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\S 1 Introduction.
Let $\Omega$ be an exterior domain in $R^{n}(n\geq 3),i.e.$ , a domain having a compact com-

plement $R^{n}\backslash \Omega$ , and assume that the boundary $\partial\Omega$ is of class $C^{2+\mu}(0<\mu< 1)$ .
The motion of the incompressible fluid occupying $\Omega$ is governed by the Navier-Stokes
equations:

$(S)$ $\{\begin{array}{l}-\triangle w+w\nabla w+\nabla\pi=divFin\Omegadivw=0in\Omega w=0on\partial\Omega,w(x)arrow 0as|x|arrow\infty\end{array}$

where $w=w(x)=(w^{1}(x), \cdots w^{n}(x))$ and $\pi=\pi(x)$ denote the velocity vector
and the pressure of the fluid at point $x\in\Omega$ , respectively, while $F=F(x)=$
$\{F_{ij}(x)\}_{i,j=1,\cdots,n}$ is the given $nxn$ matrics with $divF$ the external force. In the
previous paper [14], the first author and Ogawa showed the stability in $L^{n}$ of solu-
tions $w$ in the class

$(CL)$ $w\in L^{n}(\Omega)$ and $\nabla w\in L^{n/2}(\Omega)$ .

In case $n\geq 4$ we can show the existence and uinqueness for solutions $w$ of (S) with
(CL). In the three dimensional case, however, the solution in the class (CL) yields
that the net force exerted to the body is equal to zero:

$\int_{\partial\Omega}(T(w, \pi)+F)\cdot\nu dS=0$,

where $T(w, \pi)=\{\partial w^{i}/\partial x^{j}+\partial w^{j}/\partial x^{i}-\delta_{ij}\pi\}_{i,j=1,\cdots,n}$ and $\nu$ denote the stress strain
and the unit outer normal to $\partial\Omega$ , respectively(see Kozono-Sohr [16]). Introducing
another class

$(CL’)$ $\sup_{x\in\Omega}|x||w(x)|+\sup_{x\in\Omega}|x|^{2}|\nabla w(x)|\equiv C_{w}<\infty$
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Borchers-Miyakawa [3] constructed the solution with (CL’) and showed that if $C_{w}$ is
small, then $w$ is stable under the initial disturbance in weak- $L^{n}$ space $L^{n,\infty}(\Omega)$ .

The purpose of this note is to find a larger class of stable flows than (CL’). Indeed,
we shall show that stationary flows in the class

$(CL’)$ $w\in L^{n,\infty}(\Omega)$

are stable under such perturbation as Borchers-Miyakawa’s [3]. As a result, we shall
obtain the same class of stable solutions and initial disturbances. More precisesly,
if $w$ is perturbed by $a$ , then the perturbed flow $v(x, t)$ is governed by the following
non-stationary Navier-Stokes equations:

$(N-S)$ $\{,$

)

$=w(x)+a(x)forx^{v(}\in\Omega^{t)arrow 0^{0}’}$

as $|x|arrow\infty$ ,

In this note we shall show: if the stationary flow $w$ and the initial disturbance $a$ are
both small enough in $L^{n,\infty}(\Omega)$ , then there is a unique global strong solution $v$ of (N-S)
such that the integrals

$\int_{\Omega}|v(x, t)-w(x)|^{r}dx$ for $n<r<\infty$

converges to zero with definite decay rates as $tarrow\infty$ . Let $w$ and $v$ be solutions of (S)
and (N-S), respectively. Then the pair of functions $u\equiv v-w,p\equiv q-\pi$ satisfies

$(N-S’)$ $\{\begin{array}{l}\frac{\partial u}{\partial t}-\triangle u+w\cdot\nabla u+u\cdot\nabla w+u\cdot\nabla u+\nabla p=0in\Omega,t>0divu=0in\Omega,t>0u=0on\partial\Omega,t>0,u(x,t)arrow 0as|x|arrow\infty u|_{t=0}=a\end{array}$

Hence our problem on the stability for (S) can now be reduced to investigation into as-
ymptotic behaviour of the solution $u$ of (N-S’). In a three-dimensional exterior domain,
Heywood $[10,11]$ and Masuda [18] considered inhomogeneous boundary condition at
infinity like $w(x)arrow w^{\infty}$ as $|x|arrow\infty$ , where $w^{\infty}$ is a prescribed non-zero constant vec-
tor in $R^{3}$ . They showed the stability for such solutions in $L^{2}$ -spaces. On account of
the parabolically wake region behind obstacles, their decay rates are slower than that
of our solutions. To obtain sharper decay rates in $L^{r}$-spaces of the solutions of (N-S’)
with the initial data in weak- $L^{n}$ space, we need to establish $L^{p,\infty}-L^{r}$-estimates for
the semigroup $e^{-tL_{r}}$ , where $L_{r}$ is the operator defined by

$L_{r}u\equiv A_{r}u+P_{r}(w\cdot\nabla u+u\cdot\nabla w)$ .
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Here $P_{r}$ is the projection operator from $L^{r}(\Omega)$ onto $L_{\sigma}^{r}(\Omega)$ and $A_{r}\equiv-P_{r}\Delta$ denotes
the Stokes operator in $L_{\sigma}^{r}(\Omega)$ .

