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Minimax Theorems of Vector-Valued Functions*

弘前大学理学部 \dagger 田中 環 (Tamaki Tanaka)\ddagger

Abstract. In this paper, we consider multicriteria games, in which we have the
following particular questions: If we give reasonable definitions for minimax values
and maximin values of a vector-valued function in an ordered vector space, what
minimax equation or inequaFuty holds? Also, if we give a suitable definition for
saddle points of the vector-valued function, under what conditions do there exist
such saddle points? Moreover, what relationship holds among such minimax values
and maximin values and saddle values? These questions are caUed minimax problems
for vector-valued functions.

Then, we will give interesting answers to such open questions and will show three
types of minimax theorems for vector-valued functions.

Key Words. Minimax theorems, multicriteria games, vector optimization, multi-
objective programming, multiple criteria decision making.

1. Introduction and Preliminaries

It is well-known in game theory that scalar games have the following result: a real-valued
payoff function possesses a saddle point if and only if the minimax value and the maximin
value of the function are coincident. One of unsolved problems in game theory is whether
games with multiple noncomparable criteria have an acceptable theory similar to standard
results for scalar games. This kind of game is caUed “a multicriteria game,” and the payoff
takes its values in a vector space. Such a game has been researched in the past as found
in [2], [25], [6], [11], and [12]. On the other hand, minimax theorems for a vector-valued
function and some generalizations of a saddle point concept have been explored actively
from the mathematical aspect; see [23], [8], [9], and [10]. Also, the author have separately
researched such minimax problems in general setting and proved minimax theorems, ex-
istence theorems for saddle points, and saddle point theorems in [28], [29], [30], [32], and
[34]; all of such researches are contained in the author’s doctoral thesis [33].

These papers give interesting answers to such open questions above. It is, however,
unsatisfactory that few papers of them are devoted to the multicriteria games. As a matter
of fact, minimax theorems and saddle point problems for a real-valued function are closely
connected with (scalar) game theory. Therefore, it is great important to reexamine the
results as shown in the above papers from the multicriteria game’s angle.
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The aim of this research is to clarify the structure of the multicriteria two-person games
and gives an acceptable theory to them. To this end, we will define and characterize
several strategies for players of the game. Also, we will present some modifications of
author’s minimax theorems in [33] for a vector-valued function. Some elementary results
and tools in this paper are based on [33] and [34].

The organization of the paper is as follows. In Section 2, we shall give an formulation
for a multicriteria two-person zero-sum game, and define an optimal response strategy.
In Section 3, we shall give some generalization of the saddle point concept, which are
called “cone saddle points,” and prove some existence theorems for such saddle points. In
Section 4, we shall state a saddle point theorem and three types of minimax theorems for
a vector-valued function.

Now, we give the preliminary terminology used throughout the paper. To begin with, the
main spaces with mathematical structures on which our results work are a real topological
vector space (t.v. $s$ . for short) or a real locally convex space (l.c. $s$ . for short) as a domain of
functions and an ordered real topological vector space (ordered t.v. $s$ . for short) as a range
space of functions. We assume that the topologies are Hausdorff; one of the reasons why
we work on a Hausdorff l.c. $s$ . is the purpose of applying Browder’s coincidence theorem;
see [3] and [26]. (The coincidence theorem is a cyclical version of Fan-Glicksberg type’s
fixed-point theorems; see [7] and [13].)

If $C$ is a convex cone of a real vector space $S$ , the relation $\leq c$ defined below is a (partial)
vector ordering of $S$ : for $x,$ $y\in S$

$x\leq cy\Leftrightarrow y-x\in C$ . (1.1)

Conversely, let $S$ be a real ordered vector space with a vector ordering $\leq$ , and let $C$ $:=$

$\{x\in S|0\leq x\}$ . Then $C$ is a convex cone of $S$ , and its ordering $\leq c$ is coincident with $\leq$ ;
see page 2 in [19]. Thus, there is a one-to-one correspondence between vector orderings of
a real ordered vector space $S$ and convex cones in $S$ , and hence we assume that such real
ordered vector space [resp. ordered t.v. $s.$ ] has a convex cone $C$ and that the ordering is
defined by (1.1).

Throughout this paper, let $Z$ be an ordered t.v. $s$ . with an ordering defined by a convex
cone $C$ . The convex cone $C$ is assumed to be pointed, i.e., $C\cap(-C)=\{0\}$ , and hence
the ordering is antisymmetric and $C\ni 0$ . Moreover, for the convenience, the convex
cone $C$ is assumed to be solid, i.e., its (topological) interior int $C$ is nonempty, and hence
$C^{0}$ $:=$ (int $C$ ) $\cup\{0\}$ is a pointed convex cone and induces another (antisymmetric) vector
ordering $\leq_{C^{0}}$ weaker than $\leq c$ in $Z$ . Also, we remark that the orderings $\leq c$ and $\leq_{C^{0}}$ are
two directed antisymmetric partial orderings; (an ordering $\leq is$ directed” means that given
$x,$ $y\in Z$ , there exists $z\in Z$ such that $x\leq z$ and $y\leq z$ .

Next, with respect to each of the orderings $\leq c$ and $\leq c^{0}$ , we shall define minimal ele-
ments and maximal elements of a subset $A$ of $Z$ . As the concept, we will adopt “cone
extreme point,” the concept of which was proposed by P.L.Yu in [35]. An element $z_{0}$ of
a subset $A$ of $Z$ is said to $\cdot be$ a C-minimal point of $A$ if $\{z\in A|z\leq cz_{0}, z\neq z_{0}\}=\emptyset$,
and a C-maximal point of $A$ if $\{z\in A|z_{0}\leq cz, z\neq z_{0}\}=\emptyset$ ; which are equivalent to
$A\cap(z_{0}-C)=\{z_{0}\}$ and $A\cap(z_{0}+C)=\{z_{0}\}$ , respectively. We denote the set of such all
C-minimal [resp. C-maximal] points of $A$ by $MinA$ [resp. $MaxA$]. Also, $C^{0}$-minimal and $C^{0_{-}}$

