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1. Introduction

Compressible Euler equation in $R^{n}$ is a $(n+1)\cross(n+1)$ system of conservation laws
which describes the motion of isentropic gas.

$\rho_{t}+\sum_{j=1}^{n}\frac{\partial}{\partial x_{j}}(\rho u_{j})=0$ ,
(1.1)

$( \rho u_{i})_{t}+\sum_{j=1}^{n}\frac{\partial}{\partial x_{j}}(\rho u_{i}u_{j}+\delta_{ij}p)=\rho f_{i}(i=1,2, \cdots, n),$ $p=a^{2}\rho^{\gamma}$

where $\rho$ is a density, $\vec{u}=^{t}$ $(u_{1}, u_{2}, \cdots , u_{n})$ is a velocity, $p$ is a pressure with $\delta_{ij}\cdot the$

Kronecker delta and $\vec{f}=^{t}$ $(f_{1}, f_{2}, \cdots , f_{n})$ is an external force. $\gamma$ is a given constant. This
is a famous example of system of conservation laws and there are many works related to
this equation. For one dimensional case, Nishida [14] established the existence of global
weak solutions, for the first time, for the case $\gamma=1$ by using the Glimm’s method.
DiPerna [3] extended the result to the case of $\gamma=1+2/(2m+1)$ ( $m\geq 2$ integers)
using the theory of compensated compactness. Ding et al [1], [2] removed this restriction
and established the existence of global weak solutions for $1<\gamma\leq 5/3$ . On the other
hand, little is known for the case $n\geq 2$ . No global solutions have known to exist, but
only classical solutions. In [9], Makino, Mizohata and Ukai presented the global solutions
first for this case without an external force. Here, we shall present global solutions first
for this case with an external force.

Let us consider the initial and boundary value problem for (1.1) in $t\geq 0,$ $x\in\Omega\subset R^{n}$

with the following conditions.

(1.2) $\vec{u}(0,x)=\vec{u}_{0}(x),$ $\rho(0, x)=\rho_{0}(x)$ ,

(1.3) $\vec{u}\cdot\vec{n}=0$ if $x\in\partial\Omega$ .
In this paper we shall investigate the typical example of (1.1). Suppose that a solid star
with radius 1 and mass $M$ is surrounded by an isothermal gas $(\gamma=1)$ . Then (1.1)
becomes

$\rho_{t}+\sum_{i=1}^{3}\frac{\partial}{\partial x_{i}}(\rho u_{j})=0$ ,
(14)

$(\rho u_{i})_{t}$ 十 $\sum_{j=1}^{3}\frac{\partial}{\partial x_{i}}(\rho u_{i}u_{j}+\delta_{ijp)}=\rho f_{i}(i=1,2,3),$ $p=a^{2}\rho^{\gamma}$ ,
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(1.5) $\vec{u}\cdot\tilde{n}=0$ if $x\in\partial\Omega,$ $\Omega=\{x||x|>1\}$ .
where $\tilde{f}$ is a gravitational force given by

$\vec{f}=(f_{1}(t,x),$ $f_{2}(t,x),$ $f_{3}(t, x))$

(1.6)
$=(- \frac{x_{1}}{|x|}\cdot\frac{M}{|x|^{2}}-\frac{x_{2}}{|x|}\cdot\frac{M}{|x|^{2}}-\frac{x_{3}}{|x|}\cdot\frac{M}{|x|^{2}})$

We restrict ourselves to the case where this motion is spherically symmetric and $\vec{u}$

is normal to the surface of the star. We then obtain, denoting $r=|x|$ and $u_{i}(t,x)=$

$\cap^{u(t,|x|)}x_{x}$

2
$\rho_{t}+(\rho u)_{r}+\overline{r}$pu $=0$ ,

(1.7) $\rho(u_{t}+uu_{r})+p_{r}=-\frac{\rho M}{r^{2}}$ ,
$p=a^{2}\rho$ ,

on $t\geq 0$ and $1\leq r<\infty$ . Note that the Neumann condition (1.5) becomes

(1.8) $u(t, 1)=0$

Let us adopt new function $\tilde{\rho}$ . Put $\tilde{\rho}=r^{2}\rho$. Then (1.7) becomes

$\tilde{\rho}_{t}+(\tilde{\rho}u)_{r}=0$ ,
(1.9)

$( \tilde{\rho}u)_{t}+(\tilde{\rho}u^{2}+a^{2}\tilde{\rho})_{r}=\frac{2a^{2}}{r}\tilde{\rho}-\frac{M\tilde{\rho}}{r^{2}}$

Next we introduce Lagrangian mass coordinate

(1.10) $\tau=t$ , $\xi=\int_{1}^{r}\tilde{\rho}(t, s)ds$ .

