$$A \ge B \ge 0$$
 ensures $(B^r A^p B^r)^{1/q} \ge (B^r B^p B^r)^{1/q}$ for $r \ge 0, p \ge 0, q \ge 1$
with $(1+2r)q \ge p+2r$ and its applications

東京理科大理 古 田 孝 之 (Takayuki Furuta)

In what follows, capital letter means a bounded linear operator on a Hilbert space.

An operator T is said to be positive (in symbol : $T \ge 0$) if $(Tx, x) \ge 0$ for all $x \in H$. Also an operator T is strictly positive (in symbol : T > 0) if T is positive and invertible.

As an extension of the Löwner-Heinz theorem [17][20], we established the Furuta inequality [6] which reads as follows. If $A \ge B \ge 0$, then for each $r \ge 0$ (i) $(B^r A^p B^r)^{1/q} \ge$ $(B^r B^p B^r)^{1/q}$ and (ii) $(A^r A^p A^r)^{1/q} \ge (A^r B^p A^r)^{1/q}$ hold for p and q such that $p \ge 0$ and $q \ge 1$ with $(1 + 2r)q \ge p + 2r$. We remark that the Furuta inequality yields the Löwner-Heinz theorem when we put r = 0 in (i) or (ii) stated above : if $A \ge B \ge 0$ ensures $A^{\alpha} \ge B^{\alpha}$ for any $\alpha \in [0, 1]$. Alternative proofs of the Furuta inequality are given in [3][8][18] and an elementary proof is shown in [9].

Theorem A (Löwner-Heinz 1934). If $A \ge B \ge 0$ ensures $A^{\alpha} \ge B^{\alpha}$ for any $\alpha \in [0, 1]$.

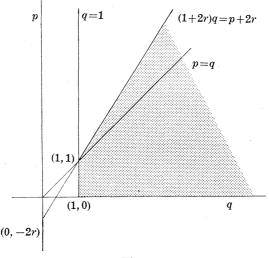
Related to Theorem A, the following result is well known.

Proposition. If $A \ge B \ge 0$ does not always ensure $A^p \ge B^p$ for any p > 1.

As a generalization of Theorem A and related to Proposition, we established the following result.

Theorem B (Furuta 1987). If $A \ge B \ge 0$, then for each $r \ge 0$ (i) $(B^r A^p B^r)^{1/q} \ge (B^r B^p B^r)^{1/q}$ and (ii) $(A^r A^p A^r)^{1/q} \ge (A^r B^p A^r)^{1/q}$ hold for each p and q such that $p \ge 0$, $q \ge 1$ and $(1 + 2r)q \ge p + 2r$.

Inequalities (i) and (ii) in Theorem B hold for the points on p, q and r belong to the oblique lines in the following figure.



Figure

In this paper, we cite several applications of Theorem B as follows.

Applications of Theorem B

(A) Operator inequalities

- (1) Characterizations of operators satisfying $log A \ge log B$
- (2) Generalizations of Ando's theorem
- (3) Applications to the relative operator entropy
- (4) Applications to other operator inequalities
- (5) Applications to the Log-Majorization by Ando and Hiai
- (6) Application to p-hyponormal operators for 0

.....

(B) Norm inequalities

- (1) Several type generalizations of Heinz-Kato theorem
- (2) Generalizations of some folk theorem on norm

(C) Operator equations

(1) Generalizations of Pedersen-Takesaki theorem and related results

Among applications of Theorem B states above, we cite [2][4][5][10] and [11] for (A) operator inequalities and also we cite [12][13][14] and [16] for (B) norm inequalities and finally we cite [7] for (C) operator equations.

Ando-Hiai [1] have established a lot of useful and beautiful results on log-majorization and we are really impressed with these beautiful and useful results. The purpose of this paper is to announce new application [15] of Theorem B to the log-majorization by Ando-Hiai [1]. Precisely speaking, we can interpolate Theorem B and this log-majorization.

§1. AN EXTENSION OF THE FURUTA INEQUALITY

First of all, we state the following extension of the Furuta inequality.