maximal points of $A$ are defined similarly, and denoted by ${\rm Min}_{w}A$ and ${\rm Max}_{w}A$ , respectively.
These $C^{0}$-minimality and $C^{0}$-maximality are weaker concepts than C-minimality and C-
maximality, respectively: it should be remarked that $MinA\subset{\rm Min}_{w}A\subset A$ and $MaxA\subset$
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${\rm Max}_{w}A\subset A$ . Moreover, ${\rm Min}\alpha A=\alpha MinA,$ ${\rm Max}\alpha A=\alpha MaxA,$ ${\rm Min}_{w}\alpha A=\alpha{\rm Min}_{w}A$ ,
${\rm Max}_{w}\alpha A=\alpha{\rm Max}_{w}A$ for any $\alpha>0$ ; and ${\rm Min}(A+a)=MinA+a,$ ${\rm Max}(A+a)=MaxA+a$ ,
${\rm Min}_{w}(A+a)={\rm Min}_{w}A+a,$ ${\rm Max}_{w}(A+a)={\rm Max}_{w}A+a$ for any $a\in Z$ .

2. A Multicriteria Two-Per\’{s}on Zero-Sum Game

A multicriteria two-person zero-sum game, or a two-person vector-valued zero-sum game,
is a 4-tuple $\Gamma:=(X, Y, -f, f)$ , where $X$ and $Y$ are nonempty sets and $f$ is a mapping
$f$ : $X\cross Yarrow Z$ , and $Z$ is an ordered t.v. $s$ . with an ordering defined by a convex cone $C$ .
The set $X$ (resp. Y) is the set of strategies of player 1 (resp. player 2) and the $mapping-f$
(resp. f) is the payoff function of this player. (Possibly such strategies are mixed strategies
and such payoff functions are the expect\^ed payoffs.) When player 1 and player 2 choose
a strategy $x\in X$ and a strategy $y\in Y$ , respectively, the payoffs with respect to player 1
and player 2 are given by $vectors-f(x, y)$ and $f(x, y)$ , respectively. Each player chooses a
strategy in order to increase his payoff and wants to find a strategy maximizing his payoff.
Thus, player 1 is regarded as minimizer and player 2 as maximizer.

Under this game, there are two approaches for finding equilibrium strategies. One is to
find optimal response strategy pairs, and the other is to find optimal security strategy pairs.
These concepts are coincident when $Z=R$, i.e., the payoff function $f$ is scalar-valued. The
concepts of optimal response strategy and optimal security strategy are given in [11].

In this paper, we will adopt the approach of finding optimal response strategy pairs. To
this end, we generalize the concept of optimal response strategy to more general type.

Definition 2.1. A strategy $x_{0}\in X$ is said to be an optimal response strategy for player 1
against a strategy $y\in Y$ of player 2 if $f(x_{0}, y)\in Minf(X, y)$ . Similarly, a strategy $y_{0}\in Y$

is said to be an optimal response strategy for player 2 against a strategy $x\in X$ of player 1 if
$f(x, y_{0})\in Maxf(x, Y)$ . The sets of all optimal response strategies for each player against an
opponent’s given strategy ($y\in Y$ and $x\in X$ ) are defined by $R_{1}(y)$ and $R_{2}(x)$ , respectively.

Definition 2.2. A strategy $x_{0}\in X$ is said to be an weak optimal response strategy for
player 1 against a strategy $y\in Y$ of player 2 if $f(x_{0}, y)\in{\rm Min}_{w}f(X, y)$ . Similarly, a strategy
$y_{0}\in Y$ is said to be an weak optimal response strategy for player 2 against a strategy $x\in X$

of player 1 if $f(x, y_{0})\in{\rm Max}_{w}f(x, Y)$ . The sets of all weak optimal response strategies for
each player against an opponent’s given strategy ($y\in Y$ and $x\in X$) are $R_{1}^{w}(y)$ and $R_{2}^{w}(x)$ ,
respectively.

For the convenience, we denote each optimal response set as follows:
$D_{1}$ $:=\{(x, y)\in X\cross Y|y\in R_{2}(x), x\in X\}$ , (2.1)

$D_{2}$ $:=\{(x, y)\in X\cross Y|x\in R_{1}(y), y\in Y\}$ . (2.2)

Similarly, weak optimal response sets are denoted by $D_{1}^{w}$ and $D_{2}^{w}$ . It should be remarked
that for any $y\in Y$ and $x\in X$ ,

$R_{1}(y)\subset R_{1}^{w}(y)$ , $R_{2}(x)\subset R_{2}^{w}(x)$ (23)

and that
$D_{1}\subset D_{1}^{w}$ , $D_{2}\subset D_{2}^{w}$ . (2.4)

Then, we find the following idea of equilibrium strategies.
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Definition 2.3. A point $(x_{0}, y_{0})$ is said to be an equilibrium optimal response strategy
pair [resp. equilibrium weak optimal response strategy pair] of the game if $x_{0}\in R_{1}(y_{0})$

and $y_{0}\in R_{2}(x_{0})$ [resp. $x_{0}\in R_{1}^{w}(y_{0})$ and $y_{0}\in R_{2}^{w}(x_{0})$ ]. The set of all equihbrium optimal
response strategy pairs (resp. equilibrium optimal response strategy pairs) is given by
$D_{1}\cap D_{2}$ (resp. $D_{1}^{w}\cap D_{2}^{w}$ ).

These concepts coincide with ones of a C-saddle point and a weak C-saddle point of $f$ ,
respectively;

$f(x_{0}, y_{0})\in Maxf(x_{0}, Y)\cap Minf(X, y_{0})$ , (2.5)

$f(x_{0}, y_{0})\in{\rm Max}_{w}f(x_{0}, Y)\cap{\rm Min}_{w}f(X, y_{0})$ . (2.6)

Such concepts of generalized saddle point are defined in Section 3. We present the following
example, which is given in [6].

