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A Vortex Method Induced from Two-Dimensional
Navier-Stokes Equations

木田輝彦 (T. Kida)、 中嶋智也 (T. Nakajima)
(Dept. Energy Systems Engr, University of Osaka Prefecture)

The purpose of the present paper is to derive an integral equation of Fredholm type with
respect to vorticity from the Navier-Stokes equations, to derive a vortex method which is
based on the core spreading model, and to analyze the vortex method for viscous fluid flow
by using the integral equation. The vortex method consists of two time steps for a sim-
ulation cycle; Lagrangian convection simulation for the first step and diffusion simulation
derived by quadrature integral formula for the second time step. In the present paper,
the governing integral expression with respect to vorticity is derived from two-dimensional
Navier-Stokes equations, and the mathematical foundation of vortex method, convergence
and stability properties for high Reynolds number, is analyzed under the assumption of
smooth initial condition with bounded support and a free-space boundary.

1 Introduction

Vortex methods have been shown to be an attractive and successful approach for the
numerical simulation of incompressible fluid flow at high Reynolds number (see Sarpkaya
[1]). They have several distinctive advantages as pointed out by Beale and Majda [2]:
(1) The physical mechanisms in actual complicated fluid flow can be simulated by the
interactions of computational vortices, (2) vortex methods are automatically adaptive, since
vortices concentrate in the region of physical interest, and (3) there are no inherent errors
such like the numerical viscosity. The mathematical analysis of accuracy and convergence
of vortex methods for inviscid fluid flow have been carried out by Hald [3], Beale and
Majda [2], Anderson and Greengard [4], and Cottet, et al. [5]. The numerical simulation
of viscous fluid flow is based on the fractional method (viscous splitting algorithms): The
inviscid Euler equations are solved by discrete vortex methods for the first step and the
effects of small viscosity are simulated by a random walk or core spreading for the second
step. The theoretical background of the fractional method is cleared by Beale and Majda
[6]: The viscous splitting algorithms converge to solutions of the Navier-Stokes equations
as the time step approaches to zero. The concepts of random walk and vortex blob are
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proposed by Chorin [7]to simulate viscous fluid flow, $andthevoI^{\cdot}texblobmethod_{Con1}bined$

with the random walk is applied to various flow problems. The theoretical analysis of the
random vortex blob method for two-dimensional fluid flow with a free- space boundary is
carried out by Long [8] and Goodman [9]. Roberts [10] studied numerically this method
in detail and compared with theoretical results. Another approach to $si_{1}nulate$ viscous fluid
flow is the Gaussian core spreading which is based on the solution of heat equation.

The theoretical study of the Gaussian core spreading method was carried out by Green-
gard [11]: This core spreading algorithm converges to a system of equations different from
the Navier-Stokes equations. Cottet et al. [5], on the other hand, proposed an alternative
core spreading approach: The weights of vortex particles are changed at each time step
without changing their positions such that the conservation property of vorticity is satis-
fied, and he obtained the stability condition of this method [5]. A new algorithm for the
Gaussian core spreading method is proposed by Lu and Ross [12]: Vortex particles are
redistributed to the mesh points at each time step. This approach, therefore, is not free
for the grid generation.

The present paper airns to analyze the core spreading method, in order to show the
theoretical background, by a different mathematical approach from one used by Cottet et
al. [5]. First we derive an integral equation of Fredholm type with respect to vorticity and
we show: (1) The first iteration of this integral equation is the Gaussian core spreading
method, (2) the vorticity decays rapidly with distance from the bounded support of initial
vorticity, and (3) the consistency error of this core spreading method is almost of order of
time. We prove that this method is indeed stable and consequently convergent up to some
time, provided that the vortex field is redistributed at each time step. The present analysis
is carried out by maximum norm and the proof of the main theory (Theory 4) will be only
shown in this paper.