Theorem 1.1. If $A \ge B \ge 0$ with A > 0, then for each $t \in [0,1]$ and $p \ge 1$,

$$F_{p,t}(A, B, r, s) = A^{-r/2} \{ A^{r/2} (A^{-t/2} B^p A^{-t/2})^s A^{r/2} \}^{\frac{1-t+r}{(p-t)s+r}} A^{-r/2}$$

is a decreasing function of both r and s for any $s \ge 1$ and $r \ge t$ and the following inequality holds

(1.10)
$$A^{1-t} = F_{p,t}(A, A, r, s) > F_{p,t}(A, B, r, s)$$

for any $s \ge 1, p \ge 1$ and r such that $r \ge t \ge 0$.

Corollary 1.2. If $A \ge B \ge 0$ with A > 0, then for each $t \in [0, 1]$,

$$\{A^{r/2}(A^{-t/2}A^pA^{-t/2})^sA^{r/2}\}^{\alpha} \ge \{A^{r/2}(A^{-t/2}B^pA^{-t/2})^sA^{r/2}\}^{\alpha}$$

holds for any $s \ge 0$, $p \ge 0$, $0 \le \alpha \le 1$ and $r \ge t$ with $(s-1)(p-1) \ge 0$ and $1-t+r \ge ((p-t)s+r)\alpha$.

Remark 1.1. In the case t = 0 in Corollary 1.2, we may not assume A > 0. Putting t = 0 and s = 1 in Corollary 1.2, we have (ii) of Theorem B. Hence Corollary 1.2 can be considered as an extension of Theorem B since (i) is equivalent to (ii) in Theorem B.

Corollary 1.2 easily implies the following result when we put t = 1.

Corollary 1.3. If $A \ge B \ge 0$ with A > 0, then

$$A^{r} > \{A^{r/2}(A^{-1/2}B^{p}A^{-1/2})^{s}A^{r/2}\}^{\frac{r}{(p-1)s+r}}$$

holds for any $s \ge 1, p \ge 1$ and $r \ge 1$.

When we put s = r in Corollary 1.3, we have the following Theorem C obtained by Ando and Hiai [1,Theorem 3.5].

Theorem C [1]. If
$$A \ge B \ge 0$$
 with $A > 0$, then

$$A^{r} > \{A^{r/2}(A^{-1/2}B^{p}A^{-1/2})^{r}A^{r/2}\}^{1/p}$$

holds for any $p \ge 1$ and $r \ge 1$.

Corollary 1.4. If $A \ge B \ge 0$ with A > 0, then for each $t \in [0, 1]$

(i)
$$A^{1+t} \ge (A^{t/2}B^{2p-t}A^{t/2})^{\frac{1+t}{2p}} \ge |A^{-t/2}B^pA^{t/2}|^{\frac{1+t}{p}}$$

and

(ii)
$$A^2 \ge (A^{1/2}B^{2p-t}A^{1/2})^{\frac{2}{2p+1-t}} \ge |A^{-t/2}B^pA^{1/2}|^{\frac{4}{2p+1-t}}$$

hold for any $2p \ge 1 + t$.

Corollary 1.5. If $A \ge B \ge 0$ with A > 0, then

$$A^2 \ge (A^{1/2}B^{2p-1}A^{1/2})^{1/p} \ge |A^{-1/2}B^pA^{1/2}|^{2/p}$$
 for any $p \ge 1$.

Corollary 1.6 [4][10][11]. If $A \ge B \ge 0$, then

$$G(p,r) = A^{-r/2} (A^{r/2} B^p A^{r/2})^{(1+r)/(p+r)} A^{-r/2}$$

is a decreasing function of both p and r for $p\geq 1$ and $r\geq 0$.

§2. THE LOG-MAJORIZATION EQUIVALENT TO AN EXTENSION OF THE FURUTA INEQUALITY

Throughout this section , a capital letter means $n \times n$ matrix.

