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$A\geq B\geq 0$ ensures $(B^{r}A^{p}B^{r})^{1/q}\geq(B^{r}B^{p}B^{r})^{1/q}$ for $r\geq 0,$ $p\geq 0,$ $q\geq 1$

with $(1+2r)q\geq p+2r$ and its applications

東京理科大理 古田孝之 (Takayuki Furuta)

In what follows, capital letter means a bounded linear operator on a Hilbert space.

An operator $T$ is said to be positive (in symbol : $T\geq 0$ ) if $(Tx, x)\geq 0$ for all $x\in H$ .
Also an operator $T$ is strictly positive (in symbol : $T>0$ ) if $T$ is positive and invertible.

As an extension of the L\"owner-Heinz theorem [17][20], we established the Furuta in-

equality [6] which reads as follows. If $A\geq B\geq 0$ , then for each $r\geq 0(i)(B^{r}A^{p}B^{r})^{1/q}\geq$

$(B^{r}B^{p}B^{r})^{1/q}$ and (ii) $(A^{r}A^{p}A^{r})^{1/q}\geq(A^{r}B^{p}A^{r})^{1/q}$ hold for $p$ and $q$ such that $p\geq 0$ and
$- q\geq 1$ with $(1+2r)q\geq p+2r$ . We remark that the Furuta inequality yields the L\"owner-

Heinz theorem when we put $r=0$ in (i) or (ii) stated above : if $A\geq B\geq 0$ ensures
$A^{\alpha}\geq B^{\alpha}$ for any $\alpha\in[0,1]$ . Alternative proofs of the Furuta inequality are given in
$[3][8][18]$ and an elementary proof is shown in [9].

Theorem A (L\"owner-Heinz 1934). If $A\geq B\geq 0$ ensures $A^{\alpha}\geq B^{\alpha}$ for any $\alpha\in[0,1]$ .

Related to Theorem $A$ , the following result is well known.

Proposition. If $A\geq B\geq 0$ does not always ensure $A^{p}\geq B^{p}$ for any $p>1$ .

As a generalization of Theorem A and related to Proposition, we established the fol-

lowing result.

Theorem $B$ (Furuta 1987). If $A\geq B\geq 0$ , then for each $r\geq 0$

(i) $(B^{r}A^{p}B^{r})^{1/q}\geq(B^{r}B^{p}B^{r})^{1/q}$

and

(ii) $(A’A^{l)}A^{r})^{1/q}\geq(A^{r}B^{p}A^{r})^{1/q}$

hold for each $p$ and $q$ such that $p\geq 0_{f}q\geq 1$ and $(1+2r)q\geq p+2r$ .

Inequalities (i) and (ii) in Theorem $B$ hold for the points on $p,$ $q$ and $r$ belong to the

oblique lines in the following figure.
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Figure

In this paper, we cite several applications of Theorem $B$ as follows.

$A_{DD}1ications$ of Theorem $B$

(A) Operator inequalities

(1) Characterizations of operators satisfying $logA\geq logB$

(2) Generalizations of Ando’s theorem

(3) Applications to the relative operator entropy

(4) Applications to other operator inequalities

(5) Applications to the Log-Majorization by Ando and Hiai

(6) Application to p-hyponormal operators for $0<p<1$

(B) Norm inequalities

(1) Several type generalizations of Heinz-Kato theorem

(2) $Gener_{\mathfrak{c}}dizations$ of some folk theorem on norm

(C) Operator equations

(1) Generalizations of $Pedersen- Ta1_{\backslash ’}esa1_{\backslash ’}i$ theorem and related results

Among applications of Theorem $B$ states above, we cite $[2][4][5][10]$ and [11] for (A)

operator inequalities alld also we cite [12][13][14] and [16] for (B) norm inequalities and
finally we cite [7] for (C) operator equations.

Ando-Hiai [1] have established a lot of useful and beautiful results on log-majorization

and we are really impressed with these beautiful and useful results. The purpose of this

paper is to announce new application [15] of Theorem $B$ to the log-majorization by Ando-

Hiai [1]. Precisely speaking, we can interpolate Theorem $B$ and this log-majorization.
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$\int 1$ . AN EXTENSION OF THE FURUTA INEQUALITY

First of all, we state the following extension of the Furuta inequality.