Example 2.1. Consider a multicriteria two person (matrix) game $\Gamma=(X, Y, -f, f)$ as
follows:

$X=Y=\{x\in R^{2}|x=(x_{1}, x_{2}),$ $\sum_{i=1}^{2}x_{i}=1,$ $x_{1},$ $x_{2}\geq 0\}$ ,

$Z=R^{2},$ $C=R_{+}^{2}=\{z\in R^{2}|z=(z_{1}, z_{2}),$ $z_{1}\geq 0,$ $z_{2}\geq 0\}$ ,

$f(x, y)=(x^{T}A_{1}y,$ $x^{T}A_{2}y)$ , where $A_{1}=(\begin{array}{ll}0 21 0\end{array})$ and $A_{2}=(\begin{array}{ll}0 -1-2 0\end{array})$ .

Then, we have

$R_{1}(y)=\{x_{(0,1)\}}\{otherwise0\leq y_{1}<\frac{1}{3},\frac{2}{3}<y_{1}\leq 1\cdot$

$R_{2}(x)=\{Y\{(0,1)\}0\leq x_{1}<\frac{1}{3},\frac{2}{3}<x_{1}\leq 1otherwise$

for $x=(x_{1}, x_{2})\in X$ and $y=(y_{1}, y_{2})\in Y$ . Also, the corresponding optimal response sets
$D_{1}$ and $D_{2}$ transformed by the substitution $x_{2}=1-x_{1}$ and $y_{2}=1-y_{1}$ are shown in
Figure 2.1.

In this example, when player 1 and player 2 choose their strategies $x^{*}=(x_{1}, x_{2})$ and
$y^{*}=(y_{1}, y_{2})$ satisfying $(x^{*}, y)\in D_{1}$ and $(x, y^{*})\in D_{2}$ for some $y\in Y$ and $x\in X$ ,
respectively, the pair $(x^{*}, y^{*})$ is not always in $D_{1}\cap D_{2}$ , and hence the set of $aU$ equilibrium
optimal response strategy pairs does not always have interchangeability, which holds for
scalar games. Therefore, we proceed to the next usual concept of strategy.

We called the following subsets of $Z$

${\rm Min} \bigcup_{x\in X}{\rm Max}_{w}f(x, Y)$
,

${\rm Max} \bigcup_{y\in Y}{\rm Min}_{w}f(X, y)$
(2.7)
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Figure 2.1: The optimal response sets $D_{1}$ and $D_{2}$ in Example 2.1.

the set of all minimax values of $f$ and the set of all maximin values of $f$ , respectively (see
[34] and [33]). Also, we call a strategy $x^{*}$ [resp. $y^{*}$ ] attaining a minimax value [resp. a
maximin value] above, i.e., satisfying $f(x^{*}, y)\in Minf(D_{1}^{w})$ for some $y\in R_{2}^{w}(x^{*})$ [resp.
$f(x, y^{*})\in Maxf(D_{2}^{w})$ for some $x\in R_{i}^{w}(y^{*})$ ] a minimax strategy [resp. a maximin strategy]
of player 1 [resp. player 2], written $M_{a^{n}x}^{1}(f)$ [resp. $M_{in}^{ax}(f)$ ]. In order to show the existence of
such minimax strategies and maximin strategies, we will review some of the fundamental
properties of cone extreme points.

Let $A$ be a nonempty subset of an ordered t.v. $s$ . $Z$ with an ordering defined by a (solid)
pointed convex cone $C$ . We say that the set $A$ has the “domination property” (e.g., see
page 697 in [21] and page 53 in [22]) if

$MinA\neq\emptyset$ [resp. $MaxA\neq\emptyset$], (2.8)

and

$A\subset MinA+C$ [resp. $A\subset MaxA-C$]. (2.9)

In particular, to produce conditions ensuring the condition (2.8) is one of the most impor-
tant questions of vector optimization theory; e.g., see [14], [16], [20], [21], and [27]. In this
paper, we need the following lemmas; see Lemmas 5.2 and 5.4 in [34] or Lemmas 1.2.3 and
1.2.5 in [33]:

Lemma 2.1. Let $Z$ be an ordered $t.v.s$ . with an ordering defined by a (solid) pointed
convex cone $C$ , and $A$ a subset of Z. If the convex cone $C$ of $Z$ satisfies the condition

$c1C+(C\backslash \{0\})\subset C$ (2.10)

and if $A$ is nonempty. and compact, then $MinA\neq\emptyset,$ $A\subset MinA+C$ and $MaxA\neq$ le,
$A\subset MaxA-C$ .
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Lemma 2.2. Let $Z$ be an ordered $t.v.s$ . with an ordering defined by a solid pointed convex
cone $C$ , and $A$ $a$ $s$励 set of Z. If $A$ is nonemp$ty$ and compact, then ${\rm Min}_{w}$且 $\neq\emptyset$ , 且 $\subset$

${\rm Min}_{w}A+C^{0}$ and ${\rm Max}_{w}A\neq\emptyset,$ $A\subset{\rm Max}_{w}A-C^{0}$ . l協 oreover, ${\rm Min}_{w}A$ and ${\rm Max}_{w}A$ are
compact sets.

Moreover, we need the following concept and related results given by Luc:
Definition 2.4. A set $A$ is said to be C-complete if there are no covers of the form
$\{(z_{\alpha}-c1C)^{c}\}$ where $\{z_{\alpha}\}$ is a net in $A$ such that $z_{\beta}\leq c^{z_{\alpha}}$ and $z_{\alpha}\not\leq c^{z_{\beta}}$ for each $\alpha,\beta$ with
$\alpha<\beta$ .
Lemma 2.3. (See Theorem 2.6 and Corollary 2.12 in [21].) If a convex cone $C$ of a $t.v.s$ .
is correct, and if $A$ is nonempty and C-complete, then the conditions (2.8) and (2.9) hold.

Remark 2.1. We recall that a set $A$ is said. to be C-compact if $(z-c1C)\cap A$ is compact
for each $z\in A$ ; and that a set $A$ is said to be C-semicompact if any cover of the form
$\{(z_{\lambda}-c1C)^{c} : z_{\lambda}\in A, \lambda\in\Lambda\}$ has a finite subcover; see [5]. Then, any compact set is C-
compact, hence C-semicompact, and hence C-complete whatever the convex cone $C$ is; see
Lemma 2.2 in [21]. The last general condition is rather (far’ from compactness but still
guarantees the condition (2.8).

