathcal{K}$ as

$V|\theta>=|\alpha\theta>\otimes|\beta\theta>$ (3.6)

where $|\theta>represents$ a coherent vector $[4,8]$ .

$|\beta\theta>$

Fig. 4 Attenuation Process $V$

Now, let us show the equivalence of the above operator V and the operator $U$ in
the conventional expression.

$V|\theta>=|\alpha\theta>\otimes|\beta\theta>$

$= \exp(-\frac{|\alpha\theta|^{2}}{2})\sum_{n}\frac{(\alpha\theta)^{\mathfrak{n}}}{\sqrt{n!}}|n>\otimes\exp(-\frac{|\beta\theta|^{2}}{2}I\sum_{m}\frac{(\beta\theta)^{m}}{\sqrt{m!}}|m>$

$= \exp(-\frac{|\theta|^{2}}{2})\sum_{n}\sum_{m}\frac{(\alpha\theta)^{n}(\beta\theta)^{m}}{\sqrt{n!m!}}|n>\otimes|m>$

which implies, for any nonnegative integer $N$ ,

$V|N>= \sum_{n=0}^{N}\alpha^{n}\beta^{N-n}\sqrt{\frac{N!}{n!(N-n)!}}|n>\otimes|N-n>$

Thus $U$ when $n_{2}=0$ in Eq.(3.1) equals to V by replacing $\beta with-\beta$ .
Therefore the attenuation CP channel can be rewritten as

$A^{*}\rho=tr\kappa V\rho V^{*}$ . (3.7)

In this paper, we use this expression Eq.(3.7) to the derivation of error probabil-
ities.



98

IV. QUANTUM CODING AND TYPES OF CHANNEL

In this section, before we derive concrete error probabilities, we review some basic
facts for quantum coding and two types of channeling transformation.

Suppose that, by some procedure, we encode an information representing it by
a sequence of letters $c^{(1)},$

$\ldots$ , $c^{(n)},$
$\ldots$ , where $c^{(h)}$ is an element in a set $C$ of symbols

caUed the alphabet.
A quantum code is a map which associates to each symbol (or sequence of sym-

bols) in $C$ a quantum state, representing an optical signal. This expression is called the
quantum mechanical coding. Let $\rho$; be the quantum code corresponding to a symbol
$c;\in C$ . We usuaUy take

$C=\{0,1\}\Leftrightarrow\Xi=\{\rho 0,\rho_{1}\}$ . (4.1)

Then we assume that the noise state $\zeta\in 6(\mathcal{K}_{1})$ is a vacuum state due to the
“ zero point fluctuation ” of electromagnetic field. Therefore, when we derive error
probabilities, we have to consider the following two types of channel : Z-type channel
and X-type channel. Each type of channel corresponds to IM-DD and COC, respec-
tively because the information associated to the input state is set by different manners
in IM-DD and COC.

Input Output Input Output

Z-type channel X-type channel
IM-DD COC

Fig. 5 Type of Channel

At first, in the case of IM-DD, we usually take $\rho_{0}$ for the vacuum state and $\rho_{1}$

for another state such as a coherent state or a squeesed state. Since the noise state 6
is a vacuum state, the input signal $u_{0’}$ represented by the state $\rho_{0}^{(1)}$ , is error &ee in
the sense that it always goes to the output signal $0$ represented by $\rho_{0}^{(2)}$ , while the
input signal 1, represented by the state $\rho_{1}^{(1)}$ , is not error free in the sense that its
output may reach to both states $\rho_{0}^{(2)}$ and $\rho_{1}^{(2)}$ with different probabilities. We $caU$ this
channel Z-type channel. Then the error probablity $P_{e}$ for IM-DD is given by

$P_{e}=P_{\epsilon 1}$ (4.2)

where $P_{e1}$ is the error probability that the signal 1 is read as the signal $0$ .
On the other hand, in the case of COC, the information is carried by amplitude,

frequency or phase of the input state. Therefore, regardless of the noise state $\zeta$ , both of
transmitted input signals $0$ and 1 have a possibility to be suffered some mistake
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in the output system. We $caU$ this channel X-type channel. Here we assume the
input signals $0$ and 1 are transmitted with equal probability 1/2, so that an error
probability $P_{e}$ for digital modulation is given by

$P_{e}= \frac{P_{e0}+P_{e1}}{2}$ (4.3)

where $P_{e0}$ and $P_{e1}$ are the error probabilities associated with the input signal $O’$ and
the input signal 1’, respectively.