2 Governing Integral Equation

We here consider a two-dimensional incompressible fluid flow with a free-space boundary,
and we take the Cartesian coordinates as $(x_{1}, x_{2})$ . Then we have the following vorticity
equations from two-dimensional Navier-Stokes equations and the continuity equation:

$\partial\omega/\partial t+u_{i}\partial\omega/\partial x_{i}$ $=$
$\nu\nabla^{2}\omega$ (1)

$\omega$ $=$ $-\nabla^{2}\psi$ (2)

where $\omega$ is the vorticity, $u(x, t)(=(u_{1}, u_{2}))$ the velocity vector at point $x(=(x_{I}, x_{2}))$ and at
time $t,$ $\psi$ the stream function, $\nabla$ the nabla operator, and $\iota/$ the kinematic viscosity. From
Eq.(2), the velocity vector $u(x, t)$ at $x$ and at $t$ is obtained by

$u(x, t)= \int_{D}K(x-\backslash ’\iota^{;})\omega(x’, t)d\tau^{;}$ (3)
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where $dx’=dx_{1}’dx_{2}’$ , the integral area $D$ is the whole region of existing $\omega$ and the kernel
function $K(x)$ is given by

$K(x)= \frac{1}{2\pi}\frac{(-x_{2},x_{1})}{|x|^{2}}$ (4)

Fluid particle is supposed to be approximately convected by a velocity $\hat{u}(x, t)$ , which is
in $C^{2}$ : $R^{2}\cross R^{+}arrow R^{2}$ and div\^u $=0$ . Then the approximate trajectory of the fluid particle,
$\tilde{x}$ , is related with differential equation:

$\tilde{x}$ $=$ $\Phi_{t}(a)$ (5)
$d\tilde{x}/dt$ $=$ $\hat{u}(\tilde{x}, t)$ $\tilde{x}=a$ at $t=0$ (6)

where $\Phi_{t}(a)$ is the flow with the initial position $a$ in the velocity field $\hat{u}(x, t)$ . We introduce
new coordinate system $X(=(X_{I}, X_{2}))$ fixed with the approximate trajectory of the vortex
particle:

$X=x-\Phi_{t}(a)$ (7)

For this new coordinate system, Eq.(l) is expressed as

$\partial\omega/\partial t=\iota/\partial^{2}\omega/\partial X_{i}\partial X_{i}+f(X, a, t)$ (8)

where $\omega=\omega(X, a, t)$ , and the function $f$ is the corrected term due to the difference between
the exact velocity $u$ and the approximate one $\hat{u}$ :

$f(X, a, t)$ $=$ $(\hat{u}_{i}(a, t)-u_{i}(X+\Phi_{t}(a), t))\partial\omega(X, a, t)/\partial X_{i}$

$=$ $\frac{\partial}{\partial X_{i}}((\hat{u}_{i}(a, t)-u_{i}(X+\Phi_{t}(a))\omega(X, a, t))$

We suppose from Eq.(8) that the solution of Eq.(l) can be expressed as the following
integral form:

$\omega(x, t)=\int_{S_{O}}\omega_{o}(a)G(t, |x-\Phi_{t}(a)|)dc\iota+\int_{S_{o}}da\int_{0}^{t}d\tau\int_{D}\hat{f}(X’, a, \tau)G(t-\tau, |x-\Phi_{t}(a)-X’|)dX’$

(9)
The Green’s function $G(t, |x|)$ is the solution of heat equation:

$G(t, |x|)= \frac{1}{\pi}\frac{1}{\mathcal{E}_{o}^{2}t}\exp(-\frac{|x|^{2}}{\epsilon_{o}^{2}t}I$ (10)

where $\mathcal{E}_{O}=(4\nu)^{1/2}$ . Initial vorticity has support $S_{o}$ inside a bounded region. Since $\hat{f}$ is,
at this stage, unknown, we try to derive the governing relation of $\hat{f}$ . Using definition of
$G(t, |x|)$ and substituting Eq.(9) into the governing equation (1), we finally arrive at

$\int_{S_{o}}\hat{f}(X, a, t)da$ $=$ $\frac{\partial}{\partial x_{i}}(\int_{S_{o}}\omega_{o}(a)\hat{u}_{i}(a, t)G(t, |x-\Phi_{t}(a)|)da$

$+$ $\int_{S_{O}}da\int_{0}^{t}d\tau\int_{D}\hat{f}(X’, a, \tau)\hat{u}_{i}(a, t)G(t-\tau, |x-\Phi_{t}(a)-X’|)dX’)$
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$u_{i} \frac{\partial}{\partial x_{i}}(\int_{S_{0}}\omega_{o}(a)G(t, |x-\Phi_{t}(a)|)da$

$+$ $\int_{S_{0}}da\int_{0}^{t}d\tau\int_{D}.\hat{f}(X’, a, \tau)G(t-\tau, |x-\Phi_{t}(a)-X’|)dX’)$ (11)

Changing the derivative of $x_{i}$ to $X_{i}$ and taking into account that $S_{o}$ is arbitrary, we obtain
the integral equation of Fredholm type with respect to.$\hat{f}$ :