Let $S_{1}$ and $S_{2}$ be two topological spaces, respectively. A mapping $F$ from $S_{1}$ into $S_{2}$ is
said to be upper semicontinuous at $x\in S_{1}$ , if for any open neighborhood $V$ of $F(x)$ , there
exists a neighborhood $U$ of $x$ such that $F(y)\subset V$ for all $y\in U$ . We say that $F$ is upper
semicontinuous (u.s. $c$ . for short) if it is so at every $x\in S_{1}$ ; see Definition 1 in page 41 of
[1]. If $S$ is a compact set in $S_{1}$ and $F$ is an u.s. $c$ . compact-valued mapping from $S$ into $S_{2}$ ,
then the image $F(S)$ under $F$ of $S$ is compact; see Proposition 3 in page 42 of [1]. Based
on this fact, we have the following theorem:

Theorem 2.1. (See Lemma 5.5 in [34].) Let $X$ and $Y$ be nonempty compact sets in two
topological spaces, respectively, and $Z$ an ordered $t.v.s$ . with an ordering defined by a solid
pointed convex cone C. If a vector-valued function $f$ : $X\cross Yarrow Z$ is continuous, and if $C$

satisfies the condition (2.10), then

$[{\rm Min} \bigcup_{x\in X}{\rm Max}_{w}f(x, Y)]+C\supset{\rm Max}_{w}f(x’, Y)\neq\emptyset$ , (2.11)

$[{\rm Max} \bigcup_{y\in Y}{\rm Min}_{w}f(X, y)]$ 一 $C\supset{\rm Min}_{w}f(X, y’)\neq\emptyset$ (2.12)

for each $x’\in X$ and $y’\in Y$ .
The theorem above shows that under the conditions, there exists at least one optimal

response strategy for each player against an opponent’s given strategy, and that there exist
a minimax strategy and a maximin strategy, too.

When $f(x_{0}, y_{0})\in{\rm Max}_{w}f(x_{0}, Y)\cap{\rm Min}_{w}f(X, y_{0})$ , we say that $f$ has a weak C-saddle
point $(x_{0}, y_{0})$ as defined in the next section. If $f$ has such saddle points, we can see by the
theorem that a certain minimax inequality holds, which is called a saddle point theorem of
a vector-valued function, located in Section 4, as a corollary of the theorem above. This can
be interpreted in the following way: Minimax values and maximin values are lower bounds
and upper bounds of saddle values, respectively, in the sense of $\leq c\cdot x^{*}\in M_{ax}^{in}(f)\cap R_{1}^{w}(y^{*})$

In order to illustrate these results, we give the following example:
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Example 2.2. Consider the multicriteria two person game $\Gamma=(X, Y, -f, f)$ in Exam-
ple 2.1. Let

$\arg$ minimax$f$ $:= \{(x, y)\in X\cross Y|f(x, y)\in{\rm Min}\bigcup_{x\in X}{\rm Max}_{w}f(x, Y)\}$

and

$\arg$ maximin $f$ $:= \{(x, y)\in X\cross Y|f(x, y)\in{\rm Max}\bigcup_{y\in Y}{\rm Min}_{w}f(X, y)\}$ .

Then, we have

${\rm Min} \bigcup_{x\in X}{\rm Max}_{w}f(x, Y)=\{z\in R^{2}|z=(z_{1}, z_{2}),$
$z_{2}=-2z_{1},0\leq z_{1}\leq 1\}$ ,

$\arg$ minimax$f$ $=$ $(\{(0,1)\}\cross Y)U$

( $\{(\alpha, 1-\alpha)|0\leq\alpha\leq\frac{1}{3},$ $\frac{2}{3}$

一

$\alpha\leq 1\}\cross\{(1,0)\}$),

$M_{ax}^{in}(f)=\{x\in R^{2}|x=(\alpha, 1-\alpha),$ $0 \leq\alpha\leq\frac{1}{3}$ , $\frac{2}{3}\leq\alpha\leq 1\}$ ,

${\rm Max} \bigcup_{y\in Y}{\rm Min}_{w}f(X, y)=\{z\in R^{2}|z=(z_{1}, z_{2}),$
$z_{1}=-2z_{2},0\leq z_{1}\leq 2\}$ ,

$\arg$ maximin$f$ $=$ $(X\cross\{(0,1)\})\cup$

$( \{(1,0)\}\cross\{(\alpha, 1-\alpha)|0\leq\alpha\leq\frac{1}{3},$ $\frac{2}{3}\leq\alpha\leq 1\})$ ,

$M_{in}^{ax}(f)=\{y\in R^{2}|y=(\alpha, 1-\alpha),$ $0 \leq\alpha\leq\frac{1}{3},$ $\frac{2}{3}\leq\alpha\leq 1\}$ ,

and

$D_{1}^{w}\cap D_{2}^{w}=(X\cross\{(0,1)\})\cup(\{(0,1)\}\cross Y)\cup(E(\Gamma)\cross E(\Gamma))$

where

$E(\Gamma)=\{x\in R^{2}|x=(\alpha, 1-\alpha),$ $0 \leq\alpha\leq\frac{1}{3}$ , $\frac{2}{3}\leq\alpha\leq 1\}$ .

The decision space and objective space transformed by the substitution $x_{2}=1-x_{1}$ and
$y_{2}=1-y_{1}$ are shown in Figure 2.2. Moreover, we have $E(\Gamma)=M_{ax}^{in}(f)=M_{in}^{ax}(f)$ and
$E(\Gamma)\cross E(\Gamma)\subset D_{1}^{w}\cap D_{2}^{w}$ .

Now, we shall investigate the existence of elements of $D_{1}^{w}\cap D_{2}^{w}$ in the next section.
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Figure 2.2: The decision space and objective space in Example 2.2.