Theorem 1.1. If $A\geq B\geq 0$ with $A>0$ , then for each $t\in[0,1]$ and $p\geq 1$ ,

$F_{p)t}(A, B, r, s)=A^{-r/2} \{A^{r/2}(A^{-t/2}B^{p}A^{-t/2})^{s}A^{r/2}\}\frac{1-t+r}{(p-t)\cdot+r}A^{-r/2}$

is a decreasing function of both $r$ and $s$ for any $s\geq 1$ and $r\geq t$ and the following inequality

holds

(1.10) $A^{1-t}=F_{p,t}(A, A, r, s)$

$\geq F_{p,t}(A, B, r, s)$

for any $s\geq 1,p\geq 1$ and $r$ such that $r\geq t\geq 0$ .

Corollary 1.2. If $A\geq B\geq 0$ with $A>0$ , then for each $t\in[0,1]f$

$\{A^{r/2}(A^{-t/2}A^{p}A^{-t/2})^{s}A^{r/2}\}^{\alpha}\geq\{A^{r/2}(A^{-t/2}B^{p}A^{-t/2})^{s}A^{r/2}\}^{\alpha}$

holds for any $s\geq 0,$ $p\geq 0,0\leq\alpha\leq 1$ and $r\geq t$ with $(s-1)(p-1)\geq 0$ and
$1-t+r\geq((p-t)s+r)\alpha$ .

Remark 1.1. In the case $t=0$ in Corollary 1.2 we may not assume $A>0$ . Putting
$t=0$ and $s=1$ in Corollary 1.2, we have (ii) of Theorem B. Hence Corollary 1.2 can be

considered as an extension of Theorem $B$ since (i) is equivalent to (ii) in Theorem B.

Corollary 1.2 easily implies the following result when we put $t=1$ .

Corollary 1.3. If $A\geq B\geq 0$ with $A>0$ , then

$A^{r} \geq\{A^{r/2}(A^{-1/2}B^{p}A^{-1/2})^{s}A^{r/2}\}\frac{r}{(p-1)s+r}$

holds for any $s\geq 1,p\geq 1$ and $r\geq 1$ .

When we put $s=r$ in Corollary 1.3, we have the following Theorem $C$ obtained by
Ando and Hiai [l,Theorem 3.5].
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Theorem $C[1]$ . If $A\geq B\geq 0$ with $A>0$ , then

$A^{r}\geq\{A^{r/2}(A^{-1/2}B^{p}A^{-1/2})^{r}A^{r/2}\}^{1/p}$

holds for any $p\geq 1$ and $r\geq 1$ .

Corollary 1.4. If $A\geq B\geq 0$ with $A>0$ , then for each $t\in[0,1]$

(i) $A^{1+t}\geq(A^{t/2}B^{2p-t}A^{t/2})^{\frac{1+l}{2p}}\geq|A^{-t/2}B^{p}A^{t/2}|^{\frac{1+l}{p}}$

and

(ii) $A^{2} \geq(A^{1/2}B^{2p-t}A^{1/2})\frac{2}{2p+1-t}\geq|A^{-t/2}B^{p}A^{1/2}|\frac{4}{2p+1-t}$

hold for any $2p\geq 1+t$ .

Corollary 1.5. If $A\geq B\geq 0$ with $A>0$ , then

$A^{2}\geq(A^{1/2}B^{2p-1}A^{1/2})^{1/p}\geq|A^{-1/2}B^{p}A^{1/2}|^{2/p}$ for any $p\geq 1$ .

Corollary 1.6 $[4][10][11]$ . If $A\geq B\geq 0$ , then

$G(p, r)=A^{-r/2}(A^{r/2}B^{p}A^{r/2})^{(1+r)/(p+r)}A^{-r/2}$

is a decreasing function of both $p$ and $r$ for $p\geq 1$ and $r\geq 0$ .

\S 2. THE LOG-MAJORIZATION EQUIVALENT TO AN EXTENSION OF

THE FURUTA INEQUALITY

Throughout this section, a capital letter means $n\cross n$ matrix.