$\hat{f}(X, a, t)$ $=$ $\frac{\partial}{\partial X_{i}}(\omega_{o}(a)G(t, |X|)(\hat{u};(a, t)-u_{i}(X+\Phi_{t}(a), t)))$

$+$ $\frac{\partial}{\partial X_{i}}((\hat{u}_{i}(a, t)-u_{i}(X+\Phi_{t}(a), t))$

$\cross$ $\int_{0}^{t}d\tau\int_{D}\hat{f}(X’, a, \tau)G(t-\tau, |X-X’|)dX’)$ (12)

We here define a scalar function $\Omega$ by

$\hat{f}(X, a, t)=div((\hat{u}(a, t)-u(X+\Phi_{t}(a), t))\Omega(X, a, t))$ (13)

Then we easily arrive at an alternative expression of Eq.(12):

$\Omega(X, a, t)$ $=$ $\omega_{O}(a)G(t, |X|)+\int_{0}^{t}d\tau\int_{D}\frac{\partial}{\partial X_{i}}((\hat{u}_{i}(a, t)-u_{i}(X’+\Phi_{\tau}(a), \tau))$

$\cross$ $\Omega(X’, a, \tau))G(t-\tau, |X-X’|)dX’$ (14)

Remark: Comparing Eq.(14) with Eq.(9), we see;

$\omega(x, t)=\int_{S_{o}}\Omega(x-\Phi_{t}(a), a, t)da$

3 Vortex Method

We suppose that vorticity distribution $\omega(x, t)$ at moment $t$ is known. The core spreading
method is that the vorticity field after a lapse of time $\triangle t$ is given by the first term of the
right hand side of Eq.(9):

$\omega(x, t+\triangle t)=\int\omega(a, t)G(\triangle t, |x-\Phi_{\triangle t}(a)|)da$ (15)

The vorticity field is discretized from the above equation by

$\tilde{\omega}(x, t+\triangle t)=\sum_{j}\tilde{\omega}_{j}G(\triangle t, |x-\tilde{x}_{j}(t)|)h^{2}$
(16)

where $\tilde{\omega}_{j}$ is the vorticity on the $jth$ grid: The set A of square grids with squares of side
$h$ covers the vorticity distribution $\omega(x, t)$ at molnent $t$ . The trajectory $\tilde{x}_{j}(t+\triangle t)$ of the



97

fluid particle at a certain point in the $jth$ grid at $t+\triangle t$ is calculated from the ordinary
differential equation:

$\frac{d\tilde{x}_{/}}{dt}$

$=$ $\tilde{u}(\tilde{x}_{j}, t)$ (17)

$\tilde{u}(\tilde{x}_{j}, t)$ $=$ $\int K(\tilde{x}_{j}-x’)\tilde{\omega}(x’, t)dx’$ (18)

In the classical Gaussian core spreading method, the trajectory $\tilde{x}_{j}$ is calculated by Eqs.(17)
and (18), and the vorticity is discretized such like Eq.(16), then the value of $\tilde{\omega}_{j}$ is the same at
every steps. Greengard [11] pointed out that this classical Gaussian core spreading method
is not reasonable. Lu and Ross [12] proposed an alternative Gaussian core spreading
method: The vortices are rearranged to mesh points at each time step. Cottet et al. [5]
also proposed: The weight of the vorticity of the fluid particles is changed at each time
step without changing their position.

Algorithm of vortex method can be expressed as

$\hat{u}^{n}(x, t)=$ $[A(\triangle t)]^{n}u_{o}(a)$ at $t=n\triangle t$ (19)

where A is an one-step operator, $u_{o}(a)$ is the initial velocity fteld, and $\triangle t$ is the time step.
The one-step operator A is: The velocity field $\hat{u}(x, t)$ for $(?7-1)\triangle t<t\leq n\triangle t$ is obtained
for a first step from the given vorticity distribution at $t=(n-1)\triangle t$ by Eq.(18), the fluid
particles are converted by Eq.(17), and the vorticity field at $n\triangle t$ is obtained for the second
step from Eq.(16), such like Lu and Ross [12] and Cottet et al. [5].