3. Existence of Generalized Saddle Points

Under the previous notation given in Section 1, we will give reasonable definitions for sad-
dle point and saddle value of a vector-valued function. It follows that the definitions are
reasonable from the facts that, as shown in Section 2, any equilibrium optimal response
strategy pair [resp. equilibrium optimal response strategy pair] $(x_{0}, y_{0})$ satisfies the con-
dition (2.5) [resp. (2.6)]. Let $Z$ be an ordered t.v. $s$ . with an ordering defined by a solid
pointed convex cone $C$ and $f$ : $X\cross Yarrow Z$ a vector-valued function, respectively.

Definition 3.1. (i) A point $(x_{0}, y_{0})$ is said to be a C-saddle point of $f$ with respect to
$X\cross Y$ , if $f(x_{0}, y_{0})\in Maxf(x_{0}, Y)\cap Minf(X, y_{0})$ ;

(ii) A point $(x_{0}, y_{0})$ is said to be a weak C-saddle point of $f$ with respect to $X\cross Y$ , if
$f(x_{0}, y_{0})\in{\rm Max}_{w}f(x_{0}, Y)\cap{\rm Min}_{w}f(X, y_{0})$.

For the convenience, we denote the set of all C-saddle points [resp. weak C-saddle points]
of $f$ by SP $(f)$ [resp. $SP_{w}(f)$ ] and the set of all C-saddle values [resp. weak C-saddle values]
of $f$ by $SV(f)$ [resp. $SV_{w}(f)$ ].

We note that any C-saddle point of $f$ is a weak C-saddle point of $f$ obviously. Also, in
the case $C^{0}=C$ , the two concepts are coincident.

Now, we give the definition of C-semicontinuous; see Definition 2.4 in [5].

Definition 3.2. Let $X$ be a topological space and $Z$ an ordered t.v. $s$ . with an ordering
defined by a pointed convex cone $C$ . A vector-valued function $f$ : $Xarrow Z$ is said to be
C-semicontinuous if $f^{-1}$ ( $z$ –c1C) is closed in $X$ for each $z\in Z$ .

First of all, we state the first existence theorem for generalized saddle points, which is a
generalization of Theorem 3.2.1 in [33].

Theorem 3.1. Let $X$ and $Y$ be nonempty compact sets in two topological spaces, respec-
tively, and $Z$ an ordered $t.v.s$ . with an ordering defined by a solid pointed convex cone $C$ .
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A vector-valued function $f$ : $X\cross Yarrow Z$ has at least one weak C-saddle point if one of the
following conditions holds:

(i) $f$ is of the type $f(x, y)=u(x)+v(y)$ where $uand-v$ are C-semicontinuous;

(ii) $f$ is of the type $f(x, y)=u(x)+\beta(x)v(y)$ where $u$ is continuous, $-v$ is C-semi-
continuous, and $\beta$ : $Xarrow R_{\dagger}$ is continuous.

If, in addition, $C$ satisfies the condition (2.10), then $f$ has at least one C-saddle point.

Proof. (i) By Corollary 3.1 in [5], the two sets $u(X)$ and $v(Y)$ are C-semicompact and
$-C$-semicompact, respectively. Then, from Lemma 2.3 and Remark 2.1, it follows that
there exist $x_{0}\in X$ and $y_{0}\in Y$ such that

$u(x_{0})\in{\rm Min}_{w}u(X)$ and $v(y_{0})\in{\rm Max}_{w}v(Y)$ .

Hence, we have

$f(x_{0}, y_{0})$ $=$ $u(x_{0})+v(y_{0})$

$\in$ $(u(x_{0})+{\rm Max}_{w}v(Y))\cap({\rm Min}_{w}u(X)+v(y_{0}))$

$=$ ${\rm Max}_{w}(u(x_{0})+v(Y))\cap{\rm Min}_{w}(u(X)+v(y_{0}))$

$=$ ${\rm Max}_{w}f(x_{0},Y)\cap{\rm Min}_{w}f(X, y_{0})$ ,

which shows that the point $(x_{0}, y_{0})$ is a weak C-saddle point of $f$ .
(ii) Similarly, we can choose $y_{0}\in Y$ such that $v(y_{0})\in{\rm Max}_{w}v(Y)$ . By the continuity

of $u$ and $\beta,$ $x u(x)+\beta(x)v(y_{0})$ is also continuous, and so we can choose $x_{0}\in X$ , by
Lemma 2.2, such that

$u(x_{0})+\beta(x_{0})v(y_{0})$ $\in$ ${\rm Min}_{w}( \bigcup_{x\in X}\{u(x)+\beta(x)v(y_{0})\})$

$=$ ${\rm Min}_{w}f(X, y_{0})$ ,

which shows that $f(x_{0}, y_{0})\in{\rm Min}_{w}f(X, y_{0})$ . On the other hand, since $\beta(x)>0$ for any
$x\in X$ , we can easily verify that

$\beta(x_{0}){\rm Max}_{w}v(Y)={\rm Max}_{w}(\beta(x_{0})v(Y))$ ,

which shows that $f(x_{0}, y_{0})\in{\rm Max}_{w}f(x_{0},Y)$ . Thus, $f$ has a weak C-saddle point. The
remainder of the proof follows immediately from Lemma 2.1. $\square$

Remark 3.1. Since every continuous function is C-semicontinuous obviously, the theorem
above holds for continuous functions $u$ and $v$ . Hence, the theorem is a generalization of
Lemma 3.4 in [32].

To obtain another generalized version of Lemma 3.4 in [32], we introduce new concept
of another weak continuity of vector-valued functions.

Definition 3.3. Let $X$ be a topological space and $Z$ an ordered t.v. $s$ . with an ordering
defined by a pointed convex cone $C$ . A vector-valued function $f$ : $Xarrow Z$ is said to be
C-lower semicontinuous on $X$ if it satisfies the three equivalent conditions:
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(i) For all $a\in Z,$ $f^{-1}(a+intC)$ is open;

(ii) For each $x_{0}\in X$ and any open neighborhood $V$ of $f(x_{0})$ , there exists an open
neighborhood $U$ of $x_{0}$ such that $f(x)\in V+C$ for all $x\in U$ ;

(iii) For each $x_{0}\in X$ and any $d\in intC$ , there exists an open neighborhood $U$ of $x_{0}$ such
that $f(x)\in f(x_{0})-d+intC$ for all $x\in U$ .

