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In the present note we consider the Cauchy problem of the one dimensional nonlinear
Schr\"odinger equation with cubic nonlinearity:

(1) $i \frac{\partial u}{\partial t}+\frac{1}{2}D^{2}u=F(u, Du,\overline{u}, D\overline{u})$ , $t>0$ , $x\in R$ ,

(2) $u(0, x)=u_{0}(x)$ , $x\in R$ ,

where $D=\partial/\partial x,\overline{u}$ is the complex conjugate of $u$ and $F(u, Du,\overline{u}, D\overline{u})$ is a homogeneous
polynomial of degree 3 with respect to $u,$ $Du,\overline{u}$ and $D\overline{u}$ . In this note we describe the
results concerning the global existence of solutions to (1)$-(2)$ for small initial data, which
have recently been obtained in [25].

Let $n$ be the spatial dimensions. When $n\geq 5$ and $F$ is quadratic, the global existence
of small amplitude solutions to (1)$-(2)$ was proved by Klainerman [15], Klainerman and
Ponce [18] and Shatah [21]. In [15], [18] and [21] they use the $L^{p}-L^{q}$ estimate and the
energy estimate of the linear Schr\"odinger equation to show their results. Recently, in [8]
Hayashi has proved that when $n=3,4$ and $F$ is quadratic, (1)$-(2)$ has the global solutions
for any small initial data. In [8] the clever usage of the generators of the Schr\"odinger
group is a new ingredient of the proof, which reminds us of the results by Klainerman
[16] concerning the global existence of small amplitude solution for the nonlinear wave
equation. In [16] he uses the generators of the Lorentz group to show his results for the
nonlinear wave equation.

Before we consider (1)$-(2)$ , we shall recall the results for the nonlinear wave equations.
This suggests what happens to the nonlinear Schr\"odinger equation in the case of $n=1$ .
The $n+1$ dimensional case for the wave equation corresponds to the $n$ dimensional case
for the Schr\"odinger equation, as is well known. When $n=3$, in [17] Klainerman developed
the null condition technique to show the global existence of small amplitude solutions for
the nonlinear wave equations with quadratic nonlinearity satisfying a certain algebraic
condition, which is called the null condition. Roughly speaking, the null condition is a
sufficient condition assuring that the singularity of the solution for the wave equation
cancels in the nonlinear terms. When $n=2$, in [7] Godin proves the results analogous
to the case of $n=3$ for the nonlinear wave equation with cubic nonlinearity by using the
null condition technique (see also Katayama [14]). These results suggest that when $n=1$

and $F$ is cubic, we need consider the new condition assuring the cancellation of singularity
in the nonlinear terms for the Schr\"odinger equation. In the present paper, when $n=1$ ,
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we consider a sufficient condition of cubic nonlinearity leading to the global existence of
small amplitude solution for (1)$-(2)$ . This condition will be called the null gauge condition,
because it is closely related to the gauge invariance.

The condition for the nonlinear Klein-Gordon equation corresponding to the null condi-
tion for the nonlinear wave equation is studied by Georgiev and Popivanov [6] and Kosecki
[19]. Such a condition for the nonlinear Klein-Gordon equation is analogous to the null
condition for the nonlinear wave equation (see also Simon and Taflin [22], where they study
the global existence and asymptotic behavior of solution for the two dimensional Klein-
Gordon equation with quadratic nonlinearity from a different point of view). But the null
gauge condition in this paper is different from the both conditions for the nonlinear wave
and Klein-Gordon equations.

We first define the null gauge condition for the general space dimensions $n$ as follows.

Definition 1. Let $u,$ $v\in C^{1}(R^{n})$ .
(i) Assume that $f_{j}(u, v, u, v),$ $1\leq j\leq n$ are homogeneous polynomials of degree 2 with

respect to $u,$ $v,\overline{u}$ and $\overline{v}$ such that

(3) $f_{j}(u, v,\overline{u},\overline{v})=f_{j}(e^{i\theta}u, e^{i\theta}v,\overline{e^{i\theta}u},\overline{e^{i\theta}v})$ , $\theta\in R$ , $1\leq j\leq n$ .

Let $a_{j},$ $1\leq j\leq n$ be the constants in $C$ such that $\sum_{j=1}^{n}|a_{j}|^{2}\neq 0$ . We shall say that
$F(u, \nabla u, v, \nabla v,\overline{u}, \nabla\overline{u},\overline{v}, \nabla\overline{v})$ satisfies the null $g$auge condition of order 2, if

$F(u, \nabla u, v, \nabla v,\overline{u}, \nabla\overline{u},\overline{v}, \nabla\overline{v})=\sum_{j=1}^{n}a_{j}\frac{\partial}{\partial x_{j}}[f_{j}(u, v,\overline{u},\overline{v})]$ .