V. RJGOROUS DERIVATION OF ERROR PROBABILTY IN IM-DD

As discussed in [3], POVM (positive operator valued measure) is a useful tool to
describe quantum measurement processes. Therefore we apply the attenuation channel
and each POVM expression to the derivation of error probabihty for a coherent input
state and a squeezed input state.

Direct detection is a measurement of photons in a transmitted state, so that the
POVM for the direct detection is given by

$E_{DD}(n)=|n><n|$ (5.1)

where 1 $n>is$ the n-th number photon vector in $?t_{2}$ .
In particular, in case of IM-DD, we consider only Z-type channel. That is, direct

detection in IM-DD measures the number of photons in the transmitted state and
decides whether the output state is vacuum or not.

Therefore, when the input state $\rho_{1}$ is transmitted to an output state $A^{*}(\rho_{1})$ , the
general formula of the error probabi]ity $q_{e}$ that the state $A(\rho_{1})$ is recognized as a
vacuum state by mistake is given by :

$q_{\epsilon}=tr\uparrow t_{2}^{A}\rho_{1}E_{DD}(0)$

$=tr_{H_{2}^{tr_{\mathcal{K}_{2}^{V\rho_{1}V^{*}E_{DD}(0)}}}}$ (5.2)

A. PPM

In the case of PPM, since each symbol pulse is used for each quantum code, the
error probability $P_{e^{PPAf}}$ becomes

$P_{e}^{PPAf}=q_{e}$ . (5.3)

1) Coherent state
From Eq.(5.2) and Eq.(5.3), the error probability $P_{e(CO)}^{PPAf}$ for a coherent state

$\rho_{1}=|\theta><\theta|$ is given by

$q_{e}=tr_{\mathcal{H}_{2}}(tr_{\mathcal{K}_{2}^{V}}|\theta><\theta|V^{*})|0><0|$

$=tr_{\mathcal{H}_{2}}(tr_{\mathcal{K}_{2}}|\alpha\theta><\alpha\theta|\otimes|\beta\theta><\beta\theta|)|0><0|$

$=tr_{\mathcal{H}_{2}}|\alpha\theta><\alpha\theta||0><0|$

$=|<0|\alpha\theta>|^{2}=\exp(-|\alpha\theta|^{2})=\exp(-\eta|\theta|^{2})$ (5.4)
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where $\eta=\alpha^{2}$ and $\eta$ is constant describing the transmission efficiency for the channel.

2) Soueezed state
A squeezed state can be expressed by a unitary operator $U(z)(z\in C)$ such that

$\rho_{1}=U(z)|\theta><\theta|U(z)$

where $|\theta>is$ a certain coherent vector. More concretely a squeezed vector $U(z)|\theta>$

is expressed as $[19,25]$ .

$U(z)|\theta>\equiv|\theta_{q}$ ; $\mu,$ $\nu>$

$b\equiv\mu a+\nu a$

$\theta=\mu\theta_{q}+\nu\overline{\theta_{\iota q}}$

$b|\theta_{q}$ ; $\mu,$
$\nu>=(\mu\theta_{q}+\nu\overline{\theta_{q}})|\theta_{q}$ ; $\mu,$ $\nu>$

$|\mu|^{2}-|\nu|^{2}=1$

$\mu=\cosh z$

$\nu=\exp(i\phi)\sinh z$

Then, from Eq.(5.2) and Eq.(5.3), the error probability $P_{e(SQ)}^{PPAf}$ for a squeezed state
$\rho_{1}=U(z)|\theta><\theta|U(z)$ is given by

$q_{\epsilon}=tr_{?t_{2}}(tr_{\mathcal{K}_{2}^{VU(Z)}}|\theta><\theta|U(z)^{*}V^{\cdot})|0><0|$

$=tr\mu_{1}U(z)|\theta><\theta|U(z)(V^{*}(|0><0|\otimes I)V)$

$=<U(z)\theta,$ $V^{\cdot}(|0><0|\otimes I)VU(z)\theta>$

$= \frac{1}{\pi^{2}}\int\int d^{2}vd^{2}w<U(z)\theta,$ $w><\alpha w,$ $0><\beta w,$ $\beta v>$

$\cross<0,$ $\alpha v><v,$ $U(z)\theta>$

This can be computed by the following Gaussian type integration :