Also, it is said to be C-upper semicontinuous on $Xif-f$ is C-lower semicontinuous on $X$ .

Proposition 3.1. Let $X$ be a topological space and $Z$ an ordered $t.v.s$ . with an ordering
defined by a pointed convex cone C. The conditions (i), (ii), (iii) of the above definition are
equivalent to each other.

Proof. We show that (i) and (iii) are equivalent to each other. Suppose that for all
$a\in Z,$ $f^{-1}(a+intC)$ is open. For each $x_{0}\in X$ and any $d\in$ int $C$ , we have $x_{0}\in$

$f^{-1}$ (int$C+(f(x_{0})-d)$ ), which is open. Hence, there exists an open neighborhood $U$ of
$x_{0}$ such that $f(x)\in f(x_{0})-d+intC$ for all $x\in U$ . Conversely, let $x_{0}\in f^{-1}(a+intC)$

and $d$ $:=f(x_{0})-a$ . .Since $d\in$ intC, there exists an open neighborhood $U$ of $x_{0}$ such that
$f(x)\in f(x_{0})-d+intC$ for all $x\in U$ , and hence $f(x)\in a+intC$ . This implies that
$f^{-1}(a+intC)$ is open.

Next, we show that (ii) and (iii) are equivalent to each other. Let $x_{0}\in X$ and $d\in$ intC.
Then, there is an open neighborhood $W$ of $d$ such that $W\subset$ int $C$ , which implies that
$f(x_{0})\in f(x_{0})-d+W\subset f(x_{0})-d+intC$. Let $V$ $:=f(x_{0})-d+W$ , then there exists
an open neighborhood $U$ of $x_{0}$ such that $f(x)\in W+C\subset(f(x_{0})-d+intC)+C$ for
all $x\in U$ . Since int$C+C=$ int $C$ , we have $f(x)\in f(x_{0})-d+intC$ for all $x\in U$ .
Conversely, let $x_{0}\in X$ and $V$ an open neighborhood of $f(x_{0})$ . There is $d\in$ int $C$ such
that $f(x_{0})-d\in V$ . By assumption, there exists an open neighborhood $U$ of $x_{0}$ such that
$f(x)\in f(x_{0})-d+intC$ for all $x\in U$ . Since $V$ is open and so $V+intC=V+C$, we have
$f(x)\in V+C$ for all $x\in U.$ 口

Then, we can easily prove the following lemma.

Lemma 3.1. Let $X$ be a topological space and $Z$ an ordered $t.v.s$ . with an ordering defined
by a pointed convex cone C. If $f$ and $g$ are C-lower semicontinuous functions from $X$ to
$Z$ , then

(i) $f+g$ is C-lower semicontinuous;

(ii) $\alpha f$ is C-lower semicontinuous for each $\alpha>0$ ;

Moreover, if $\beta$ : $Xarrow R+is$ lower semicontinuous, then for each $v\in C$ ,

(i) $x\mapsto\beta(x)v$ is C-lower semicontinuous;

(ii) $x-f(x)+\beta(x)v$ is C-lower semicontinuous.

Theorem 3.2. Let $X$ and $Y$ be nonempty compact sets in two topological spaces, respec-
tively, and $Z$ an ordered $t.v.s$ . with an ordering defined by a solid pointed convex cone $C$ .
A vector-valued functi on $f$ : $X\cross Yarrow Z$ has at least one weak C-saddle poin$t$ if $f$ is of
the type $f(x, y)=u(x)+\beta(x)v(y)$ where $u$ is C-lower semicontinuous, $-v$ is C-upper
semicontinuous, and $\beta$ : $Xarrow R+is$ lower semicontinuous, $C\cap{\rm Max}_{w}v(Y)\neq\emptyset$ . If, $in$

addition, $C$ satisfies the condition (2.10), then $f$ has at least one C-saddle point.
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Proof. In a similar way of Lemma 3.2 in [21], we can show that the set $v(Y)$ is C-complete.
Then, we can choose $y_{0}\in Y$ such that $v(y_{0})\in C\cap{\rm Max}_{w}v(Y)$ . From Lemma 3.1, it
follows that $x u(x)+\beta(x)v(y_{0})$ is C-lower semicontinuous, and hence the image
$\cup\{u(x)+\beta(x)v(y_{0})\}$ is C-complete in a similar way of Lemma 3.2 in [21] again. There-

$forex\in X$ we can choose $x_{0}\in X$ , by Lemma 2.3, such that

$u(x_{0})+\beta(x_{0})v(y_{0})$ $\in$ ${\rm Min}_{w}( \bigcup_{x\in X}\{u(x)+\beta(x)v(y_{0})\})$

$=$ ${\rm Min}_{w}f(X, y_{0})$ ,

which shows that $f(x_{0}, y_{0})\in{\rm Min}_{w}f(X, y_{0})$ . In the same way of the proof of Theorem 3.1,
we can verify that $f$ has a weak C-saddle point $(x_{0}, y_{0})$ . $\square$

Second, to present the second existence theorem for generalized saddle points, we intro-
duce new concepts of convexity and continuity of vector-valued functions.

Definition 3.4. Let $X$ be a convex set in a real vector space and $Z$ an ordered t.v. $s$ .
with an ordering defined by a (solid) pointed convex cone $C$ . A vector-valued function
$f:Xarrow Z$ is said to be naturally quasi C-convex on $X$ if

$f(\lambda x_{1}+(1-\lambda)x_{2})\in co\{f(x_{1}), f(x_{2})\}-C$ (3.1)

for every $x_{1},$ $x_{2}\in X$ and $\lambda\in[0,1]$ , where $coA$ denotes the convex hull of the set $A$ . The
condition (3.1) is equivalent to the following condition: there exists $\mu\in[0,1]$ such that
$f(\lambda x_{1}+(1-\lambda)x_{2})\leq c\mu f(x_{1})+(1-\mu)f(x_{2}).Also$ , it is said to be naturally quasi C-concave
on $Xif-f$ is naturally quasi C-convex on $X$ .