4 Analysis

We consider scalar and vector-valued functions defined on $R^{2}$ . The class $C^{\lambda}(R^{2})$ is
defined: Function in class $C(R^{2})$ is uniformly H\"older continuous on $R^{2}$ with exponent A
$(0<\lambda)$ . We assume in this analysis:

Assumption 1: The vorticity $\omega$ is in $C^{\lambda}(R^{2})\cap L_{1}(R^{2})$ for each $t$ in $(0, T$] for any time
$T$ . Further, it decays rapidly for $|x|arrow\infty$ , such that

$|\omega(x, t)|\simeq O(G(t, |x|))$ for $|x|arrow\infty$

Remark: The velocity field $u$ is given by Eq.(3). Then McGrath [13] shows that $||x|=$

$O(1/|x|)$ as $|x|arrow\infty$ , if $\omega(x, t)$ is in $C^{\lambda}(R^{2})\cap L_{1}(R^{2})$ for $t$ in $(0, T$] for any time $T$ .

Assumption 2: The initial vorticity distribution $\omega_{o}(a)$ has a bounded support $S_{o}$ and is in
$C^{\lambda}(S_{o})\cap L_{1}(R^{2})$ .

5
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From these assumptions, we have from McGrath [13] that for some $\gamma(>0)$

$|u(x, t)-u(x+\triangle x, t)|\leq M_{o}(1+T)|\triangle x|^{\gamma}$ (20)

where $M_{o}$ is constant independent of $\triangle x$ and $t$ for $t\epsilon(O, T$].

Assumption 3: The trajectory of the fluid particle, $\Phi_{t}(a)$ , is invertible.

This assumption may be reasonable: If $\Phi_{t}(a)$ is the exact trajectory of the fluid parti-
cle, then in the two-dimensional flow $\Phi_{t}(a)$ is invertible, because the fluid particle does not
arrive at the same position at same moment.

We define a new function $\Omega_{o}$ by

$\Omega_{o}(X, a, t)=\Omega(X, a, \dagger)/G(t, |X|)$ (21)

From Assumption 1, we see that $|\Omega_{o}|\simeq O(1)$ for $|x|arrow\infty$ . Then, we arrive at

Theorem 1: For any $X$ and $0<t<T$ , there exists a constant $C_{o}$ independent of $a$

and $t$ such that for some constant $\alpha_{o}$ independent of $a,$ $t$ , and $6_{o}$ ,

$|\Omega_{o}-\Omega_{o}^{(0)}|\leq C_{o}\exp((x_{o}t|X|/\epsilon_{o})$

where $\Omega_{o}^{(0)}=\omega_{o}$ , and $C_{o}\leq 2|\hat{u}-u|_{\max}$ . Further, we have

$|\Omega_{o}-\Omega_{o}^{(0)}|arrow O(t^{1/2})$ as $tarrow 0$

Remark: We see from this theorem that $\omega(x, t)$ becomes rapidly zero as $|x|arrow\infty$ , that is,
Assumption 1 is satisfied.
Remark: This theorem shows that $\Omega_{o}-\Omega_{o}^{(0)}$ is not singular for $tarrow 0$ . We hence see as
$tarrow 0,\cdot$

$\omega(x, t)$ $arrow$ $\int_{S_{o}}(\Omega_{o}-\omega_{o}(a))G(t, |x-\Phi_{t}|)da+J_{s_{o}}\omega_{o}(a)G(t, |\tau\cdot-\Phi_{t}|)clc\iota$

$arrow$ $\omega_{o}(x, 0)$

4.1 Consistency of Vortex Method

We denotes the approximate vorticity as

$\hat{\omega}(x, t)=\int_{S_{0}}\omega_{U}(a)G(t, |x-\Phi_{t}(a)|)da$ (22)

The approximate velocity $t^{\wedge}\downarrow(x, t)$ is, therefore, given from Eq.(3) by

$\hat{u}(x, t)=\int_{D}K(x-x’)\hat{\omega}(x’, t)dx’$ (23)
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The difference between the exact velocity vector $u(x, t)$ and the approximate one $\hat{u}(x, t)$

becomes from Eqs.(3), (12), and (23) as

$u(x, t)- \hat{u}(x, t)=\int_{S_{0}}da\int_{0}^{t}d\tau\int_{D}\hat{f}(X’, a, \tau)K(x-x’)*G(t-\tau, |x’-\Phi_{t}(a)-X’|)dX’$ (24)

where

$K(x-x’)*G(t, |x’-X|)$ $\equiv$ $\int_{D}K(x-x’)G(t, |X-x’|)dx’$

$=$ $\frac{1}{2\pi}\frac{(-x_{2}+X_{2},x_{1}-X_{I})}{|x-X|^{2}}(1-ex1^{J}(-\frac{|x-X|^{2}}{\epsilon i_{O}^{2}t}I)(25)$