Following after Ando and Hiai [1], let us write $A \prec B$ for positive semidefinite matrices $A, B \ge 0$ and call the *log-majorization* if

$$\prod_{i=1}^{k} \lambda_i(A) \le \prod_{i=1}^{k} \lambda_i(B), \qquad k = 1, 2, \dots, n-1,$$

and

$$\prod_{i=1}^n \lambda_i(A) = \prod_{i=1}^n \lambda_i(B), \text{ i.e. det } A = \det B,$$

where $\lambda_1(A) \geq \lambda_2(A) \geq ... \geq \lambda_n(A)$ and $\lambda_1(B) \geq \lambda_2(B) \geq ... \geq \lambda_n(B)$ are the eigenvalues of A and B respectively arranged in decreasing order. Note that when A, B > 0 (strictly positive) the log-majorization $A \prec B$ is equivalent to $log A \prec log B$. Also $A \prec B$ ensures $\|A\| \leq \|B\|$ holds for any unitarily invariant norm.

Definition 1. When $0 \le \alpha \le 1$, the α -power mean of A, B > 0 is defined by

$$A \#_{\alpha}B = A^{1/2}(A^{-1/2}BA^{-1/2})^{\alpha}A^{1/2}.$$

Further $A \#_{\alpha} B$ for $A, B \ge 0$ is defined by

$$A \#_{\alpha} B = \lim_{\epsilon \downarrow 0} (A + \epsilon I) \#_{\alpha} (B + \epsilon I).$$

This α -power mean is the operator mean corresponding to the operator monotone function t^{α} . We can see [19] for general theory of operator means.

For the sake of convenience for symbolic expression, we define $A \natural_s B$ for any $s \ge 0$ and for A > 0 and $B \ge 0$ by the following

$$A \natural_s B = A^{1/2} (A^{-1/2} B A^{-1/2})^s A^{1/2}.$$

 $A
arrow_{\alpha} B$ in the case $0 \le \alpha \le 1$ just coincides with the usual α -power mean denoted by $A \#_{\alpha} B$.

We can transform (1.10) of Theorem 1.1 into the following log-majorization inequality by using the method by Ando and Hiai [1].

- **Theorem 2.1.** For every A > 0, $B \ge 0$, $0 \le \alpha \le 1$ and each $t \in [0, 1]$
- (2.1) $(A \#_{\alpha} B)^{h} \succeq_{(\log)} A^{1-t+r} \#_{\beta} (A^{1-t} \natural_{s} B)$

holds for $s \ge 1$, and $r \ge t \ge 0$, where $\beta = \frac{\alpha(1-t+r)}{(1-\alpha t)s+\alpha r}$ and $h = \frac{(1-t+r)s}{(1-\alpha t)s+\alpha r}$.

Corollary 2.2. For every $A, B \ge 0$ and $0 \le \alpha \le 1$,

(2.3)
$$(A\#_{\alpha}B)^{h} \underset{(\log)}{\succ} A^{r} \#_{\frac{h\alpha}{s}}B^{s} \qquad for \ r \ge 1 \quad and \quad s \ge 1$$

where $h = [\alpha s^{-1} + (1 - \alpha)r^{-1}]^{-1}$.

The above log-majorization is equivalent to any one of the following (2.4), (2.5) and (2.6):

(2.4)
$$(A^r \#_{\alpha} B^r)^{1/r} \underset{(\log)}{\succ} (A^q \#_{\frac{k\alpha}{p}} B^p)^{1/k} \quad for \ 0 < r \le q \ and \ 0 < r \le p,$$

where $k = [\alpha p^{-1} + (1 - \alpha)q^{-1}]^{-1}$.

(2.5)
$$(A^r \#_{\alpha} B^q)^{1/s} \underset{(\log)}{\succ} (A^p \#_{\frac{l\alpha}{r}} B^p)^{1/p} \quad for \ 0 < r \le p \ and \ 0 < q \le p \ ,$$

where $s = \alpha q + (1 - \alpha)r$ and $l = [\alpha r^{-1} + (1 - \alpha)q^{-1}]^{-1}$.

(2.6)
$$(A^r \#_{\alpha} B^q)^{1/u} \underset{(\log)}{\succ} (A^q \#_{\beta} B^p)^{1/p} \qquad \text{for } 0 < r \le q \le p,$$

where
$$u = \frac{\alpha q^2 + (1 - \alpha)pr}{q}$$
 and $\beta = \frac{\alpha q^2}{\alpha q^2 + (1 - \alpha)pr}$.