$\frac{1}{\pi}\int d^{2}w\exp\{-|w|^{2}+aw+b\overline{w}+cw^{2}+d\overline{w}^{2}\}=\frac{1}{\sqrt{1-4cd}}\exp\{\frac{a^{2}d+ab+b^{2}c}{1-4cd}\}$ .
(5.5)

The result is

$q_{e}= \sqrt{\tau}\exp[\{(1-\eta)\tau-1\}|\theta|^{2}+\{1-(1-\eta)^{2}\tau\}\{\frac{\overline{\nu}\theta^{2}}{2\mu}+\frac{\nu\overline{\theta}^{2}}{2\overline{\mu}}\}]$ (5.6)

where $\tau=\{|\mu|^{2}-(1-\eta)^{2}|\nu|^{2}\}^{-1},$ $\mu$ and $\nu$ are complex numbers satisfying

1 $\mu|^{2}-|\nu|^{2}=1$ .

B. $PCM$
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In the case that the code has the weight $N$ (the number of symbol 1), the
j-multiple error probability in the output system is

$P^{(j)}={}_{N}C_{j}i_{e}(1-q_{\epsilon})^{N-j}$ , (5.7)

where
${}_{N}C_{j}= \frac{N!}{j!(N-j)!}$

Therefore, when the code with the weight $N$ is transmitted, the error probability
$P_{e^{PCAf}}$ for PCM modulation with $t_{0}$ -tuple error correcting code with the weight $N$ is
given by:

$P_{e}^{PCM}= \sum_{j=t_{0}+1}^{N}P^{(j)}$

$= \sum_{j=t_{0}+1}^{N}{}_{N}C_{j}\dot{\phi}_{e}(1-q_{e})^{N-j}$ . (5.8)

By substituting Eq.(5.4) and Eq.(5.6) in the above formula Eq.(5.8), we can easily
compute the error probabilities $P_{e(CO)}^{PC1\psi}$ and $P_{\epsilon(SQ)}^{PCM}$ .

VI. RJGOROUS DERIVATION OF ERROR PROBABILTY
IN COHERENT OPTICAL COMMUNICATION

A. P.D.F. for Each Detection

1) Homod ne Detection

Homodyne detection is a measurement of the real part of the complex amlitude
of a transmitted state. Therefore the P.O.V.M. $E_{HO}$ for homodyne detection is given
by

$E_{HO}( \Delta^{HO})=\int_{A^{HO}}|\theta_{x}><\theta_{x}|\mathscr{O}_{x}$ (6.1)

where $|\theta_{x}>$ is the eigenvector of the operator $a_{x}=(a+a^{*})/2$ and $a$ is the
annihilation operator of photon, $\Delta^{HO}$ is the set of real variables $\theta_{x}$ .

The infinitesimal nonnegative definite Hermitian operator $dE_{HO}(\theta.)$ is given by

$dE_{HO}(\theta_{x})=|\theta_{x}><\theta_{x}|d\theta_{x}$ (6.2)

The probability density function $p^{HO}(\theta_{x})$ of the outcomes is

$p^{HO}(\theta_{r})d\theta_{r}=tr_{?t_{2}^{A^{*}\rho dE_{HO}(\theta_{x})}}$

$=tr\uparrow t_{2}^{\Lambda\rho}|\theta_{x}><\theta_{x}|d\theta_{x}$ ,



102

so that the probability density function $p^{HO}(\theta_{x})$ is

$p^{HO}(\theta_{x})=\iota_{r?t_{2}^{A^{\cdot}\rho}}|\theta_{x}><\theta_{x}|$ (6.3)

We derive the probabihty density function $p_{CO}^{HO}(\theta_{x})$ for a coherent input state.

$p_{CO}^{HO}(\theta_{x})=tr\uparrow t_{2}^{A(|}\theta><\theta|)|\theta_{g}><\theta_{x}|$

$=|<\theta_{x}|\alpha\theta>|^{2}$

$=\sqrt{\frac{2}{\pi}}\exp(-2(\theta_{x}-\alpha Re(\theta))^{2})$ (6.4)

This probability density function $p_{oO}^{HO}(\theta_{x})$ is a Gaussian type. Then $m_{CO}$ and $\sigma co^{2}$ ,
the average and the variance for this distribution $p_{CO}^{HO}(\theta_{x})$ , are calculated as

$m_{CO}^{HO}=\alpha Re(\theta)$ , $\sigma_{CO}^{HO^{2}}=\frac{1}{4}$ (6.5)

On the other hand, in the case of a squeezed input state, we derive the probability
density function $p_{SQ}^{HO}$ from Eq.(6.3).

