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Abstract. The multiple existence of periodic solutions of nonlinear Lienard
system is treated. The proof is based on the theory of topological degree

and monotone operators.

1. Introduction. The purpose in this present paper is to consider the
multiple existence of solutions to the periodic problem of the Lienard system

of the form :

n_d
T —EG(x) + f(t,z)=e (E)

z(0) — z(27) = 2'(0) — 2'(27) = 0 (B)
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where ¢ € RY, and G : RN — RY and f: R x RN — R" are continuous
function. More precisely, we discuss the existence of a constant Ro € RY
with e > Rg for which the problem (P) has at least 2% solutions.

This type of result, so called an Ambrosetti-Prodi type result(briefly
APT result), has been initiated by Ambrosetti-Prodi [1] in 1972 in the
study of a Dirichlet problem to elliptic equations and developed in various
directions by several authors to ordinary and partial differential equations.
A notable discussion for APT results for periodic solutions has been done
by Fabry. Mawhin and Nkashama [3] for second order ordinary differential
equations with one-side coercive nonlinearity and they particulized their
results to Lienard equations having a coercive nonlinearity. A similar re-
sult for periodic solutions of the first order ordinary differential equations
has been made by Mawhin [5]. In their work, the proofs made use of the
upper-lower solution method and degree theory. For APT results to the

higher order (> 3) ordinary differential equations having a coercive non-

linearity, we refer to read Ding and Mawhin [2]. They used degree theory
and Lyapunov-Schmidt argument and they imposed an unilateral Lipschitz
condition on the nonlinear term when the order is even.

We refer also to read Ramos and Sanchez [6], and Ramos [7] for APT
results of periodic solutions for higher order (> 3) ordin?.ry differential
equations with a coercive nonlinear term. They treated APT results when
the nonlinear term has an one-sided growth restriction. They made use of
variational method and degree theory.

For our result, we impose the following conditions:
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f:Rx RY — RV is a continuous function of the form
f(t,2) = g(z) + h(t, z)

where g : RY — RY¥ is a continuous functions of the form

(1.1) g(z) = (q1(z1), - -, gn(zn)) for all z= (24, -, 2N)
and
(1.2) | llim gi(z) =00, k=1,---,N.

h:R x RY — R¥ is a continuous mapping and satisfies
(1.3) sup{|h(t,z)|: (t,z) ERx RN} < M for some M >0.

G € C*(RY, R") satisfies that there exists ¢ > 0 and d > 0 with d < 1
such that

(1.4) |G(z) — G(y)| < d|lz —y| for all z,y€ RN
and
(1.5) (G'(2)y,y) > cly/* for all z,y€RY

where G'(z) is the Frechet derivative of G.

Remark. If G’ (z) is independent of z, we do not need the conditions (1.4)
and (1.5). We need that A = G'(z) is a strongly positive definite matrix
with ||4]| < 1.
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Theorem. Assume that G and f satisfies (1.1)-(1.5). Then there exists
Ry > 0 such that for each e € RN with e > Ro forall 1 < k < N, the

problem (P) possesses at least 2V solutions.

2. Proof of Theorem. We first introduce notations we need. We denote

by ||-|| and (, ) the norm and inner product, respectively, of the space
L2((0,2r), RN), Cy denotes the Banach space of 2rx-periodic functions « :
R — RN of class C". The norm of CJ is defined by ||z]lec = sup{|z(t)|: t €

[0, 2]} for ¢ € Cp. We put C3° = Ng2, C;.

We denote H the subspace of CI} defined by
H = {z € C*(R, R") : 2(0) — z(27) = 2'(0) — &'(27) = 0}.

For each e € H, we write ¢ = € 4+ € with

1 27 27
€= g/o e(t)dt, /o e(t)dt = 0.
The subspace H of H is defined by
FI:{:L‘EH::E‘:O}.

Then H has the decompition H = H®RY. The projections from H onto
H and RV are denoted by P and P, respectively. Then

a:=?c'+:i'=ﬁx+15:v for all z € H.



Moreover, we denote by P; the i-th component of P. That is
Pz = (1311', . ,PN:L') for z € H.

‘The identity mappings on H and RV are denoted by TandI = (hL,---,In),
respectively. For each r > 0, we denote by J(r) open interval (0,r),
—J(r) stands for the interval (—r,0). We denote by J(r) closed interval
[0, r], = J(r) stands for the interval [—r, 0].