Remark 2.1. We remark that $h = [\alpha s^{-1} + (1-\alpha)r^{-1}]^{-1}$ in Corollary 2.2 is a generalized harmonic mean of r and s and when $\alpha = 1/2$, h is the usual harmonic mean of r and s. Also l in (2.5) is a generalized harmonic one of r and q, while s in (2.5) is a generalized arithmetic mean of q and r.

Corollary 2.2 yields the following result [1, Theorem 2.1].

Theorem D [1]. For every $A, B \ge 0$ and $0 \le \alpha \le 1$, $(A \#_{\alpha} B)^r \succeq A^r \#_{\alpha} B^r \qquad for \ r \ge 1$

or equivalently

$$(A^q \#_{\alpha} B^q)^{1/q} \underset{(\log)}{\succ} (A^p \#_{\alpha} B^p)^{1/p} \qquad for \ 0 < q \le p.$$

Also we can transform Corollary 1.2 into the following log-majorization.

Theorem 2.3. If A > 0 and $B \ge 0$, then for each $t \in [0,1]$ and $0 \le \alpha \le 1$

$$(A^{1/2}BA^{1/2})^{\alpha ps} \underset{(\log)}{\succ} A^{\frac{1}{2}\alpha((p-t)s+r)} (A^{\frac{-(r-t)}{2}}(A^t \natural_s B^p) A^{\frac{-(r-t)}{2}})^{\alpha} A^{\frac{1}{2}\alpha((p-t)s+r)}$$
$$= A^{\frac{q}{2}} [A^{r-t} \#_{\alpha}(A^{-t} \natural_s B^p)] A^{\frac{q}{2}}$$

holds for any nonnegative numbers s, p and r such that $r \ge t$ and $(s-1)(p-1) \ge 0$ with $1-t+r \ge ((p-t)s+r)\alpha$ where $q = \alpha(p-t)s + \alpha r - r + t$.

Theorem 2.4. If A > 0 and $B \ge 0$, then for each $t \in [0,1]$ and $0 \le \alpha \le 1$ $A^{1/2}(A^p \#_{\alpha} B^p)^{q/p} A^{1/2}$ $\sum_{(\log)} A^{\frac{1}{2}(1-\frac{qt}{p}+\frac{rq}{ps})} \{A^{-r/2} [A^{\frac{t}{2}}(A^p \#_{\alpha} B^p) A^{\frac{t}{2}}]^s A^{-r/2} \}^{\frac{q}{sp}} A^{\frac{1}{2}(1-\frac{qt}{p}+\frac{rq}{ps})}$ holds for every $p \ge q > 0$, $r \ge t$ and $s \ge 1$.

When t = 0 Theorem 2.4 becomes the following result.

Corollary 2.5. If
$$A > 0$$
 and $B \ge 0$, then for every $0 \le \alpha \le 1$
 $A^{1/2}(A^p \#_{\alpha} B^p)^{q/p} A^{1/2}$
 $\succ A^{\frac{1}{2}(1+\frac{rq}{ps})} \{A^{-r/2}(A^p \#_{\alpha} B^p)^s A^{-r/2}\}^{\frac{q}{sp}} A^{\frac{1}{2}(1+\frac{rq}{ps})}$

holds for every $p \ge q > 0$, $r \ge 0$ and $s \ge 1$.

When s = 1 and r = p Corollary 2.5 yields the following Theorem E [1, Theorem 3.3].

Theorem E [1]. If
$$A > 0$$
 and $B \ge 0$, then
 $A^{1/2} (A^p \#_{\alpha} B^p)^{q/p} A^{1/2}$
 $\sum_{(\log)} A^{\frac{1+q}{2}} (A^{-p/2} B^p A^{-p/2})^{\frac{\alpha q}{p}} A^{\frac{1+q}{2}}$

for every $0 \le \alpha \le 1$ and $0 < q \le p$.