$p_{SQ}^{HO}(\theta_{x})=tr_{\mathcal{H}_{2}}(tr_{\mathcal{K}}(VU(z)|\theta><\theta|U(z)^{*}V^{*})|\theta_{x}><\theta_{x}|$

$=tr_{?t_{1}^{U(z)}}|\theta><\theta|U(z)(V^{\cdot}(|\theta_{x}><\theta_{x}|\otimes I)V)$

$= \frac{1}{\pi^{2}}\int\int d^{2}vd^{2}w<U(z)\theta,$ $w><\alpha w,$ $\theta_{a}><\beta w,$ $\beta v>$

$\cross<\theta_{a},$ $\alpha v><v,$ $U(z)\theta>$

$= \frac{1}{\sqrt{2\pi\{\frac{1}{4}\eta|\mu-\nu|^{2}+\frac{1}{4}(1-\eta)\}}}\exp(-\frac{(\theta_{l}-\alpha Re((\overline{\mu}-\overline{\nu})\theta))^{2}}{2\{\frac{1}{4}\eta|\mu-\nu|^{2}+\frac{1}{4}(1-\eta)\}})(6.6)$

This probability density function $p_{SQ}^{HO}(\theta_{x})$ is again a Gaussian type. Then $m_{SQ}$ and
$\sigma_{SQ^{2}}$ , the average and the variance of this distribution Eq.(6.6), are calculated as

$m_{SQ}^{HO}=\alpha Re((\overline{\mu}-\overline{\nu})\theta)$ , $\sigma_{SQ}^{HO^{2}}=\frac{1}{4}\eta|\mu-\nu|^{2}+\frac{1}{4}(1-\eta)$ . (6.7)

2) Heterod ne Detection

Heterodyne detection is a simultaneous measurement of the real and the imagi-
nary parts of the complex anlitude in a transmitted state. Therefore the heterodyne
detection may not depend on the effect of squeezing, so that we derive the error
probabilities for a coherent input state only.

Let $E_{HE}$ be the P.O.V.M. for heterodyne detection.

$E_{HE}( \Delta^{HE})=\int_{A^{ra}}|\theta><\theta|\frac{d^{2}\theta}{\pi}$ (6.8)
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where 1 $\theta>is$ a coherent vector, and $\Delta^{HE}$ is the set of complex variables $\theta$ .
Therefore the infinitesimal nonnegative definite Hermitian operator $dE_{HE}(\theta)$ is

given by
$dE_{HE}( \theta)=|\theta><\theta|\frac{d^{2}\theta}{\pi}$ (6.9)

The joint probability density function $p^{HE}(\theta_{x}, \theta_{y})$ of the outcomes becomes

$p^{HE}(\theta_{x}, \theta_{y})d^{2}\theta=tr_{\mathcal{H}_{2}^{A\rho dE_{HE}(\theta)}}$

$= tr_{\mathcal{H}_{2}^{A\rho}}|\theta><\theta|\frac{d^{2}\theta}{\pi}$

so that the joint probabihty density function $p^{HE}(\theta_{x}, \theta_{y})$ is :

$p^{HE}( \theta_{x}, \theta_{y})=\frac{1}{\pi}tr\mu_{2}A^{\cdot}\rho|\theta><\theta|$ (6.10)

For a coherent state $\rho=|\theta><\theta|,$ $p^{HE}(\theta_{x}, \theta_{y})$ is concretely derived as :

$p^{HE}(\theta_{x}, \theta_{y})=\underline{1}t_{I\mathcal{H}_{2}}A^{\cdot}\rho|\theta><\theta|$

$\pi$

$= \frac{1}{\pi}|<\theta|\alpha\theta_{S}>|^{2}$

$= \frac{1}{\pi}\exp(-|\theta-\alpha\theta_{S}|^{2})$ (6.11)

where the index $s$ represents the signal $0$ ’ or 1’.
Then the coherent detection demodulate the part $\cos$ wt” bom the transmitted

signal. We let $pH^{E}(\theta.)$ the marginal probability density function of $p^{HE}(\theta_{x}, \theta_{y})$ , and
from Eq.(6.11) $p_{co}^{HE}(\theta_{x})$ is given by

$p_{co}^{HE}( \theta_{x})==\frac{\int_{1}p}{\sqrt{\pi}}\exp(-t^{\nu_{\theta_{l}-\alpha Re(\theta_{S}))^{2})}}HE(\theta_{l},\theta)d\theta_{y}$