We then obtain, from (1.9),

$\tilde{\rho}_{\tau}+\tilde{\rho}^{2}u_{\xi}=0$ ,
(1.11)

$u_{\tau}+a^{2} \tilde{\rho}_{\xi}=\frac{2a^{2}}{r}-\frac{M}{r^{2}}$

Put $v=1/\tilde{\rho}$ . Then (1.13) becomes, after changing $\tau$ to $t$ ,

$v_{t}-u_{\xi}=0$ ,
(1.12)

$u_{t}+( \frac{a^{2}}{v})_{\xi}=\frac{K}{r}-\frac{M}{r^{2}}$

where $r=1+ \int_{0^{\xi}}v(t, \zeta)d\zeta$ and $K=2a^{2}$ . Let us consider the initial boundary value
problem for (1.12) in $t\geq 0,$ $\xi\geq 0$ with the following initial and boundary conditions.

(1.13) $u(0, \xi)=u_{0}(\xi)$ , $v(0, \xi)=v_{0}(\xi)$ , for $\xi>0$ ,

(1.14) $u(t, 0)=0$ , for $t>0$ .



12

We call that $u(t, \xi)$ and $v(t, \xi)$ are weak solutions of initial boundary value problem (1.12),
(1.13) and (1.14) if $u,$ $v\in L^{\infty}((O, T)\cross(0, \infty))$ and if they satisfy the integral identities

$\int_{0}^{T}\int_{0}^{\infty}v\phi_{t}-u\phi_{\xi}d\xi dt+\int_{0}^{\infty}v_{0}(\xi)\phi(0, \xi)d\xi=0$ ,

(1.15) $\int_{0}^{T}\int_{0}^{\infty}u\psi_{t}+(\frac{a^{2}}{v})\psi_{\xi}+\int_{0}^{\infty}u_{0}(\xi)\psi(0,\xi)d\xi$

$=- \int_{0}^{T}\int_{0}^{\infty}(\frac{K}{1+\int_{0^{\xi}}v(t,\zeta)d\zeta}-\frac{M}{(1+\int_{0^{\xi}}v(t,\zeta)d()^{2}})\cdot\psi d\xi dt$

for any test function $\phi\in C_{0}^{\infty}([0, T)\cross[0, \infty))$ and $\psi\in C_{0}^{\infty}([0, T)\cross(O, \infty))$ and for any
$T>0$ .

Here is our first result.

Theorem 1.1. Suppose that $v_{0}(\xi)$ and $u_{0}(\xi)$ are of bounded variation, and that $v_{0}(\xi)$

satisfy $\delta_{0}<v_{0}(\xi)<M_{0}$ for some positive constants $\delta_{0}$ and $M_{0}$ . Then (1.12), (1.13) and
(1.14) admit global weak solutions. ($i.e$ . $T$ does not depend on the initial data.) which
satisfy

$\Vert u\Vert_{\infty}<\infty,$ $0<\delta_{1}<v(t, \xi)<M_{1}a.e$ . for some $\delta_{1}$ and $M_{1}$ .

We want to emphasize the fact that Theorem 1.1 only shows the existence of global
solutions for the Lagrangian equation. It is not clear that this Theorem 1.1 implies the
existence of global solutions of (1.4). If solutions are smooth, we can prove that $\vec{u}$ and $\rho$

deduced from $u(t, \xi)$ and $v(t, \xi)$ satisfy (1.4) by using the chain rule. But if solutions are
weak solutions, we must be more careful. Instead of using the chain rule, we use the fact
that Lagrangian transformation is Lipschitz continuous to prove the equivalence.

Theorem 1.2. Suppose that $u(t, \xi)$ and $v(t, \xi)$ are weak solutions of (1.12) satisfying

$u,$ $v\in L^{\infty}((0, T)\cross(0, \infty))$ ,
(1.16)

$0<\delta_{1}\leq v(t,\xi),$ $|v(t,\xi)|\leq M_{1},$ $|u(t,\xi)|\leq M_{2}a.e$ . in $(0, T)\cross(0, \infty)$ .

with $\delta_{1},$ $M_{1}$ and $M_{2}$ are given positive constants. Then $\vec{u}(t,x)$ and $\rho(t, x)$ deduced from
$u(t, \xi)$ and $v(t, \xi)$ by using (1.10) are weak solutions of (1.4) with spherical symmetry.