Following after Ando and Hiai [1], let us write $A\prec B(\log)$ for positive semidefinite matrices
$A,$ $B\geq 0$ and call the log-majorization if

$\prod_{i=1}^{k}\lambda_{i}(A)\leq\prod_{i=1}^{k}\lambda_{i}(B)$ , $k=1,2,$ $\ldots,$ $n-1$ ,

and
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$\prod_{i=1}^{n}\lambda_{i}(A)=\prod_{i=1}^{n}\lambda_{i}(B)$ , i.e. $\det A=\det B$ ,

where $\lambda_{1}(A)\geq\lambda_{2}(A)\geq\ldots\geq\lambda_{n}(A)$ and $\lambda_{1}(B)\geq\lambda_{2}(B)\geq\ldots\geq\lambda_{n}(B)$ are the eigenvalues

of $A$ and $B$ respectively arranged in decreasing order. Note that when $A,$ $B>0$ (strictly

positive) the log-majorization $A\prec B$ is equivalent to $logA\prec logB$ . Also $A\prec B$ ensures
$(\log)$ $(\log)$

$||A\Vert\leq||B\Vert$ holds for any unitarily invariant norm.

Definition 1. When $0\leq\alpha\leq 1$ , the $\alpha$-power mean of $A,$ $B>0$ is defined by

$A\neq\alpha B=A^{1/2}(A^{-1/2}BA^{-1/2})^{\alpha}A^{1/2}$ .

Further $A\#\alpha B$ for $A,$ $B\geq 0$ is defined by

$A \neq\alpha B=\lim_{\epsilon\downarrow 0}(A+\epsilon I)\#\alpha(B+\epsilon I)$.

This $\alpha$-power mean is the operator mean corresponding to the operator monotone func-

tion $t^{\alpha}$ . We can see [19] for general theory of operator means.

For the sake of convenience for symbolic expression, we define $A\# sB$ for any $s\geq 0$ and

for $A>0$ and $B\geq 0$ by the following

$A\mathfrak{h}_{s}B=A^{1/2}(A^{-1/2}BA^{-1/2})^{s}A^{1/2}$ .

$A\mathfrak{h}_{\alpha}B$ in the case $0\leq\alpha\leq 1$ just coincides with the usual $\alpha$-power mean denoted by

$A\#.B$ .

We can transform (1.10) of Theorem 1.1 into the following log-majorization inequality
by using the method by Ando and Hiai [1].

Theorem 2.1. For every $A>0_{f}B\geq 0,0\leq\alpha\leq 1$ and each $t\in[0,1]$

(2.1) $(A\neq B)^{h}\succ A^{1-t+r}\neq(\log)(A^{1-t}\mathfrak{h}_{s}B)$

holds for $s\geq 1$ , and $r\geq t\geq 0$ , where $\beta=\frac{\alpha(1-t+r)}{(1-\alpha t)s+\alpha r}$ and $h= \frac{(1-t+r)s}{(1-\alpha t)s+\alpha r}$ .
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Corollary 2.2. For every $A,$ $B\geq 0$ and $0\leq\alpha\leq 1$ ,

(2.3) $(A\neq\alpha B)^{h}\succ A^{r}\neq\underline{h\alpha}B^{s}(\log)$ for $r\geq 1$ and $s\geq 1$

where $h=[\alpha s^{-1}+(1-\alpha)r^{-1}]^{-1}$ .

The above log-majorization is equivalent to any one of the following (2.4),(2.5) and

(2.6) :

(2.4) $(A^{r}\neq\alpha B^{r})^{1/r}\succ(A^{q}\#_{\frac{k\alpha}{p}}B^{p})^{1/k}(\log)$ for $0<r\leq q$ and $0<r\leq p$,

where $k=[\alpha p^{-1}+(1-\alpha)q^{-1}]^{-1}$ .

(2.5) $(A^{r}\neq\alpha B^{q})^{1/s}\succ(A^{p}\#_{\frac{l\alpha}{r}}B^{p})^{1/p}$ for $0<r\leq p$ and $0<q\leq p$ ,
$(\log)$

where $s=\alpha q+(1-\alpha)r$ and $l=[\alpha r^{-1}+(1-\alpha)q^{-1}]^{-1}$ .