(ii) Let $f_{j}(u, v,\overline{u},\overline{v})$ and $a_{j},$ $1\leq j\leq n$ be defined as in part (i), and let $g_{j}(u,$ $\nabla u,$ $v,$ $\nabla v,\overline{u}$ ,
$\nabla\overline{u},\overline{v},$ $\nabla\overline{v}$ )

$,$

$1\leq j\leq n$ be homogeneous polynomials of degree 1 with respect to $u,$ $\nabla u,$ $v$ ,
$\nabla v,\overline{u},$ $\nabla\overline{u},\overline{v}$ and $\nabla\overline{v}$ . We shall say that $F$ satisfies the null gauge condition of order 3, if

$F(u, \nabla u, v, \nabla v,\overline{u}, \nabla\overline{u},\overline{v}, \nabla\overline{v})$

$= \sum_{j=1}^{n}a_{j}[\frac{\partial}{\partial x_{j}}\{f_{j}(u, v,\overline{u},\overline{v})\}]g_{j}(u, \nabla u, v, \nabla v,\overline{u}, \nabla\overline{u},\overline{v}, \nabla\overline{v})$ .

We state two typical examples of the null gauge condition.
Example (i) We put

$F(u, \nabla u, v, \nabla v,\overline{u}, \nabla\overline{u},\overline{v}, \nabla\overline{v})$

$= \sum_{j=1}^{n}a_{j}\frac{\partial}{\partial x_{j}}(u\overline{v})+\sum_{j=1}^{n}b_{j}\frac{\partial}{\partial x_{j}}|u|^{2}$,

where $a_{j}$ and $b_{j},$ $1\leq j\leq n$ are the constants in C. Then, $F$ satisfies the null gauge
condition of order 2.
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(ii) We put

$F(u, \nabla u, v, \nabla v,\overline{u}, \nabla\overline{u},\overline{v}, \nabla\overline{v})=\sum_{j,k=1}^{n}a_{jk}[\frac{\partial}{\partial x_{j}}(u\overline{v})]\frac{\partial}{\partial x_{k}}u$ ,

where $a_{jk},$ $1\leq j,$ $k\leq n$ are the constants in C. Then, $F$ satisfies the null gauge condition
of order 3.

Since the Schr\"odinger equation is not necessarily stable under the perturbation of lower
order unlike the wave equation, we need impose the additional restriction on nonlinearity
including the derivative in $x$ . We impose the following assumption on the nonlinear function
$F(w,p, z, q)\in C^{\omega}(C\cross C^{n}\cross C\cross C^{n})$ with $F(O, 0,0,0)=0$ for the general space dimensions
$n$ :

(E) $\frac{\partial}{\partial p_{j}}F(u, \nabla u,\overline{u}, \nabla\overline{u})$ is a pure imaginary valued function on $R^{n}$ for $u\in C^{1}(R^{n})$ .

Remark 1. For convenience, we slightly change the definition of pure imaginary number
in this paper. We re$g$ard zero as pure imaginary throughout this paper. Therefore, (E)
allows $\frac{\partial}{\partial p_{j}}F(u, \nabla u,\overline{u}, \nabla\overline{u})$ to take zero.

This restriction (E) assures that the linearized Schr\"odinger equation has the $L^{2}$ energy
inequality. In other words, (E) implies that (1)$-(2)$ is time locally solvable in the $L^{2}$ sense.

The null gau$ge$ condition and (E) strongly restrict the form of the admissible nonlinearity.
In fact, we have the following proposition.

PROPOSITION 1. (i) Let $n$ be arbitrary space dimensions. There does not exist $F(u,$ $\nabla u$ ,
$\overline{u}$ , Vu) satisfying both $(E)$ and the null gauge condition of order 2 with $u=v$ in diffiition
1 (i).

(ii) Let $n=1$ . $Assume$ that $F(u, Du,\overline{u}, D\overline{u})$ satisfies both $(E)$ and the null gauge
$con$dition of order 3 with $u=v$ in definition 1 (ii). Then,

(4) $F(u, Du,\overline{u}, D\overline{u})=i\lambda(D|u|^{2})u$

for some $\lambda\in R$ with $\lambda\neq 0$ .