Conversely, if $\vec{u}(t, x)$ and $\rho(t, x)$ are weak solutions of (1.4) with spherical symmetry
satisfying

$u_{i},$ $\rho\in L^{\infty}((O, T)\cross\Omega)(i=1,2, \cdots, n)$ ,
(1.17)

$0< \frac{\delta_{2}}{|x|^{2}}\leq\rho(t, x)\leq\frac{M_{1}’}{|x|^{2}},$ $|u(t,x)|\leq M_{2}’a.e$ . in $(0, T)\cross\Omega$ ,

with $\delta_{2},$ $M_{1}’$ and $M_{2}’$ are given positive constants. Then $u(t, \xi)$ and $v(t, \xi)$ deduced from
$\vec{u}(t,x)$ and $\rho(t, x)$ are also weak solutions of (1.12).

Combining Theorem 1.1 and Theorem 1.2, we obtain our main result.

Theorem 1.3. Suppose that $u_{0}(x)$ and $\rho_{0}(x)$ are spherically symmetric and satisfy

(1.18) $0< \frac{\delta_{0}}{|x|^{2}}\leq\rho_{0}(x)\leq\frac{M_{0}}{|x|^{2}}|u(t, x)|\leq M_{0}’a.e$ . in $\Omega$ ,

with $\delta>0$ and $M_{0},$ $M_{0}’\leq\infty$ . Then there exist global weak solutions of (1.4).

This is the first result of the existence of global solutions of (1.1) with an external force.
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2. Outline of proof of Theorem 1.1 and Theorem 1.2

The proof of Theorem 1.1 consists of three steps. First, we shall construct approximate
solutions by using modified Glimm’s scheme. In the second step we shall get uniform
estimates of the variation of the approximate solutions. Finally, by using the uniform
estimates which we have obtained in the second step, we obtain the global weak solutions.

Let us construct approximate solutions $u^{l}(t, \xi)$ and $v^{l}(t, \xi)$ by using a modified Glimm’s
scheme. For $l,$ $h>0$ , define

$Y=\{(n, m); n=1,2,3, \cdots, m=1,3,5, \cdots\}$ ,
(2.1) $A= \prod_{(m,n)\in Y}[\{nh\}\cross((m-1)l, (m+1)l)]$

,

where $l/h$ will be determined later. Choose a point $\{a_{nm}\}\in A$ randomly, and write
$a_{nm}=(nh, c_{nm})$ . For $n=0$ , we put $c_{0m}=ml$ . Mesh lengths $l$ and $h$ are chosen so that
$l/h>a/( \inf v^{l})$ for any given $T>0$ . Suppose that $u^{l}$ and $v^{l}$ are defined for $0\leq t<nh$ .
We are going to define $u^{l}$ and $v^{l}$ for $nh\leq t<(n+1)h$ . For $ml\leq\xi<(m+2)l,$ $m$ : odd,

we define
$u^{l}(t,\xi)=u_{0}^{l}(t,\xi)+U^{l}(t,\xi)$ . (t–nh),

(2.2)
$v^{l}(t, \xi)=v_{0}^{l}(t, \xi)$ ,

where $u_{0}^{l}$ and $v_{0}^{l}$ are the solutions of

$v_{t}-u_{\xi}=0$ ,

(2.3) $u_{t}+( \frac{a^{2}}{v})_{\xi}=0$ ,

with initial data $(t=nh)$

(2.4) $u_{0}^{l}(nh,\xi)=v_{0}^{l}(nh,\xi)=\}v^{\iota_{(c^{c_{n^{n}m^{m}}^{nm}}}^{\iota_{(nh-0^{0’},c^{c_{nm}})_{+}^{)_{+_{2^{2}}}}}}}vu_{l^{l}}(nh-0u(nh-nh-0,)^{)},$ $\xi^{\xi>(m+1)l’}\xi>(m+1)l\xi<(m+1)l<(m+1)l$

,

and
$U^{l}(t, \xi)=\frac{K}{1+\Sigma^{\frac{m+1}{j=^{2}1}}v^{l}(nh-0,c_{n2j-1})\cdot 2l}$