Let B be a subspace of L?((0,2x), RY) defined by

E = {z € L*((0,27),R") : 7 = 0}.

We set
V ={z € E: &' € L*((0,2r),R")}.

Then V is a Hilbert space with the norm
Izl = ll=lI* + [l&'lI* for z €V,

and continuously embedded in E (we write V «— E). We denote by V*

the dual space of V. Then V «— E «— V*. For each # € RV, we define a
mapping Lz from V into its dual space V* by

(Lzz,y) = (=", ¢') + (G'(z + Z)2',y) for all z,yeV.

If we define a subset Hy of H by Hy = {x € H : 2" € L?((0,2x), RN )}.
Then the problem (P) is equivalent to the abstract equation —L;Z =e— f
in Ho.

Now we have

19
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Lemma 1. For each # € R¥,L; : V — V* is a continuous and strongly

monotone mapping.

Proof. It is obvious from the definition that L; is continuous. Let z,y € V.
Then we have
(Lzx — Lzy,z — ) =||z' = ¢'|* + (G'(z + 2)a' = G'(y + 2)y', = — y)
=|le' —¢'|I? = (G(z + 2) - G(y + 2),2" ~ ¢/)

2|le’ = ¢'lI* = dlle - yllllz" - ¥'ll.

Then nothing that ||z|| < ||#’|| for z € V, we find that

(Lez—Lzy,o—y) > (1=d)|lz’' = ¢'||* > (1-d)llz - g|* for all z,yeV.
This completes the proof.

It follows from Lemma 1 that £ C R(L;) and L; is injective. Hence
L;' : E - V C E is well defined. Again from Lemma 1, we see that
the operator f — Lz 'f from E into V is bounded. Since V is compactly

imbedded in E, we find that L;! is a compact operator.
Lemma 2. If we define ﬁo = {z € Hyp : = 0}, then ﬁo = L;—'l(E).

Proof. It is clear that H, C L;'(E).Let f € E and suppose that L7Y(f) =
z. Then there exists a sequence {z,} in C;° such that z, — « in V. By
the continuity of Lz, we have Lz, — Lyz in L?((0,2x), RN). If we put
L;z, = fa, then clearly fn — f in L?((0,2x), RY), 2! — G'(& + o)z, =



—fn and @,,(0) = ,,(27). Since z, — = in V,z, — zin Cy and 2, — ¢’ in

L?((0,2x), RY). Hence z!! — G'(Z + z)z' — f in L?((0,2x), RY) and thus

[: z, (8)ds —> /;:[G'(:Z' + ()2’ (s) — f(s)]ds

for all ¢,tq € [0, 27].
Since 2!, — &' a.e. in [0, 2], for ¢y € [0, 27] such that =] (ty) — z'(ty), we

have

#(0) = '(ta) = [ 16'(2 +2(s))e'(s) = £(o)ds
a.e. in [0, 27].

Hence 7" — G'(Z + )2’ = —f a.e. on [0,27] and so " € L3((0,2r), RY).
Since g/ — 2" in L2((0,2r),R") and ¢, = ¢

= 0, by the Sobglev inequal-

i
ity, ¢, — «' in CJ. Hence ¢ € C'(R, R") and ¢'(0) = ¢'(27). Therefore

T € I}o and thus ﬁo = L;l(E).

Lemma 3. There exists My > 0 such that for any solution z of (P),

(2.1) [#lleo < Mo.

Proof. Let ¢ € H be a solution of (P). We multiply (E) by ' and integrate
over [0, 2r]. Then nothing that z satisfies (B), we find that

2r
|| < / Ih(t, @)|le' |dt < 2 M|l
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Thereforé
"x'" < 2rMle.

By the Sobolev inequality, the assertion follows.

Here we put

W={F€H:|F|o< M}

We define a family {T, : s € [0,1]} of mappings from W x RV into H xRN
by

n(2)-(83) - (GSvusen)

where ¢ = Z + . If (%, %) is a fixed point of T, for some s € [0.1], Then

(2.2) P(z" - %G(z) + g(z) + sh(t,z)) =0
and
(2.3) P(g(z) + sh(t,z)) = e.