Taking s = 2 and r = p in Corollary 2.5 we have

Corollary 2.6. If
$$A > 0$$
 and $B \ge 0$, then for every $0 \le \alpha \le 1$

 $A^{1/2}(A^p \#_{\alpha} B^p)^{q/p} A^{1/2}$

$$\succ A^{\frac{1}{2}(1+\frac{q}{2})} \{ (A^{-p/2}B^{p}A^{-p/2})^{\alpha} A^{p} (A^{-p/2}B^{p}A^{-p/2})^{\alpha} \}^{\frac{q}{2p}} A^{\frac{1}{2}(1+\frac{q}{2})}$$

holds for any $0 < q \leq p$.

Corollary 2.7. If A > 0 and $B \ge 0$, then for every $0 \le r \le 1$

$$A^{r/2}B^r A^{r/2} \succeq A^{\frac{r(1+\alpha)}{2}} (A^{-1/2}B^{1/\alpha}A^{-1/2})^{\alpha r} A^{\frac{r(1+\alpha)}{2}}$$

holds for every $0 < \alpha \leq 1$.

Corollary 2.8. If A > 0 and $B \ge 0$, then for every $0 \le r \le 1$

$$(A^{1/2}BA^{1/2})^{r} \succeq A^{\frac{\alpha u + r}{2}} (A^{-u/2}B^{r/\alpha}A^{-u/2})^{\alpha} A^{\frac{\alpha u + r}{2}}$$

holds for every $0 < \alpha \leq 1$ and $u \geq 0$.

Corollary 2.7 and Corollary 2.8 imply the following known result [1, Corollary 3.4].

Corollary F [1]. If
$$A > 0$$
 and $B \ge 0$, then for every $0 \le r \le 1$

$$(A^{1/2}BA^{1/2})^r \succeq A^{r/2}B^r A^{r/2} \succeq A^r (A^{-1/2}BA^{-1/2})^r A^r.$$

§3. LOGARITHMIC TRACE INEQUALITIES AS AN APPLICATION OF LOG-MAJORIZATION IN §2

Throughout this section, a capital letter means $n \times n$ matrix.

Theorem 3.1. If
$$A > 0$$
 and $B \ge 0$, then for every $0 \le \alpha \le 1$ and $t \in [0, 1]$
 $s \operatorname{Tr} A \log(A^p \#_{\alpha} B^p) - \operatorname{Tr} A \log\{A^{-r/2}[A^{t/2}(A^p \#_{\alpha} B^p)A^{t/2}]^s A^{-r/2}\}$
 $\ge (r - st) \operatorname{Tr} A \log A$

holds for any $s \ge 1$, $r \ge t$ and $p \ge 0$.

When t = 0 Theorem 3.1 yields the following result.

Corollary 3.2 . If A>0 and $B\geq 0$, then for every $0\leq \alpha \leq 1$

$$s \operatorname{Tr} A \log(A^{p} \#_{\alpha} B^{p}) - \operatorname{Tr} A \log\{A^{-r/2} [A^{p} \#_{\alpha} B^{p}]^{s} A^{-r/2}\}$$

 $\geq r \operatorname{Tr} A \log A$

holds for any $s \ge 1$, $r \ge 0$ and $p \ge 0$.

Taking s = 1 and r = p > 0 in Corollary 3.2 we have the following result [1,Theorem 5.3].

Theorem G [1]. If $A \ge 0$ and B > 0, then for every $0 \le \alpha \le 1$ and p > 0 $\frac{1}{p} \operatorname{Tr} Alog(A^p \#_{\alpha} B^p) + \frac{\alpha}{p} \operatorname{Tr} Alog(A^{p/2} B^{-p} A^{p/2})$ $\ge \operatorname{Tr} Alog A.$

Corollary 3.3. If A > 0 and B > 0, then for every $0 \le \alpha \le 1$

 $\mathrm{Tr}Alog(A^{p}\#_{\alpha}B^{p}) + \mathrm{Tr}Alog\{A^{q/2}[A^{-p}\#_{\alpha}B^{-p}]A^{q/2}\}$

 $\geq q \mathrm{Tr} A log A$

holds for any $p \ge 0$ and $q \ge 0$.

We remark that Corollary 3.3 yields Theorem G stated above taking q = p.