Here we change the Lagrangian coordinate $a$ to $X$ by $a=\Phi_{t}^{-1}(x-X)$ for $x-X\epsilon S_{t}=$

$\Phi_{t}(S_{o})$ , where $\Phi_{t}^{-1}$ is the inverse function of $\Phi_{t}$ , then we have from area-preserving and
Eq.(24);

$u(x, t)- \hat{u}(x, t)=\int_{S}dX\int_{0}^{t}d\tau\int_{D}\hat{f}(X’, \Phi_{t}^{-1}(x-X),$ $\tau$ ) $K(x-x’)*G(t-\tau, |x’-x+X-X’|)dX’$

(26)
where $S=[X|x-X\epsilon S_{t}]$ .

We define the norm by maximum norm. Then we have

Lemma 1. Suppose that Assumptions 1-3 are satisfied. The velocity difference is given
by

$|\hat{u}(x, t)-u(x, t)|$ $\leq$ $\Vert\omega_{o}\Vert[\Vert\hat{u}-u\Vert tC_{u}(0,0, t)+M_{o}(1+T)t^{1+\gamma/2}C_{u}(\gamma, 0, t)_{6_{O}^{\gamma}}]$

$+$ $C_{o}[\Vert\hat{u}-u\Vert tC_{u}(0, \alpha_{o}, t)+M_{o}(1+T)t^{1+\gamma/2}C_{u}(\gamma, \alpha_{o}, t)_{\mathcal{E}_{o}^{\gamma}}]$

for $|x|\leq R_{\infty}$

where $R_{\infty}$ is some $1_{\partial 1}ge$ value independent of $6_{o}$ such that for any small $\delta(>0)$ ,

$|\hat{u}(x, t)-u(x, t)|\leq O(\delta)$ for $|x|>R_{\infty}$

The constant, $C_{u}(\gamma, \alpha_{o}, t)$ , is given by

$C_{u}(\gamma, \alpha_{o}, t)$ $=$ $\pi^{1/2}2^{-\gamma}\frac{\Gamma(\gamma+2)}{\Gamma((\gamma+3)/2)}[(1+\int_{0}^{1}\frac{1-\exp(-x)}{x}dx+2\log(R_{t}+R_{\infty})$

$2 \log_{6_{o}}-2\log t)/(1+\frac{\gamma}{2})-2\int_{0}^{1}x^{\gamma/2}\log(1-x)dx]+\pi^{1/2}2^{-\gamma}\frac{\Gamma(\gamma/2+1)}{\Gamma(\gamma+5/2)}$

$+$ $\pi^{1/2}2^{-\gamma-I/2}\frac{\epsilon_{o}\Gamma(\gamma+3)1}{R_{t}+R_{\infty}\Gamma(\gamma/2+2)\gamma/2+3/2}$

Here, $R_{t}$ is the ball of $S_{t}$ . The function, $\Gamma(x)$ , is the Gamma function, and $C_{o}$ is the con-
stant defined by Theorem 1.
Remark: Taking into account of the remark of Assumption 1 that velocity decays for

7
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$|x|arrow\infty$ , we easily see the existence of $R_{\infty}$ .

From this lemma, we easily have:

Lemma 2. There exists a time $t_{o}$ such that $\beta_{0}(t)<1$ for $0<t\leq t_{\iota}$ , and )$ve$ have for
$0<t\leq t_{o}$

$\Vert\hat{u}-u\Vert\leq M_{o}(1+T)\gamma_{\cup}(t)t^{1+\gamma/2}\epsilon_{o}^{\gamma}/(1-\beta_{\cup}(t))$

where

$\beta_{0}(t)$ $=$ $t[\Vert\omega_{o}\Vert C_{u}(0,0, t)+C_{o}C_{u}(0, \alpha_{o}, t)]$

$\gamma_{0}(t)$ $=$ $\Vert\omega_{o}\Vert C_{u}(\gamma, 0, t)+C_{o}C_{u}(\gamma, \alpha_{o}, t)$

Note: Since $C_{u}(\gamma, \alpha_{o}, t)$ is function of-log $t$ with respect to $t$ and $t\log tarrow 0$ as $tarrow 0$ , we
see that there exists the time $t_{o}$ .