(2.5)
$- \frac{M}{(1+\Sigma^{\frac{m+1}{j=^{2}1}}v^{l}(nh-0,c_{n2j-1})\cdot 2l)^{2}}$

For $0\leq\xi<l$ , we define $u^{l}$ and $v^{l}$ as (2.2) where $u_{0}^{l}$ and $v_{0}^{l}$ are the solutions of (2.3) with

initial $(t=nh)$ boundary data

(2.6) $u_{0}^{l}(nh, \xi)=u^{l}(nh-0, c_{n1}),$ $v_{0}^{l}(nh, \xi)=v^{l}(nh-0, c_{n1}),$ $\xi>0$ ,

(2.7) $u(t, 0)=0,$ $t>nh$ ,

and
(2.8) $U^{l}(t,\xi)=K-M$.
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System (2.3) is hyperbolic, provided $v>0$ , with the characteristic roots and Riemann
invariants given by

$\lambda=-\underline{a}$ $r=u+alogv$ ,
(2.9) a’

$\mu=\overline{v}$ ’ $s=u$ –a $logv$ .

In order to obtain the uniform estimates, we shall estimate the negative variation of
Riemann invariants of $u^{l}$ and $v^{l}$ . This is the main idea of our proof. Concerning shock
waves and Riemann invariants, the following four lemmas are well known.

Lemma 2.1. The l-shock wave curve $S_{1}$ and 2-shock wave curve $S_{2}$ , starting from $(r_{0}, s_{0})$

can be expressed in the form
$S_{1}$ : $s-s_{0}=f(r-r_{0})$ for $r\leq r_{0}$ ,

(2.10)
$S_{2}$ : $r-r_{0}=f(s-s_{0})$ for $s\leq s_{0}$ ,

where
$0\leq f’(x)<1,$ $f”(x) \leq 0,\lim_{xarrow-\infty}f’(x)=1$ .

The l-rarefaction wave curve $R_{1}$ and 2-rarefaction wave curve $R_{2)}$ starting from
$(r_{0}, s_{0})$ can also be expressed in the form

$R_{1}$ : $s-s_{0}=0$ for $r\geq r_{0}$ ,
(2.11)

$R_{2}$ : $r-r_{0}=0$ for $s\geq s_{0}$ .

Let us consider (2.3) with following initial data

(2.12) $u_{0}(\xi)=\{\begin{array}{l}u_{l}u_{r}\end{array}$ $v_{0}(\xi)=\{\begin{array}{l}v_{l},x<0v_{r},x>0\end{array}$

Lemma 2.2. Let $u$ and $v$ are the solutions of (2.3) and (2.12). Then,

(2.13) $\{\begin{array}{l}r(t,\xi)\equiv r(u(t,\xi),v(t,\xi))\geq r_{0}\equiv\min(r(u_{r},v_{r}),r(u_{l},v_{l}))s(t,\xi)\equiv s(u(t,\xi),v(t,\xi))\leq s_{0}\equiv\max(s(u_{r},v_{r}),s(u_{l},v_{l}))\end{array}$

Next consider (2.3) in $t\geq 0,$ $\xi\geq 0$ with following initial and boundary conditions

(2.14) $u(O, \xi)=u_{0}^{+}$ , $v(O, \xi)=v_{0}^{+}$ , for $\xi>0$ ,

(2.15) $u(t, 0)=0$ , for $t>0$ .

Lemma 2.3. Let $u$ and $v$ are the solutions of (2.3), (2.14) and (2.15). Then,

(2.16) $\{\begin{array}{l}r(t,\xi)\equiv r(u(t,\xi),s(t,\xi))\geq r(u_{0}^{+},v_{o}^{+})s(t,\xi)\equiv s(u(t,\xi),s(t,\xi))\leq\max(-r(u_{0}^{+},v_{0}^{+}),s(u_{0}^{+},v_{0}^{+}))\end{array}$

Let us consider Riemann problem (2.3) and (2.12). Denote by $\triangle r$ (resp $\triangle s$ ) the absolute
value of the variation of the Riemann invariant $r$ (resp s) in the first
(resp second) shock wave. We denote $P(u_{l}, v_{l}, u_{r}, v_{r})=\triangle r+\triangle s$ . Then the following
lemma is known. For the proof, see [9].



15

Lemma 2.4.

(2.17) $P(u_{1}, v_{1}, u_{3}, v_{3})\leq P(u_{1}, v_{1}, u_{2}, v_{2})+P(u_{2}, v_{2}, u_{3}, v_{3})$ ,

where $u_{1},$ $u_{2}$ and $u_{3}$ are arbitrary constants and $v_{1},$ $v_{2}$ and $v_{3}$ are arbitrary positive
constants.