It is easy to see that (2.2) and (2.3) implise that £ = T + & is a solution of
the problem

(P) o'~ £G(z) +9(a) + sh(t, ) = .

If s =1,z is a solution of (P).
We will show that if we choose Ry sufficiently large, the mapping Ty pos-
sesses at least 2V fixed points for each e € RN, with ¢; > Ro,i=1,---,N.
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Here we choose a positive number Ry so large that
(2.4) (sup{ge(t): |t| < Mo} + M)< Ry for all 1<k<N.

It then follows that for each ¥ € H with IZ)lec < Mo,

(2.5) P (9:(Zx) + shi(t, 7)) < Ry

for all s €[0,1] and k = 1,---,N. Now we fix e € RV such that
e, >Ry, for all +=1,--- N.

We next choose a positive number R; such that Ry, > Ro and

inf{ge(t): [t| > R1 — Mo} >ex + M for all k=1,---,N.

This implies that

(2.6) Pi(ge(Tr + Z1) + shi(t, 2)) > er

for all z € H with ¥ € W and |Zz| > Ry. We set J(R1) = (0, R1). We also

set
K ={(1,-,in):4g==x1 for 1<k<N}

Then K contains 2V elements.
Now let

N
Do =W x [[irJ(R)).
k=1
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If ¢ € H is a solution of (P) in Dy, then

s
lzlle < Ra + ‘—3M/C-

v

Multiply (E) by " and integrate over [0, 2], then

2r

W(x"(t))zdt— /0 G'(z(t))a'(t)z" (t)dt

0

2r

+/0 rg(:z:(t))x"(t)dt+ 5 h(t, z(t))z" (t)dt = 0.

Since G € C*(RY,R"),g: RN — R" is continuous and |h(t,z)| < M for
all (t,2) € R x R", we have

"l < M} for some Mj >0

where M/ depends only on ¢, R;, G, g and h.
Consequently, there exists a constant M; > 0 such that

ll='lleo < My
for any possible solution of (P) lying in Dy.

Define D by

N
D=wW°x [[irJ(R)IN{z € H: ||z'lc < M1}
k=1

where W0 = {& € H : ||F|lec < Mo}



Then we have the following :

Lemma 4. For each (41, ,in) € K,

deg(I — Ty, D,0) = 1.

Proof. Let (¢1,---,tn) € K. We define a homotopy of compact mappings

Fy(z) = (B (8), Fur(a), -, Fon(s)), 0<s<1,

on D by
F,(z) = (1= s)L7}(P(g(2)))

and
Foi(z) = (1 —s)(Zr —ie(gr(zr)) —ex) — sz, 1< kSN

Here z = (21, -+, 2x) is afixed vector such that z; = —1;6 for some sufficent
small positive number 8.

From the definition of F,, we have that Fy = T and
(2.7) Fi(z) = (0,446, --,in6) for all z€V.

Now let s € [0,1] and z € D be a fixed point of F,. Then « satisfies

(2.8) L:% — (1 - s)Pg(z) = 0.
and

(2.9) (1= 5)(ie(gr(er) — ex)) + 5(Zx + 2) = 0.

125
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Then we can see from Lemma 3 that T ¢ SW?. On the other hand, if #; = 0
for some 1 < k < N, then by (2.5) we have

(1 — 8)((gr(Zr) — er)) — 826 # 0.

This contradicts to (2.9). That is Z; # 0 for any 1 < k¥ < N. Suppose next
that Z = iz R, for some 1 < k < N. Then by (2.6),

(2.10) (1 —s)(or(gr(zr) — er)) + s(tx Ry — 1 6) # 0.

Then form the argument above, we obtain that z ¢ 8D. Therefore from

the invariance of degree under homotopy, we have that
deg(I — Ty, D,0) = deg(I — Fy, D, 0) = deg(I — F, D, 0).

We can see from (2.7) that deg(f — F1,D,0) = 1 Therefore the assertion

follows.

Proof of Theorem We can see from (2.4),(2,2) and (2.6) that
Tye#z for €8D) and 0<s< 1.
Then by the homotopy invariance of degree, we have from Lemma 4 that

(2.11) ~deg(I-T1,D)=1

for any (41, --,in) € K. In fact, if (2.11) holds each (i1, ---,in) € K,
the problem (P) has a solution in D. Therefore (P) possesses at least 2V

solutions.
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