Let us apply Lemma 2 to the vortex method, Eq.(19), from $(n-1)$ time step to $n$ step.
Then we have

$\Vert(\hat{u}^{n}-\tilde{u}^{n-1})-(u^{n}-\tilde{u}^{n-1})\Vert\leq M_{o}(1+T)\gamma_{0}(\triangle t)\triangle t^{1+\gamma/2}\epsilon i^{\gamma}/(1-\beta_{u})$

where $\beta_{0}=\beta_{0}(\triangle t),\hat{u}^{n}=\hat{u}(x, n\triangle t),$ $u^{n}=u(x, n\triangle t)$ , and $\hat{u}^{\prime\iota-1}$ is velocity vector which is
obtained from the vorticity field given at $t=(n-1)\triangle t$ . Therefore, the following relation
is easily derived

$\Vert\hat{u}^{n}-u^{n}\Vert\leq\sum_{i=1}^{n}\Vert\hat{u}^{i}-\tilde{u}^{i-1}-(u^{i}-\tilde{u}^{i-1})\Vert\leq M_{o}(1+T)\gamma_{0}(\triangle t)\triangle t^{\gamma/2}t_{5_{\circ}^{\gamma}}/(1-\beta_{0})$ for $t=n\triangle t$

From this fact, we arrive at

Theorem 2. Suppose that Assumptions 1-3 are satisfied. Then for small time step $\triangle t$

such that $\beta_{0}<1$ , the vortex method given by Eq.(19) becomes as

$\Vert\hat{u}^{n}-u^{n}\Vert\leq M_{o}(1+T)\gamma_{0}(\triangle t)\triangle t^{\gamma/2}t_{6_{\circ}^{\gamma}}/(1-\beta_{0})$

where $t=n\triangle t$ .
Remark: McGrath [13] shows that $0<\gamma<1$ if $\omega$ is in $L_{1}(R^{2})$ for every $t\epsilon(O, T$ ] and
uniformly H\"older continuous with exponent $\gamma$ . Cottet et al. [5] show that the error of
velocity is less than $\triangle t\in_{o}^{2}$ , under the assumption that $\omega_{o}$ is smooth enough.
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4.2 Stability of Vortex Method

To prove the stability of the vortex method, Eq.(19), we consider first the stability of
the approximate velocity, and second we will prove the $stal$ ) $ility$ of the voltex method. For
the stability of the approximate velocity, we have:

Lemma 3. Suppose that Assumptions 1-3 are satisfied. We have

$|\hat{u}(x, t)-\hat{u}(\tilde{x}, t)|\leq|\triangle x|\Vert\omega_{o}\Vert(C_{oo}-\log|\triangle x|)$

where $\triangle x\equiv\tilde{x}-x,\hat{C}_{OO}$ is positive constant independent of $\xi j_{O}$ and $t$ :

$\hat{C}_{OO}$
$=$ $\frac{2}{\pi}(\int_{0}^{1}K(x)dx+\int_{1}^{\infty}\frac{1}{x}\{K(1/x)-\frac{\pi}{2}\}dx)+\log(R_{t}+R_{\infty})+3$

where $K(x)$ is the complete elliptic integral of the first kind.
Remark: McGrath [13] obtained this results already, howeveI, he did not estimate the
constant $\hat{C}_{oo}$ .

The difference of the approximate velocities at $n$ time step between $x$ and $\tilde{x}$ is given by

$|\hat{u}^{n}(x)-\hat{u}^{n}(\tilde{x})|$ $=$ $|(\hat{u}^{n}(x)-\hat{u}^{n-1}(x))-(\hat{u}^{n}(\tilde{x})-\tilde{u}^{n-1}(x))|$

$\leq$ $\sum_{i=1}^{n}|(\hat{u}^{i}(x)-\tilde{u}^{i-1}(x))-(\hat{u}^{i}(\tilde{x})-\tilde{u}^{i-1}(x))|$

where $\tilde{u}^{n}(x)=\tilde{u}(x, n\triangle t)$ is defined in section 4.1, and $\iota\wedge\iota^{n}(x)=\iota\wedge\iota(x, n\triangle t)$ . From this lesult,
we arrive at the stability theorem by using Lemma 3:

Theorem 3. Suppose that Assumptions 1-3 are satisfied. Then we have the following
relation for the vortex method, Eq.(19):

$| \hat{u}(x, t)-\hat{u}(\tilde{x}, t)|\leq|\triangle x|\frac{\Vert\omega_{o}\Vert}{\triangle t}t(\hat{C}_{oo}-\log|\triangle x|)$