. (6.12)

This probability density function $p_{co}^{HE}(\theta_{x})$ is also a Gaussian type. Then $m_{co}^{HE}$ and
$\sigma_{co}^{HE^{2}}$ , the average and the variance of this distribution Eq.(6.12), are calculated as

$m_{co}^{HE}=\alpha Re(\theta_{\iota})$ , $\sigma_{co}^{HE^{2}}=\frac{1}{2}$ (6.13)

On the other hand, the envelope detection [18] demodulates the envelope of the
transmitted signal. Let $g(r)$ be the probability density function for the envelope
detection. It is well known that we can get the following probability density function
$g(r)$ from Eq.(6.11):

$g(r)=2r\exp(-r^{2}-|\alpha\theta. |^{2})I_{0}(2r|\alpha\theta_{\iota}|)$ (6.14)
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where $I_{0}$ is the zeroth-order modified Bessel function of the first kind. The distribution
$g(r)$ in Eq.(6.14) is caUed a Rice distribution [18].

B. $OOK$ Homodyne Detection

In OOK, $\rho_{0}$ is a vaccum state and $\rho_{1}$ is another state such as a coherent state
and a squeezed state in the input system $?t_{1}$ .
1) Coherent state

The probability density functions $p_{0(CO)}^{HO}(\theta_{x})$ and $p_{1(CO)}^{HO}(\theta_{x})$ for the signal $0$ ’

and 1’ are respectively obtained by Eq.(6.4) as

$p_{0(CO)}^{HO}(\theta_{x})=\sqrt{\frac{2}{\pi}}\exp(-2\theta_{l}^{2})$ (6.15)

$p_{1(CO)}^{HO}(\theta_{x})=\sqrt{\frac{2}{\pi}}\exp(-2(\theta_{x}-\alpha Re(\theta_{1}))^{2})$ (6.16)

Every error probability of OOK for each signal turns to be identical. That is,

$P_{\epsilon 0(CO)}^{OOK-HO}=P_{e1(CO)}^{OOK-HO}= \int_{\alpha Re(\theta_{1})/2}^{\infty}p_{0(CO)}^{HO}(\theta_{x})d\theta_{x}$ (6.17)

Hence the error probabihty $P_{\epsilon(CO)}^{OOK-HO}$ is given by

$P_{e(CO)}^{OOK-HO}= \frac{1}{2}$ erfc $( \frac{\sqrt{\eta}Re(\theta_{1})}{\sqrt{2}})$ , (6.18)

where erfc(x) is the complementary error function given by

erfc(z) $= \frac{2}{\sqrt{\pi}}l^{\infty}\exp(-t^{2})dt$ (6.19)

2) Squeezed state

Under the similar discussion as the case of a coherent state, the error probability
is given by

$P_{e(SQ)}^{OOK-HO}= \frac{1}{2}$ erfc $( \frac{\sqrt{\eta}Re((\overline{\mu}-\overline{\nu})\theta_{1})}{\sqrt{2\eta|\mu-\nu|^{2}+2(1-\eta)}})$ (6.20)

C. BPSK Homodyne Detection

In BPSK, $\rho_{0}$ is a state with the phase $0$ and $\rho_{1}$ is a state with the phase $\pi$ .
1) Coherent state
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The probability density functions $p_{0(CO)}^{HO}(\theta_{x})$ and $p_{1(OO)}^{HO}(\theta_{x})$ for the signal $0$

and 1 are respectively obtained from Eq.(6.4).

$p_{0(CO)}^{HO}(\theta_{r})=\sqrt{\frac{2}{\pi}}\exp(-2(\theta_{a}-\alpha|\theta|)^{2})$ (6.21)

$p_{1(CO)}^{HO}(\theta_{x})=\sqrt{\frac{2}{\pi}}\exp(-2(\theta_{x}+\alpha|\theta|)^{2})$ (6.22)

where 1 $\theta|$ is the amplitude in an input state $\rho 0$ or $\rho_{1}$ .
We obtain the error probability for BPSK

$P_{e0(GO)}^{EPSK-HO}=P_{e1(CO)}^{BPSK-HO}= \int_{0}^{\infty}p_{1(CO)}^{HO}(\theta_{x})d\theta_{x}$ (6.2$)