Also taking s = 2, t = 0 and $r = p \ge 0$ in Theorem 3.1 we have :

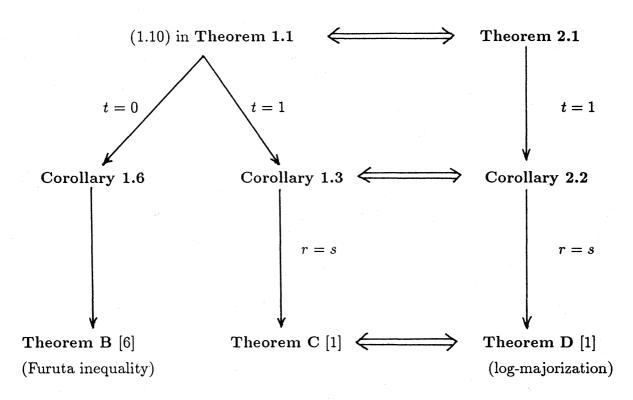
Corollary 3.4. If A > 0 and B > 0, then for every $0 \le \alpha \le 1$

$$TrAlog(A^{p} \#_{\alpha} B^{p})^{2} + TrAlog\{(A^{p/2} B^{-p} A^{p/2})^{\alpha} A^{-p} (A^{p/2} B^{-p} A^{p/2})^{\alpha}\}$$

 $\geq p \mathrm{Tr} A \log A$

holds for any $p \ge 0$.

At the end of this early announcement, we summarize the following implication relations among results in this paper.



The details, proofs and related results in this paper will appear in [15].

REFERENCES

- [1] T.Ando and F.Hiai,Log-majorization and complementary Golden-Thompson type inequalities, to appear in Linear Alg. and Its Appl..
- [2] E.Bach and T.Furuta, Order preserving operator inequalities,J. Operator Theory, 19(1988),341-346.
- [3] M.Fujii, Furuta's inequality and its mean theoretic approach,J. Operator Theory, 23 (1990),67-72.
- [4] M.Fujii, T.Furuta and E.Kamei, Operator functions associated with Furuta's inequality, Linear Alg. and Its Appl., 149(1991),91-96.
- [5] M.Fujii, T.Furuta and E.Kamei, Furuta's inequality and its application to Ando's theorem, Linear Alg. and Its Appl., 179(1993),161-169.
- [6] T.Furuta, $A \ge B \ge 0$ assures $(B^r A^p B^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0, p \ge 0, q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc., 101 (1987),85-88.

- [7] T.Furuta, The operator equation $T(H^{1/n}T)^n = K$, Linear Alg. and Its Appl., 109(1988),140-152.
- [8] T.Furuta, A proof via operator means of an order preserving inequality, Linear Alg. and Its Appl., 113(1989),129-130.
- [9] T.Furuta, Elementary proof of an order preserving inequality, Proc. Japan Acad., 65 (1989),126.
- [10] T.Furuta, Two operator functions with monotone property, Proc. Amer. Math. Soc. 111(1991),511-516.
- [11] T.Furuta, Applications of order preserving operator inequalities, Operator Theory: Advances and Applications, 59:180-190(1992).
- [12] T.Furuta, Some norm inequalities and operator inequalitiesvia the Furuta inequality, Acta Sci. Math. (Szeged) 57(1993),139-145.
- [13] T.Furuta, Grneralization of Heinz-Kato theorem via Furuta inequality, Operator Theory: Advances and Applications, 62(1993),77-83.
- [14] T.Furuta, Applications of the Furuta inequality to operator inequalities and norm inequalities preserving some orders.
 Operator Theory: Advances and Applications, 61(1993),115-122.
- [15] T.Furuta, Extension of the Furuta inequality and log-majorization by Ando-Hiai, to appear in Linear Alg. and Its Appl..
- [16] T.Furuta, Determinant type generalizations of Heinz-Kato theorem via Furuta inequality, to appear in Proc. Amer. Math. Soc..
- [17] E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann., 123(1951),415-438.
- [18] E.Kamei, A satellite to Furuta's inequality, math. Japon, 33 (1988),883-886.
- [19] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann. 246(1980),205-224.
- [20] K.Löwner, Über monotone Matrixfunktionen, Math. Z., 38 (1934),177-216.