Let us denote the discretized vorticity on the $\iota$ th grid $\Lambda_{\dot{\iota}}$ by $\omega_{j}$ . Then the error of velocity
field due to the discretization of the vorticity field $\omega$ is given by

$e_{c}=| \sum_{i}K_{\epsilon}(x-\tilde{x}_{i}(t))\omega_{i}h^{2}-\int_{D}K_{\epsilon}(x-x’)\omega(x’, t)dx’|$ (27)

where $K_{\epsilon}(x)=K(x-x’)*G(t, |x’ )$ and $\tilde{x}_{i}$ is a point in $\Lambda_{i}$ . Anderson and Greengard [4]
and others $[2]-[5]$ show;

$e_{c} \leq C_{c}(\frac{h}{\epsilon_{O}})^{L}\epsilon i_{O}$ (28)
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where $C_{c}$ and $L(3\leq L<\infty)$ are constant independent of $h$ and $\epsilon i_{O}$ . Using this result, we
arrive at the following stability theorem:

Theorem 4. The error, $\triangle x=\tilde{x}-x$ , is given by the following relation $for\triangle t$ such that
$\beta_{0}\equiv\beta_{0}(\triangle t)<1$ :

$| \triangle x|\leq\frac{7}{4}[1-\Vert\omega_{o}\Vert C_{2}\triangle t\log\{C_{2}H(\triangle t)\triangle t\}]H(\triangle t)t$

where $x$ and $\tilde{x}$ are the exact trajectory of the fluid particle and the approximate one
obtained by the vortex method, respectively, $C_{2}$ is a constant independent of $t$ , and

$H(t)=C_{c}( \frac{h}{\epsilon_{o}})^{L}\epsilon i_{O}+\frac{M_{o}(1+T)}{1-\beta_{0}}\gamma_{0}(t)t^{I+\gamma/2}\in_{o’}\wedge$

Proof. Let an initial vorticity, $\omega_{o}$ , be given. The approximate trajectory of the fluid particle
is given by the vortex method;

$\frac{d\tilde{x}}{dt}=\sum_{i}K_{\epsilon}(\tilde{x}-x_{i})\omega_{oi}h^{2}$ (29)

Then we have

$\frac{d(\tilde{x}-x)}{dt}=\sum_{i}K_{\epsilon}(\tilde{x}-x_{i})\omega_{oi}h^{2}-\int_{D}K(x-x’)\omega_{o}(x’, t)dx’$ (30)

From Eqs.(28) and (30), we have

$| \frac{d\triangle x}{dt}|\leq C_{c}(\frac{h}{\epsilon_{o}})^{L}\mathcal{E}_{O}+|\hat{u}(x, t)-\hat{u}(\tilde{x}, t)|+|\hat{u}(x, t)-u(x, t)|$ (31)

We note that $u$ and $\hat{u}$ are defined by

$u(x, t)= \int_{D}K(x-x’)\omega_{o}(x’, t)dx’$ $\hat{u}(x, t)=\int_{D}’\cdot$

From Lemma 2, we have $\beta_{0}<1$ for time $t\leq t_{O}$ :

$\frac{d|\triangle x|}{dt}\leq H(t)+|\hat{u}(x, t)-\hat{u}(\tilde{x}, t)|$

From Theorem 3, we have

$\frac{d|\triangle x|}{dt}\leq H(t)+\Vert\omega_{U}\Vert|\triangle x|(\hat{C}_{oo}-\log|\triangle x|)$

Suppose that $0\leq|\triangle x|\ll 1$ , then we have for $0<t\leq\triangle t;H(t)\leq H(\triangle t)$ . We therefore
have for $\triangle t\leq t_{o}$ :

$\frac{d|\triangle x|}{dt}\leq H(\triangle t)+\Vert\omega_{o}\Vert\hat{C}_{oo}|\triangle x|-\Vert\omega_{o}\Vert|\triangle x|_{\max}\log|\triangle/r|_{mag}$ .
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where $|\triangle x|_{\max}$ is the maximum of $|\triangle x|$ . From the Gronwall inequality, we have for $0<$

$t\leq\triangle t$

$| \triangle x|\leq\frac{1}{\Vert\omega_{o}\Vert\hat{C}_{o\circ}}[H(\triangle t)-\Vert\omega_{o}\Vert|\triangle x|_{\max}\log|\triangle x|_{\max}][\exp(\Vert\omega_{o}\Vert\hat{C}_{oo}t)-1]$ (32)