Then the error probability $P_{e(CO)}^{BPSK-HO}$ is given by

$P_{\epsilon(CO)}^{BPSK-HO}= \frac{1}{2}$ erfc $(\sqrt{2\eta}|\theta|)$ (6.24)

2) Soueezed state
Under the similar discussion as the case of a coherent state, the error probability

is given by

$P_{e(SQ)}^{BPSK-HO}= \frac{1}{2}$ erfc $( \frac{\sqrt{2\eta}|\theta|Re(\overline{\mu}-\overline{\nu})}{\sqrt{\eta|\mu-\nu|^{2}+(1-\eta)}})$ (6.25)

D. $OOK$ Heterodyne Coherent Detection

From Eq.(6.12) the probability density functions $p_{0(CO)}^{HE}(\theta_{x})$ and $p_{1(CO)}^{HE}(\theta_{x})$ for
the signal $0$ and 1’ are respectively given by

$p_{0(OO)}^{HE}( \theta_{x})=\frac{1}{\sqrt{\pi}}\exp(-\theta_{r}^{2})$ (6.26)

$p_{1(CO)}^{HE}( \theta_{x})=\frac{1}{\sqrt{\pi}}\exp$ ( $-(\theta_{x}$ –a$Re(\theta_{1})$ ) ) (6.27)

As is analogized from the case OOK-homodyne, the error probability $P_{e(CO)}^{OOK}$ is
given by

$P_{e(CO)^{-HE}}^{OOK}= \frac{1}{2}$ erfc $( \frac{\sqrt{\eta}Re(\theta_{1})}{2})$ (6.28)

E. $OOK$ Heterodyne Envelope Detection

From Eq.(6.14) the probability density functions $g_{0}(r)$ and $g_{1}(r)$ for the signal
$0$ ’ and 1 are respectively given by

$g_{0}(r)=2r\exp(-r^{2})$ (6.29)
$g_{1}(r)=2r\exp(-r^{2}-|\alpha\theta_{1}|)I_{0}(2r|\alpha\theta_{1}|)$ (6.30)
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Therefore, by a proper approximation given in [18], the error probabihty $P_{e(EN)}^{OOK}$

becomes :
$P_{\epsilon(EN)^{-HE}}^{OOK}= \frac{1}{2}\exp(-\frac{\eta|\theta_{1}|^{2}}{4}I$ (6.31)

F. $FSK$ Heterodyne Cohere $nt$ Detection

In FSK, $\rho_{0}$ is a state with the frequency $w_{0}$ and $\rho_{1}$ is a state with $w_{1}$ . The
transmitted state $A^{\cdot}\rho_{0}$ or $A^{\cdot}\rho_{1}$ is separated by IF(intermediate frequency) dual filter
and demodulated by coherent detectors [18]. Here we can consider only the case that
the signal $0$“ is transmitted without loss of genenality. Let A and $B$ be the above
two coherent detectors, and let $\theta_{A}$ and $\theta_{B}$ be each outcome of A and $B$ , respectively.
From Eq.(6.12), the probability density functions $p_{A(CO)}^{HE}(\theta_{A})$ and $p_{B(CO)}^{HE}(\theta_{B})$ for the
outcomes of A and $B$ are respectively given by

$p_{A(CO)}^{HE}( \theta_{A})=\frac{1}{\sqrt{\pi}}\exp(-(\theta_{A}-\alpha Re(\theta_{0}))^{2})$ (6.32)

$p_{B(CO)}^{HE}( \theta_{B})=\frac{1}{\sqrt{\pi}}\exp(-\theta_{B}^{2})$ (6.3$)

The error probability $P_{e(CO)}^{FSK}$ is given by

$P^{FSK-HE}=$ Prob $(\theta_{A}-\theta_{B}<0)$
$e(CO)$

$= \int_{-\infty}^{0}\frac{1}{\sqrt{2\pi}}\exp(-\frac{(\theta_{A-B}-\alpha Re(\theta_{0}))}{2})d\theta_{A-B}$

$= \frac{1}{2}$ erfc $( \frac{\sqrt{\eta}Re(\theta_{0})}{\sqrt{2}})$ (6.34)

where $\theta_{A-B}=\theta_{A}-\theta_{B}$ .
G. $FSK$ Heterodyne Envelope Detection

Here, we consider the case without loss of generality that the signal 1’ is trans-
mitted. From Eq.(6.14) the probability density functions $g_{A}(r)$ and $g_{B}(r)$ for the
outcomes of the band pass filter A and $B$ ’ are respectively given by