Remark 3.2. In [31] and [34], we mentioned the relationship among various types of
the convexity generalized to vector-valued functions: we note, in particular, that every
C-convex function is naturally quasi C-convex, and that every properly quasi C-convex
function is naturaUy quasi C-convex. (Let $X$ be a convex set in a real vector space. A
vector-valued function $f$ : $Xarrow Z$ is said to be (i) C-convex on $X$ if $f(\lambda x_{1}+(1-\lambda)x_{2})\leq c$

$\lambda f(x_{1})+(1-\lambda)f(x_{2})$ for every $x_{1},$ $x_{2}\in X$ and $\lambda\in[0,1]$ ; (ii) properly quasi C-convex on $X$

if either $f(\lambda x_{1}+(1-\lambda)x_{2})\leq cf(x_{1})$ or $f(\lambda x_{1}+(1-\lambda)x_{2})\leq cf(x_{2})$ for every $x_{1},$ $x_{2}\in X$

and $\lambda\in[0,1].$ )

Lemma 3.2. Let $X$ be a convex set in a real vector space and $Z$ an ordered $t.v.s$ . with an
ordering defined by a (solid) pointed convex cone $C$ , and we denote the set of all continuous
linear functionals on $Z$ by $Z^{*}$ . If a mapping $f$ : $Xarrow Z$ is natumlly quasi C-convex on $X$

then for each $\varphi\in Z^{*}$ , the composite mapping $\varphi of$ is a (ordinary) quasi convex function.
Definition 3.5. Let $X$ be a topological space and $Z$ another topological space. A mapping
$f$ : $Xarrow Z$ is said to be demicontinuous on $X$ if $f^{-1}(M)$ $:=\{x\in X|f(x)\in M\}$ is closed
in $X$ for each closed half-space $M\subset Z$ .

Remark 3.3. Every continuous mapping is demicontinuous obviously. Also, vari$0$us
relationship among continuity, C-lower semicontinuity, C-semicontinuity, demicontinuity
of vector-valued functions is illustrated in Figure 3.3.
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Lemma 3.3. Let $X$ be a topological space and $Z$ a $t.v.s$ . If a mapping $f$ : $Xarrow Z$ is
demicontinuous on $X$ , then for each $\varphi\in Z^{*}$ , the composite mapping $\varphi of$ is continuous.

Then, we have the second existence theorem of weak C-saddle points, which generalizes
Lemma 3.3 in [32] and Theorem 3.1 in [34], and the proof is based on Hartung’s minimax
theorem; see [15].

Theorem 3.3. Let $X$ and $Y$ be nonempty compact convex sets in two $t.v.s$ . $s$ , respectively,
and $Z$ an ordered $t.v.s$ . with an ordering defined by a solid pointed convex cone C. If a
vector-valued function $f$ : $X\cross Yarrow Z$ satisfies that

(i) $x-f(x, y)$ is demicontinuous and natumlly quasi C-convex on $X$ for every $y\in Y$ ;

(ii) $y\mapsto f(x, y)$ is demicontinuous and natumlly quasi C-concave on $Y$ for every $x\in X$ ,

then the vector-valued function $f$ has at least one weak C-saddle point.

Proof. Since the pointed convex coneC is solid, it follows from page18of[17]that there
exist nonzero functionals $\varphi_{1},$

$\varphi_{2}\in C^{*}\backslash \{0\}$ (possibly $\varphi_{1}=\varphi_{2}$). With these functionals we
associate the following sets:

$A_{\alpha}(x;\varphi)$ $:=\{y\in Y|\varphi(f(x, y))\geq\alpha\}$ , (3.2)

$B_{\beta}(y;\varphi)$ $:=\{x\in X|\varphi(f(x, y))\leq\beta\}$ , (3.3)

for each $x\in X,$ $y\in Y$ , and $\alpha,\beta\in R$. By Lemmas 3.2 and 3.3, the sets above are
closed convex subsets in compact convex sets, respectively. Thus, the proof follows from
Theorem 1 in [15] and Theorem 2.4 in [30]. $\square$

Consequently, the following corollary, which modifies Lemma 3.3 in [32] into l.c. $s$ . version,
is proved immediately by Remark 3.2 and the theorem above.

Corollary 3.1. Let $X$ and $Y$ be nonempty compact convex sets in two $t.v.s$ . $s$ , respectively,
and $Z$ an ordered $t.v.s$ . with a solid pointed convex cone C. If a vector-valued function
$f$ : $X\cross Yarrow Z$ satisfies one of the following conditions:

(i) $x-f(x, y)$ is continuous and properly quasi C-convex on $X$ for every $y\in Y$ ,
$y-f(x, y)$ is continuous and properly quasi C-concave on $Y$ for every $x\in X$ ;

(ii) $x-f(x, y)$ is continuous and properly quasi C-convex on $X$ for every $y\in Y$ ,
$y\mapsto f(x, y)$ is continuous and C-concave on $Y$ for every $x\in X$ ;

(iii) $x\mapsto f(x, y)$ is continuous and C-convex on $X$ for every $y\in Y$ ,
$y\mapsto f(x, y)$ is continuous and properly quasi C-concave on $Y$ for every $x\in X$ ;

(iv) $x-f(x, y)$ is continuous and C-convex on $X$ for every $y\in Y$ ,
$y-f(x, y)$ is continuous and C-concave on $Y$ for every $x\in X$ ;

then the vector-valued function $f$ has at least one weak C-saddle point.

At last, we shall give the third existence theorem for generalized saddle points.
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Theorem 3.4. (See Theorem 4.1 in [28] and Theorem 3.1 in [29].) Let $X$ and $Y$ be non-
empty compact convex sets in two $l.c.s$ . $s$ , respectively, and $Z$ an ordered $t.v.s$ . with an
ordering defined by a solid pointed convex cone C. If a vector-valued function $f$ : $X\cross Yarrow Z$

is continuous and if the following sets

$T(y)$ $:=\{x\in X|f(x, y)\in{\rm Min}_{w}f(X, y)\}$ , (3.4)

$U(x)$ $:=\{y\in Y|f(x, y)\in{\rm Max}_{w}f(x,Y)\}$ (3.5)

are convex for every $y\in Y$ and $x\in X$ , respectively, then the vector-valued function $f$ has
at least one weak C-saddle point.