(2.6) $(A^{r}\neq\alpha B^{q})^{1/u}\succ(A^{q}\neq\beta B^{p})^{1/p}$ for $0<r\leq q\leq p$,
$(\log)$

where $u= \frac{\alpha q^{2}+(1-\alpha)pr}{q}$ and $\beta=\frac{\alpha q^{2}}{\alpha q^{2}+(1-\alpha)pr}$ .

Remark 2.1. We remark that $h=[\alpha s^{-1}+(1-\alpha)r^{-1}]^{-1}$ in Corollary 2.2 is a generalized

harmonic mean of $r$ and $s$ and when $\alpha=1/2,$ $h$ is the usual harmonic mean of $r$ and $s$ .
Also $l$ in (2.5) is a generalized harmonic one of $r$ and $q$ , while $s$ in (2.5) is a generalized

arithmetic mean of $q$ and $r$ .

Corollary 2.2 yields the following result [1, Theorem 2.1].

Theorem D $I^{1]}$ . For every $A,$ $B\geq 0$ and $0\leq\alpha\leq 1$ ,

$(A\neq\alpha B)^{r}\succ A^{r}\neq\alpha B^{r}(\log)$ for $r\geq 1$

or equivalently

$(A^{q}\neq\alpha B^{q})^{1/q}\succ(A^{p}\neq\alpha B^{p})^{1/p}(\log)$ for $0<q\leq p$ .

Also we can transform Corollary 1.2 int $0$ the following log-majorization.
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Theorem 2.3. If $A>0$ and $B\geq 0$ , then for each $t\in[0,1]$ and $0\leq\alpha\leq 1$

$(A^{I/2}BA^{1/2})^{\alpha ps} \succ A^{\frac{1}{2}\alpha((p-t)s+r)}(A\frac{-(r-t)}{2}(A^{t}\mathfrak{h}_{s}B^{p})A\frac{-(r-t)}{2})^{\alpha}A^{\frac{1}{2}\alpha((p-t)s+r)}$

$(\log)$

$=A^{A}2[A^{r-t}\#\alpha(A^{-t}\# sB^{p})]A^{A}2$

holds for any nonnegative numbers $s,p$ and $r$ such that $r\geq t$ and $(s-1)(p-1)\geq 0$ with
$1-t+r\geq((p-t)s+r)\alpha$ where $q=\alpha(p-t)s+\alpha r-r+t$ .

When $t=0$ Theorem 2.4 becones the following result.

Corollary 2.5. If $A>0$ and $B\geq 0f$ then for every $0\leq\alpha\leq 1$

$A^{1/2}(A^{p}\#\alpha B^{p})^{q/p}A^{1/2}$

$(\log)\succ A^{\frac{1}{2}(1+\frac{rq}{ps})}\{A^{-r/2}(A^{p}\neq\alpha B^{p})^{s}A^{-r/2}\}^{\frac{q}{sp}}A^{\frac{1}{2}(1+\frac{rq}{ps})}$

holds for every $p\geq q>0,$ $r\geq 0$ and $s\geq 1$ .

When $s=1$ and $r=p$ Corollary 2.5 yields the following Theorem $E$ [l,Theorem 3.3].

Theorem $E[1]$ . If $A>0$ and $B\geq 0$ , then

$A^{1/2}(A^{p}\neq\alpha B^{p})^{q/p}A^{1/2}$

$(\log)\succ A^{\frac{1+q}{2}()^{\frac{aq}{p}}A^{\pm_{2}z}}\wedge 4^{-p/2}B^{p}A^{-p/2^{\underline{1}}}$

for every $0\leq\alpha\leq 1$ and $0<q\leq p$ .

Taking $s=2$ and $r=p$ in Corollary 2.5 we have
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Corollary 2.6. If $A>0$ and $B\geq 0$ , then for every $0\leq\alpha\leq 1$

$A^{1/2}(A^{p}\neq\alpha B^{p})^{q/p}A^{1/2}$

$\succ A^{\frac{1}{2}(I+)}A2\{(A^{-p/2}B^{p}A^{-\mathcal{P}/2})^{\alpha}A^{p}(A^{-p/2}B^{p}A^{-p/\neq)}2)^{\alpha}\}\overline{P}A^{\frac{1}{2}(1+z}2$

$(\log)$

holds for any $0<q\leq p$ .