$g_{A}(r_{A})=2rA\exp(-\gamma_{A}^{2})$ (6.35)
$g_{B}(r_{B})=2tB\exp(-r_{B}^{2}-|\alpha\theta_{1}|)I_{0}(2r_{B}|\alpha\theta_{1}|)$ (6.36)

Whenever $r_{A}>r_{B}$ , an error occurs. Thus we can get the following formula

$P_{e(EN)}^{FSK-HE}= \int_{B}^{\infty_{=0}}g_{B}(r_{B})(\int_{4B}^{\infty_{=}}g_{A}(r_{A})d\prime_{A)}dr_{B}$

$= \frac{1}{2}\exp(-\frac{\eta|\theta_{1}|}{4})$ , (6.37)
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where we applied the approximation given in [18] to this derivation.

H. BPSK Heterodyne Coherent Detection

From Eq.(6.12) the probability density functions $p_{0(CO)}^{HE}(\theta_{x})$ and $p_{1(CO)}^{HE}(\theta_{x})$ for
the signal $0$ ’ and 1 are respectively given by

$p_{\mathfrak{U}^{E}}^{H_{CO)}}(\theta_{x})=\sqrt{\frac{1}{\pi}}\exp(-(\theta_{x}-\alpha|\theta|)^{2})$ (6.38)

$p_{1(CO)}^{HE}(\theta_{x})=\sqrt{\frac{1}{\pi}}\exp(-(\theta_{x}+\alpha|\theta|)^{2})$ (6.39)

where $|\theta|$ is the amplitude in an input state $\rho_{0}$ or $\rho_{1}$ .
By an analogy of the case in BPSK-Homodyne, the error probability $P_{e(CO)}^{BPSK}$

is given by
$P_{e(CO)}^{BPSK-HE}= \frac{1}{2}$ erfc $(\sqrt{\eta}|\theta )$ (6.40)

I. BPSK Heterodyne Differential Detection

This system is often caUed “DPSK”. The information is represented by the change
of phase between two successive signals. Therefore the signal is demodulated by the
product of two successive outcomes, that is, the signal is recognized as $0$ ’ when the
product is positive and the signal is recognized as $0$ when the product is negative.
Then the error probability $P_{e^{DPSK}}$ is given by

$P_{e}^{DPSK-HE}= \frac{1}{2}\exp(-\eta|\theta, |^{2})$ (6.41)

using some results obtained in [18].

VII. NUMERICAL RESULTS

Fig.7 shows that each error probability for PPM is smaUer than that for PCM
at any transmission efficiency $\eta$ . In this simulation, PCM does not have any error-
corrections, however, if PCM has some error-correction, then the relation between
them may be opposite to this result. On the other hand, this result tells us that the
stronger the effect of squeezing becomes, the better the efficiency becomes. However, in
the case of IM-DD, the information is represented by the number of photons contained
in each pulse. Therefore it is generaUy difficult to examine the effect of squeezing for
the parameter $\theta_{l}$ . The comparison between PCM and PPM has been already well
discussed in our previous paper [14].

Next, let us discuss the efficiency about COC for a coherent input state and a
squeezed input state.

In the case that an input state is a coherent state, the results of Fig.8 has the
same relation with the numerical results in [24]. But our derivation is entirely different
$hom$ that of [26,27,28]. The derivation in this paper is so general that we can find the
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error probabihty for a squeezed input state $[15,16]$ . The relation among modulation,
detection and demodulation are given by the following (Fig.8):

modulation : $P_{e}^{BPSK}\leqq P_{\epsilon}^{FSK}\leqq P_{e}^{OOK}$

detection : $P_{e}^{Homodpn\epsilon}\leqq P_{\epsilon}^{H\epsilon t\epsilon odyne},$ $P_{\epsilon}^{Di\epsilon c}$

demodulation : $P_{\epsilon}^{Coh\epsilon\prime\epsilon nt}\leqq P_{\epsilon}^{Diffe}$ $\leqq P_{e}^{Envelop\epsilon}$

In particular, concerning the detection, it is obvious that the efficiency for homodyne
dection is better than that for heterodyne detection because the quantum limits on
the homodyne detection is smaUer. However we can not compare the efficiency for
heterodyne detection and direct detection quantitatively, because the obsevable for
these detections are different &om each other.

As we see in Fig.8, the efficiency for BPSK with homodyne detection is the best
of $aU$ . Therefore, in thi$s$ paper, we consider this ultimate efficiency for BPSK with
homodyne detection, that is, that for a squeezed input state.