From 4.2.38 in [14], we have

$| \triangle x|<\frac{7}{4}[H(\triangle t)-\Vert\omega_{o}\Vert|\triangle x|_{n\iota ax}\log|\triangle x|_{mao}.]t$ (33)

We have from this equation for $0<t\leq\triangle t$ :

$| \triangle x|_{\max}<\frac{7}{4}[H(\triangle t)-\Vert\omega_{o}\Vert|\triangle x|_{\max}\log|\triangle x|_{\max}]\triangle t$

Thus, we have
$|\triangle x|_{\max}\leq C_{2}H(\triangle t)\triangle t$ (34)

where $C_{2}$ is constant with respect to $t$ and $C_{2}\sim-\log\triangle t$ as $\triangle tarrow 0$ . Thus, we have from
$Eq.(34)$

$| \triangle x|<\frac{7}{4}[H(\triangle t)-\Vert\omega_{o}\Vert C_{2}H(\triangle t)\triangle t\log\{C_{2}H(\triangle t)\triangle t\}]t$ (35)

Let us consider the difference between the exact velocity and the approximate one from
$(n-1)\triangle t$ to $n\triangle t$ . From Eq.(35), we hence have

$| \triangle x^{n}-\triangle x^{n-1}|\leq\frac{7}{4}[1-\Vert\omega_{o}\Vert C_{2}\triangle t\log\{C_{2}H(\triangle t)\triangle t\}]H(\triangle t)\triangle t$ (36)

where $\triangle x^{n}=\tilde{x}(n\triangle t)-x(n\triangle t)$ . We use the relation;

$|\hat{u}^{n}-u^{n}|$ $=$ $|(\hat{u}^{r\iota\sim n-I}-|\iota)-(u^{n}-\tilde{u}^{n-1})|$

$\leq$ $\sum_{i}^{n}|(\hat{u}^{i}-\tilde{u}^{i-1})-(u^{i}-\tilde{u}^{i-1})|$

where $\hat{u}^{n}=\hat{u}(\tilde{x}(n\triangle t), n\triangle t)$ and $u^{n}=u(x(n\triangle t))n\triangle t)$ . $\tilde{u}^{n}$ ‘1 is defined in section 4.1.
Then, we easily arrive at this theorem.

Remark: From this theory, the accuracy of the vortex particle due to the vortex method,
Eq.(19), is of order of $O((h/6_{O})^{L_{\xi j_{O}}}, \in_{o}^{\gamma}\triangle t^{1+\gamma/2})$ for small $\epsilon$; and $\triangle t$ . We have to take the
grid size $h$ for high Reynolds number flows as;

$h\leq O(\epsilon_{o}^{1+(\gamma-1)/L}\triangle t^{(1+\gamma/2)/L})$ (37)

Then the effect of the discretization of vorticity field to the numerical error is much slnaller
than that of the approximation of the core $s$ ) $1e’()$ method. Cottet et al. [5] show the
stability condition $h\leq(\in_{o}^{2}\triangle t)^{1/2+s}$ for $arbit_{1’}\subset\{ry$ small $s>$ $()$ , under tlie assunnption that
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$\omega_{o}$ is smooth enough. We note that in the present paper $\omega_{o}$ is in $C^{\lambda}$ and Cottet et al. [5]
do not show the stability theorem 3.
Rematk: In the present analysis, the $a_{PP^{1}\subset i}oxi_{l}n\prime te$ vorticitv held is assulned to be negli-
gible $S\ln_{C}’\{11$ for $x>R_{\infty}$ and its effect to the approximate velocity held is assuined to be
also negligibly small for each simulation cycle. This assunlption may be rational; in the
present analysis the initial vorticity has bounded support, and the effect of diffusion due
to viscosity becomes small exponentially with $|x|^{2}$ from Theorem 1.

The present analysis shows the errors of velocity field and fluid particle after a lapse
of time $\triangle t$ from same vorticity field. This fact implies that the present results can not
extend to the classical core spreading method treated by Greengard [11]. We see fronn the
process of proving Theorem 4 that in the classical core spreading method the difference
between the exact trajectory and the approximate one implies to become large with time
(see Theorem 3). Thus, the present analysis is applicable to the algorithms of Lu and Ross
[12] or Cottet et al. [5]: Vorticity distribution is rearranged at each time step.
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