The above four lemmas were proved in [9]. Using these lemmas and the fact that
$U^{l}(t, x)\leq K+M$ , we can prove the following lemma.

Lemma 2.5. Put $r_{0}= \min r(u_{0}(\xi), v_{0}(\xi))$ and $s_{0}= \max s(u_{0}(\xi), v_{0}(\xi))$ . Then, for
$0<t<T$ ,

(2.18) $\{s^{l}(tr_{l}(t,\xi)\equiv r\leq^{\xi)}\max^{\equiv s}(r_{0}^{l},-r_{0}\underline{\}}_{u(t,\xi),s^{l}(t}u\iota(t,\xi),$$s_{-(K^{\xi)}M)T,s_{0})^{0}+(K+M)T} \iota^{(t,\xi)}\underline{\{}\geq\min(r,r_{0}+(K-M)T)$

,

Proof. By using Lemma 2.2 and Lemma 2.3, we get

(2.19) $\{r_{l}^{l}(t,\xi)s(t,\xi)\leq\geq\min_{\max}(r_{0},r_{0}+_{0}(K-M)h)(-r_{0},s)+(K+M)h$

for $0\leq t<h$ . Thus we obtain, for $h\leq t<2h$

$r^{l}(t,x) \geq\min(r_{0}, r_{0}+2(K-M)h)$ ,
$s^{l}(t,x) \leq\max(-\min(r_{0}, r_{0}+(k-M)h),$ $\max(-r_{0}, s_{0})+(k+M)h)+(K+M)h$

$\leq\max(-\min(r_{0}, r_{0}+(k-M)h)+(K+M)h,\max(-r_{0}, s_{0})+(k+M)h)+(K+M)h$

$\leq\max(-r_{0}, -r_{0}-(K-M)h,$ $s_{0}$ ) $+2(K+M)h$ .

Continuing similar calculations successively until $T=Nh$ , we can obtain (2.17). $\square$

Lemma 2.5 describes the invariant region of approximate solutions. Next, we shall
estimate the variation near the boundary. Denote by $i_{0}^{n\pm}$ the straight line segments
joining the points $(0, (n \pm\frac{1}{2})h)$ and $a_{1n}$ . Let $F(i_{0}^{n\pm})$ be the absolute value of the variation
of the Riemann invariants for all shocks on $i_{0}^{n\pm}$ . Then we also have the following Lemma.

Lemma 2.6.
(2.20) $F(i_{0}^{n+})\leq F(i_{0}^{n-})+2|M-K|h$ .

Proof. For simplicity, we restrict ourselves to the typical case. Suppose that $S_{2}$ and
$S_{1}$ cross $i_{0}^{n-}$ (See Fig.1)
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Figure.1

Let us estimate the variation of Riemann invariants of shocks which cross $i_{0}^{n+}$ . Put
$r_{+}^{n-1}=r^{l}(a_{1n-1}),$ $s_{+}^{n-1}=s^{l}(a_{1n-1}),$ $r_{-}^{n-1}=-s_{-}^{n-1}$

$=r^{l}((n-1)h+0,0)$ , and $\delta_{n-1}=U^{l}(a_{1n-1})$ .
Put $r_{+}^{n-1’}=r^{l}((n-1)h+0,2l)$ and $s_{+}^{n-1’}=s^{l}((n-1)h+0,2l)$ .
Put $A=(r_{-}^{n-1}, s_{-}^{n-})$ , $B=(r_{+}^{n-}, s_{+}^{n-})$ and $B’=(r_{+}^{n-1’}, s_{+}^{n-1’})$ .
Put $C=(r_{+}^{n-1’}+\delta_{n-1}h,$ $s_{+}^{n-1’}+\delta_{n-1}h$ . There are two cases we must consider. The first case
is $\delta_{n-1}\geq 0$ . Denote by I (resp. II) the half space $\{(r, s)|r+s<0\}(resp.\{(r, s)|r+s\geq 0\})$ .
In this case when $C\in I,$ $S_{2}$ crosses $i_{0}^{n+}$ and we must estimate the negative variation of
Riemann invariants caused by this shock. Denote by $V(P, Q)$ the absolute value of the
total variation of $r$ and $s$ by the line segment PQ.
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$r+s=r_{+}^{n-1’}+s_{+}^{n-I’}$

Figure.2

From figure.2,

$F(i_{0}^{n+})=V(A’C)\leq V(A’D)=V(AD)=V(AB’)=F(i_{0}^{n-})$ .