In order to study the efficiency for a squeezd input state, we consider two cases
for the first setting. One case is that the average number of photons in a coherent
state before squeezing is fixed (Fig.9-11). The other case is that the average number
of photons in a squuezed state is fixed (Fig.12-14).

From Fig.9-11, we have

$P_{e}(16:1)\leqq P_{\epsilon}(4:1)\leqq P_{\epsilon}(1 : 1)\leqq P_{\epsilon}(1 : 4)\leqq P_{e}(1$ : 16 $)$ (7.1)

On the contrary, from Fig.12-14, we have

$P_{\epsilon}(1 : 16)\leqq P_{e}(1 : 4)\leqq P_{e}(1 : 1)\leqq P_{e}(4:1)\leqq P_{e}(16:1)$ (7.2)

Let us consider the reason why we got the above inequalities. In the former case
(Fig.9-11), the squeezing is not effective for the attenuation communication processes.
Moreover this result is just opposite to the result expected. This is because the
coherent state loses the energy for squeezing if the number of photons in a coherent
state before squeezing is fixed. In the case of $\sigma_{r}$ : $\sigma_{l}=1$ : 16 for squeezing the
parameter $\theta_{a}$ , we need the highest energy of $aU$ cases above. Here we examine the
result by changing a squeezed input state in the attenuation processes. We derive the
probability density function $p_{SQ}^{HO}$ for an imarginary part $\theta_{y}$ of a complex amplitude as
same as Eq.(6.6)

$p_{SQ}^{HO}(\theta_{y})=tr_{\mathcal{H}}(tr_{\mathcal{K}}(VU(z)|\theta><\theta|U(z)^{*}V^{*})|\theta_{y}><\theta_{y}|$

$=tr_{\mathcal{H}_{1}^{U(z)}}|\theta><\theta|U(z)(V^{\cdot}(|\theta_{r}><\theta_{y}|\otimes I)V)$

$= \frac{1}{\pi^{2}}\int\int d^{2}vd^{2}w<U(z)\theta,$ $w><\alpha w,$ $\theta_{y}><\beta w,$ $\beta v>$

$\cross<\theta_{\bullet},$ $\alpha v><v,$ $U(z)\theta>$

$= \frac{1}{\sqrt{2\pi\{\frac{1}{4}\eta|\mu+\nu|^{2}+\frac{1}{4}(1-\eta)\}}}\exp(-\frac{(\theta_{y}-\alpha Re((\overline{\mu}+\overline{\nu})\theta))^{2}}{2\{\frac{1}{4}\eta|\mu+\nu|^{2}+\frac{1}{4}(1-\eta)\}}\lambda_{s)}$
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This probabihty density function $p_{SQ}^{HO}(\theta_{y})$ is again a Gaussian type. Then $m_{SQ}’$ and
$\sigma_{SQ}^{\prime 2}$ , the average and the variance of this distribution Eq.(7.3), are calculated as

$m_{SQ}’=\alpha Re((\overline{\mu}+\overline{\nu})\theta)$ , $\sigma_{SQ}^{\prime 2}=\frac{1}{4}\eta|\mu+\nu|^{2}+\frac{1}{4}(1-\eta)$ . (7.4)

Therefore, from Eq.(6.7) and Eq.(7.4), the variance of each part of a complex ampli-
tude for a squeezed state in the attenuation processes is given by:

$\{\begin{array}{l}\sigma_{l}^{2}=\frac{1}{4}\eta|\mu-\nu|^{2}+\frac{1}{4}(1-\eta)\sigma_{l}^{2}=\frac{1}{4}\eta|\mu+\nu|^{2}+\frac{1}{4}(1-\eta)\end{array}$

This implies that a squeezed state in the attenuation processes is not a minimum
uncertainty state. That is, the effect of squeezing is losing in the attenuation processes.

On the other hand, if the number of photons in a squeezed state is fixed, the
squeezing is effective for the optical communication. In this case we have only to
consider the loss of energy in the attenuation processes, which is shown in Fig.9-14.
One of further discussions is to find the optimal method for use of a squeezed state in
the optical communications [16].

This paper totally studied rigorous mathematical expressions for quantum com-
munication processes and applied them to derive various error probabilities in a general
standing point. This rigorous and general theory contains most of the results shown
by many authors such as Yuen and Shapiro [26,27,28].
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