4. Minimax Theorems for Vector-Valued liMinctions

In a few of the author’s papers, he has proposed some minimax theorems for vector-valued
functions. In this section, we shall present some of most general versions of such minimax
theorems. To this end, we need the following saddle point theorem of a vector-valued
function, which is a corollary of Theorem 2.1.

Theorem 4.1. (Saddle Point Theorem) Let $X$ and $Y$ be nonempty compact sets in
two topological spaces, respectively, and $Z$ an ordered $t.v.s$ . with an ordering defined by a
solid pointed convex cone C. If a vector-valued function $f$ : $X\cross Yarrow Z$ is continuous and
if $C$ satisfies the condition (2.10), then

$[{\rm Min} \bigcup_{x\in X}{\rm Max}_{w}f(x, Y)]+C\supset SV_{w}(f)$ ,

$[{\rm Max} \bigcup_{y\in Y}{\rm Min}_{w}f(X, y)]-C\supset SV_{w}(f)$ .

Hence, if $f$ has a weak C-saddle point $(x_{0}, y_{0})\in X\cross Y$ , then there exist

$z_{1} \in{\rm Min}\bigcup_{x\in X}{\rm Max}_{w}f(x, Y)$ and $z_{2} \in{\rm Max}\bigcup_{y\in Y}{\rm Min}_{w}f(X, y)$

such that $z_{1}\leq cf(x_{0}, y_{0})$ and $f(x_{0}, y_{0})\leq c^{z_{2}}$ .
We will say that the minimax inequality holds if there exist

$z_{1} \in{\rm Min}\bigcup_{x\in X}{\rm Max}_{w}f(x, Y)$ and
$z_{2} \in{\rm Max}\bigcup_{y\in Y}{\rm Min}_{w}f(X, y)$

such that $z_{1}\leq c^{z_{2}}$ .
Theorem 4.2. (Minimax Theorem I) Let $X$ and $Y$ be nonempty compact sets in
two topological spaces, respectively, and $Z$ an ordered $t.v.s$ . with an ordering defined by a
solid pointed convex cone C. If a vector-valued function $f$ : $X\cross Yarrow Z$ is of the type
$f(x, y)=u(x)+\beta(x)v(y)$ where $u$ and $v$ are continuous and $\beta$ is continuous into $R_{+}$ , and
if $C$ satisfies the condition (2.10), then the minimax inequality holds. If, in particular, the
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vector-valued function $f$ is of the type $f(x, y)=u(x)+v(y)$ where $u$ and $v$ are continuous,
then

${\rm Max} \bigcup_{y\in Y}{\rm Min}_{w}f(X, y)\subset[{\rm Min}\bigcup_{x\in X}{\rm Max}_{w}f(x, Y)]+C$

and

${\rm Min} \bigcup_{x\in X}{\rm Max}_{w}f(x, Y)\subset[{\rm Max}\bigcup_{y\in Y}{\rm Min}_{w}f(X, y)]-C$ .

Proof. The first part of the proof follows immediately from Theorems 3.1 and 4.1. The
second part of the proof can be done in the same way as in the proof of Theorem 3.2 in
[28]. 口

Theorem 4.3. (Minimax Theorem II) Let $X$ and $Y$ be nonempty compact convex sets
in two $t.v.s$ . ’s, respectively, and $Z$ an ordered $t.v.s$ . with an ordering defined by a solid
pointed convex cone C. If a vector-valued function $f$ : $X\cross Yarrow Z$ is continuous and
satisfies:

(i) $x-f(x, y)$ is natumlly quasi C-convex on $X$ for every $y\in Y$ ;

(ii) $y-f(x, y)$ is natumlly quasi C-concave on $Y$ for every $x\in X$ ,

and if $C$ satisfies the condition (2.10), then the minimax inequality holds.

Proof. The proof follows immediately from Theorems 3.3 and 4.1. 口

Theorem 4.4. (Minimax Theorem III) Let $X$ and $Y$ be nonempty compact convex
sets in two $l.c.s$ . $s$, respectively, and $Z$ an ordered $t.v.s$ . with an orderzng defined by a solid
pointed convex cone C. Assume that a vector-valued function $f$ : $X\cross Yarrow Z$ is continuous
and that $C$ satisfies the condition (2.10). If the sets of (3.4) and (3.5) are convex for every
$y\in Y$ and $x\in X$ , respectively, then the minimax inequality holds.

Proof. The proof follows immediately from Theorem 3.4 and Theorem 4.1. 口

5. Conclusions

Minimax theorems for vector-valued functions have a similar statement to the ordinary
minimax theorems for real-valued functions. For a real-valued function $F$ , the following
inequality

$\min_{x\in A}\sup_{y\in B}F(x, y)\leq F(x_{0}, y_{0})\leq\max_{y\in B}o\inf_{e\in A}F(x, y)$ (5.1)

holds under suitable conditions which are sufficient for the function $F$ to possess a saddle
point $(x_{0}, y_{0})\in A\cross B$ . Replacing the usual total ordering $\leq by$ a general partial ordering
$\leq c$ , defined by a pointed convex cone $C$ , we may expect to get a similar minimax inequality
to (5.1). This has come true in Section 4, and minimax theorems presented in Section 4
tell us that there exist some minimax strategy and maximin strategy of $f$ such that their
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values are ordered by $\leq c$ and dominated each other whenever $f$ has a weak C-saddle point.
This is illustrated in Figure 2.2 of Example 2.2.

Unfortunately, minimax strategies [resp. maximin strategies] do not always give equi-
librium values, but may give equilibrium values in the sense of security levels in the case
that minimax strategies and maximin strategies satisfy some conditions. Thus, we note
that the minimax values and maximin values are lower bounds and upper bounds of such
equilibrium values, respectively. This is also illustrated in Figure 2.2 of Example 2.2.
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Figure 3.3: Relationship among various semicontinuities.