When $C\in$ II, $R_{2}$ cross $i_{0}^{n+}$ . Since Riemann invariants increases when rarefaction
wave crosses, $F(i_{0}^{n+})=0$ . Thus we get

$F(i_{0}^{n-})\geq F(i_{0}^{n+})=0$ .

which satisfies (2.20).
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The second case is $\delta_{n-1}<0$ . In this case $C\in I$ . Thus $S_{2}$ crosses $i_{0}^{n+}$ . Note that if
$\delta_{n-1}<0,$ $K-M\leq\delta_{n-1}<0$ . From figure.3,

Figure.3

$F(i_{0}^{n+})=V(A’C)=V(A’D)+V(DC)=V(A’’B’)+2|\delta_{n-1}|h$
$=V(AB’)+2|\delta_{n-1}|h\leq F(i_{0}^{n-})+2|K-M|h$.

Thus we obtain (2.20). $\square$

By using Lemma 2.4, Lemma 2.5 and Lemma 2.6, we get uniform estimates of the
variation of approximate solutions $u^{l}$ and $v^{l}$ and especially an uniform estimate of in$fv^{l}$ .
Thus by applying standard arguments of Glimm’s theory, we can prove Theorem 1.1. For
the detail, see [13].

Next, let us describe the outline of the proof of the former part of Theorem 1.2. We
can prove the equivalence of weak solutions of (1.1) and (1.9) by standard arguments.
But that of (1.9) and (1.12) is very delicate. Suppose that $u$ and $v$ are weak solutions of
(1.12). Put $\tilde{\rho}=1/v$ Denote by $\Lambda$ the mapping $(t, \xi)arrow(t,r)$ , namely,

(2.21) $\Lambda(t, \xi)=(t, r)$
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Our first observation is that $\Lambda$ is bi-Lipschits homeomorphism. Calculating the distribu-
tion derivatives of $\Lambda$ , we get

(2.22) $\frac{\partial r}{\partial\xi}=\frac{1}{\tilde{\rho}}$ , $\frac{\partial r}{\partial t}=u$ .

(2.21) implies $r\in W^{1,\infty}$ , and the following lemma shows that $\Lambda$ is Lipschits continuous.

Lemma 2.7. Let $\Omega$ be an open convex subset of $R^{n}$ . Then

$W^{1,\infty}(\Omega)arrow Lip(\Omega)$ .

More careful calculation shows that $\Lambda$ is homeomorphism and $\Lambda^{-1}$ is also Lipschits
continuous. Therefore we can use the following lemma.

Lemma 2.8. Let $X,$ $Y$ be measurable subsets of $R^{n}$ and $P$ be a mapping from $X$ onto Y.
If $P$ is Lipschitz continuous, JP (Jacobian) is defined $a.e.$ . Moreover, if $P$ is bi-Lipschitz
homeomorphism and satisfies $|JP|\geq\delta a.e$ . for some $\delta>0$ , then we have,
for any $u(x)\in L^{1}(R^{n})$ ,

(2.23) $\int_{X}u(x)dx=\int_{Y}\frac{uoP^{-1}}{JP}dy$ .

The second observation is that $u$ and $v$ also satisfy (1.15) for any Lipshitz test function
instead of smooth test function. We can prove it by using the mollifier. Since $\Lambda$ is bi-
Lipschits homeomorphism, $\Lambda$ is a bijection on the set of Lipshitz test functions.

These observations allow us to prove the former part of Theorem 1.2. We can prove
the other part of Theorem 1.2 similarly. For the detail, see [12].

3. Remark

By using the similar arguments, we can easily construct global weak solutions for more
general external force. But there are some open problems.

Open Problem I : For the case $\Omega$ includes the origin.

Indeed, we are not able to estimate the singularity at the origin until now.

Open Problem II : For the case $\gamma>1$ .

By using compensated compactness arguments, Makino and Takeno have proved the
existence of local weak solutions for (1.9) in the case $\gamma>1$ . But they are not able to get
uniform estimates of approximate solutions due to the inhomogeneous terms. Recently,
Makino has informed me that Glimm and Chen had succeeded to construct global weak
solutions for this case. But unfortunately, I do not known their results and ideas explicitly.
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