Corollary 2.7. If $A>0$ and $B\geq 0$ , then for every $0\leq r\leq 1$

$A^{r/2}B^{r}A^{r/2}\succ$ A$( \log)(A^{-1/2}B^{1/\alpha}A^{-1/2})^{\alpha r}A\frac{r(1+\alpha)}{2}$

holds for every $0<\alpha\leq 1$ .

Corollary 2.8. If $A>0$ and $B\geq 0$ , then for every $0\leq r\leq 1$

$(A^{1/2}BA^{1/2})^{r}\succ A^{\frac{\alpha u+r}{2}(A^{-u/2}B^{r/\alpha}A^{-u/2})^{\alpha}A^{\frac{\alpha u+r}{2}}}(\log)$

holds for every $0<\alpha\leq 1$ and $u\geq 0$ .

Corollary 2.7 and Corollary 2.8 imply the following known result [1, Corollary 3.4].

Corollary $F[1]$ . If $A>0$ and $B\geq 0$ , then for every $0\leq r\leq 1$

$(A^{1/2}BA^{1/2})^{r}\succ A^{r/2}B^{r}A^{r/2}\succ A^{r}(A^{-1/2}BA^{-1/2})^{r}A^{r}(\log)(\log)$

\S 3. LOGARITHMIC TRACE INEQUALITIES AS AN APPLICATION OF
LOG-MAJORIZATION IN \S 2

Throughout this section, a capital letter means $n\cross n$ matrix.

Theorem 3.1. If $A>0$ and $B\geq 0$ , then for every $0\leq\alpha\leq 1$ and $t\in[0,1]$

$sTrAlog(A^{P}\neq\alpha B^{P})-TrAlog\{A^{-r/2}[2(A^{P}\neq\alpha B^{P})]^{s}A^{-r/2}\}$

$\geq$ ( $r$ –st)TrAlogA

holds for any $s\geq 1,$ $r\geq t$ and $p\geq 0$ .

When $t=0$ Theorem 3.1 yields the following result.
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Corollary 3.2. If $A>0$ and $B\geq 0f$ then for every $0\leq\alpha\leq 1$

$sTrAlog(A^{p}\neq\alpha B^{P})og\{2[A^{P}\neq\alpha B^{p}]^{S}\}$

$\geq rTrAlogA$

holds for any $s\geq 1,$ $r\geq 0$ and $p\geq 0$ .

Taking $s=1$ and $r=p>0$ in Corollary 3.2 we have the following result [l,Theorem

5.3].

Theorem $G$ [1]. If $A\geq 0$ and $B>0$ , then for every $0\leq\alpha\leq 1$ and $p>0$

$\frac{1}{p}TrAlog(A^{p}\neq\alpha B^{p})+\frac{\alpha}{p}TrAlog(A^{p/2}B^{-p}A^{p/2})$

$\geq TrAlogA$ .

Corollary 3.3. If $A>0$ and $B>0$ , then for every $0\leq\alpha\leq 1$

$TrAlog(A^{p}\#\alpha B^{p})+TrAlog\{A^{q/2}[A^{-p}\neq\alpha B^{-p}]A^{q/2}\}$

$\geq qTrAlogA$

holds for any $p\geq 0$ and $q\geq 0$ .

We remark that Corollary 3.3 yields Theorem $G$ stated above taking $q=p$.

Also taking $s=2$ $t=0$ and $r=p\geq 0$ in Theroem 3.1 we have:

Corollary 3.4. If $A>0$ and $B>0$ , then for every $0\leq\alpha\leq 1$

$TrAlog(A^{P}\neq\alpha B^{P})^{2}og\{(B^{-p}A^{P/A^{P/2}}2)^{\alpha}A^{-p}(B^{-p}A^{P/2})^{\alpha}\}$

$\geq pTrAlogA$

holds for any $p\geq 0$ .
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At the end of this early announcement, we summarize the following implication relations

among results in this paper.

(1.10) in Theorem 1.1 Theorem 2.1

$\{$ $t=1$

Corollary 2.2

$\ovalbox{\tt\small REJECT}$

$r=s$

Theorem $D[1]$

(Furuta inequality) (log-majorization)

The details, proofs and related results in this paper will appear in [15].
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