Remark 2. (i) We are interested in the quadratic nonlinearity for $n=2$ and the
cubic nonlinearity for $n=1$ . Unfortunately, Porposition l(i) shows that no quadratic
nonlinearity satisfies both (E) and the null gau$ge$ condition of order 2 for the case of the
decoupled nonlinear Schr\"odinger equation. However, the null gauge condition of order
2 may be helpful in studying the coupled system of the Schr\"odinger equations and the
wave equations with quadratic nonlinearity such as the Maxwell-Schr\"odinger equations
and the Zakharov equations. Therefore, we formulate the null $g$auge condition including
two functions $u$ and $v$ in definition 1.

(ii) For $n=1$ , the null gauge condition of degree 3 and (E) admit only one type of cubic
nonlinearity such as (4). However, the nonlinear Schr\"odinger equation with (4) appears in
the nonlinear self-modulation problem of the fluid dynamics (see [23] and [13]).
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(iii) The restriction (E) is not a necessary condition but a sufficient condition for the
time local solvability in the $L^{2}$ sense. In fact, when $n=1$ , we can relax (E) for the local
existence of solution to (1)$-(2)$ (see, e.g., Hayashi and Ozawa [12] and Chihara [2]).

Before we state the main theorem in this note, we give several notations. We put
$J=x+itD$ . For two nonnegative integers $m$ and $s,$ $H^{m,s}$ denotes the wei$g$hted Sobolev
space defined by

$H^{m,s}=\{v\in L^{2}(R);\Vert v\Vert_{H^{m,\epsilon}}<+\infty\}$

with the norm
$\Vert v\Vert_{H^{m,s}}=\Vert(1+|x|^{2})^{s/2}(1-D^{2})^{m/2}v\Vert_{L^{2}}$ .

Let $L^{p}$ and $H^{m}$ denote the standard $L^{p}$ space and the $L^{2}$ Sobolev space on $R$ , respectively.
Let $U(t)=e^{:_{tD^{2}}}\overline{2}$ .

Now we state the main result in this note.

THEOREM 2. Assume that $u_{0} \in\bigcap_{j=0}^{2}H^{2-j,j}$ . Then, there exists a $\delta>0$ such that if

(5) $\sum_{j=0}^{2}\Vert u_{0}\Vert_{H^{2-j,j}}\leq\delta$ ,

then $(1.1)-(1.2)$ with (1.4) $h$as the $unique$ global solution $u(t)$ satisfying

(6) $u(t) \in[\bigcap_{j=0}^{2}C([0, \infty);H^{2-j,j})]\cap C^{1}([0, \infty);L^{2})$,

(7)
$\sum_{j+k\leq 2}\sup_{t\geq 0}\Vert D^{j}J^{k}u(t)\Vert_{L^{2}}<\infty$

,

(8) $\sum_{j=0}^{1}\Vert D^{j}u(t)\Vert_{L^{\infty}}=O(t^{-1/2})$ $(tarrow\infty)$ ,

where $\delta$ depends only on the coupling constant $\lambda$ in (4). In addition, the above solution
$u(t)$ of (1)$-(2)$ with (4) has a free profile $u+0\in H^{1}$ such that

(9) $\Vert U(t)u_{+0}-u(t)\Vert_{H^{1}}arrow 0$ $(tarrow\infty)$ .

Remark 3. We know the following two equations similar to (1) with (4):

(10) $i \frac{\partial u}{\partial t}+\frac{1}{2}D^{2}u=\lambda|u|^{2}u$ , $t>0$ , $x\in R$ ,

(11) $i \frac{\partial u}{\partial t}+\frac{1}{2}D^{2}u=i\lambda D(|u|^{2}u)$ , $t>0$ , $x\in R$ ,

where $\lambda\in R,$ $\lambda\neq 0$ . It is quite interesting to compare the asymptotic behavior in large
time of the solution of (1) and (4) with that of the solution of (10) or (11). It is already
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known that the nontrivial solutions of (10) and (11) have no free profiles in the sense of
(9) and that the distortion of the phase of the solutions to (10) and (11) remains as $tarrow\infty$

(see [20] for (10) and [11] for (11)). This contrast shows what role the null gauge condition
plays in (1).

Remark 4. Hayashi pointed out to the author that equation (1) with (4) could be
transformed into the quintic nonlinear Schr\"odinger equation by the gauge transformation:

$v(t, x) \equiv\exp(-i\lambda\int_{-\infty}^{x}|u(t, y)|^{2}dy)u(t, x)$ .

In [26], it is proved that in Theorem 2 the restriction (E) can be replaced by the gauge
invariance of the equation (1), which is an extension of Theorem 2. The author does
not know whether all the equations (1) with gauge covariant cubic nonlinearity can be
transformed into new equations with quintic nonlinearity.
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