In case $w\equiv 0$ , we have $L_{r}=A_{r}$ and hence our problem coincides with obtaining
a global strong solution and its decay properties of the Navier-Stokes equations in
exterior domains. Since the pioneer work of Kato [13] and Ukai [23], many efforts
have been made to get $L^{P}-L^{r}$-estimates for the Stokes semigroup $e^{-tA_{r}}$ in exterior
domains and there are mainly two methods. One is to characterize the domain $D(A_{r}^{\alpha})$

of fractional powers $A_{r}^{\alpha}(0<\alpha<1)$ due to Giga $[7],Giga$-Sohr [9] and Borchers-
Miyakawa [2] and another is to obtain asymptotic expansion of the resolvent $(A_{r}+\lambda)^{-1}$

near $\lambda=0$ due to Iwashita [12]. In our case, since $L_{r}$ is the operator with variable
coffecients, both of these methods seem to be difficult to get the same asymptotic
behavior of $e^{-tL_{r}}$ as that of $e^{-\ell A_{r}}$ as $tarrow\infty$ . If we restrict ourselves to the case
$n/(n-1)<r<\infty$ , however, then $L_{r}$ can be treated as a perturbation of $A_{r}$ , and
for such $r$ , we can get satisfactory $L^{p,\infty}-L^{r}$-estimates of $e^{-tL_{r}}$ , which is enough to
construct the global strong solution of (N-S’). Our proof needs neither estimates of
the purely imaginary powers $L_{r}^{is}(s\in R)$ of $L_{r}$ nor asymptotic expansion of $(L_{r}+\lambda)^{-1}$

near $\lambda=0$ ; we need only such a standard resolvent estimate of elliptic differential
operators as Agmon’s [1].

On account of the restriction $n/(n-1)<r<\infty$ , we cannot construct the strong
solution directly in the same way as Giga-Miyakawa [8] and Kato [13]. Therefore,
we need to first introduce a mild solution which is an intermediate between weak
and strong solutions (see Definition below). This procedure is due to Kozono-Ogawa
[14]. Then we shall show the existence and uniqueness of the global mild solution $u$ of
(N-S’) in the class $C((O, \infty);L^{n,\infty}(\Omega))$ with decay property $\Vert u(t)||_{r}=O(t^{-1/2+n/2r})$

as $tarrow\infty$ for $n<r<\infty$ . Using a similar uniqueness criterion to Serrin [21] and
Masuda [19], we may identify the mild solution with the strong solution. As a result,
it will be clarified that the restriction on $r$ causes no obstruction for our purpose.

\S 2 Results.
Before stating our results, we introduce some notations and function spaces and

then give our definition of mild solutions of (N-S’). Let $C_{0^{\infty_{\sigma}}}$

, denote the set of all $c\infty_{-}$

real vector functions $\phi=$ $(\phi^{1}, \cdots , \phi^{n})$ with compact support in $\Omega$ , such that $div\phi=0$ .
$L_{\sigma}^{r}$ is the closure of $c_{0^{\infty_{\sigma}}},$

’ with respect to the $L^{r}$-norm $||$ $\Vert_{r};(\cdot, \cdot)$ denotes the $L^{2_{-}}$

inner product and the duality pairing between $L^{r}$ and $L^{r’}$ , where $1/r+1/r’=1$ . $L^{r}$

stands for the usua1$(vector- valued)L^{r}$-space over $\Omega,$ $1<r<\infty$ . $H_{0,\sigma}^{1,r}$ denotes the
closure of $c_{0}\infty_{\sigma}$ with respect to the norm

$|I^{\phi}$ I $H^{1,r=}$ I $\phi||_{r}+||\nabla\phi\Vert_{r}$ ,

where $\nabla\phi=(\partial\phi^{i}/\partial x_{j}; i,j=1, \cdots n)$ . When $X$ is a Banach space, its norm is
denoted by $\Vert\cdot\Vert_{X}$ . Then $C^{m}((t_{1}, t_{2});X)$ is a usual Banach space, where $m=0,1,2,$ $\cdots$

and $t_{1}$ and $t_{2}$ are real numbers such that $t_{1}<t_{2}$ . $BC^{m}((t_{1}, t_{2});X)$ is the set of all
functions $u\in C^{m}((t_{1}, t_{2});X)$ such that $\sup_{t_{1}<t<t_{2}}\Vert\frac{d^{m}u(t)}{dt^{m}}\Vert x<\infty$ .
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Let us recall the Helmholtz decomposition:

$L^{r}=L_{\sigma}^{r}\oplus G^{r}$ (direct sum), $1<r<\infty$ ,

where $G^{r}=\{\nabla p\in L^{r};p\in L_{loc}^{r}(\overline{\Omega})\}$ . For the proof, see Fujiwara-Morimoto[6],
Miyakawa[20] and Simader-Sohr[22]. $P_{r}$ denotes the projection operator from $L$ ‘

onto $L_{\sigma}^{r}$ along $G^{r}$ . The Stokes operator $A_{r}$ on $L_{\sigma}^{r}$ is then defined by $A_{r}=-P_{r}\triangle$ with
domain $D(A_{r})=\{u\in H^{2,r}(\Omega);u|_{\partial\Omega}=0\}\cap L_{\sigma}^{r}$. It is known that

$(L_{\sigma}^{r})^{*}$ ($the$ dual space of $L_{\sigma}^{r}$ ) $=L_{\sigma}^{r’}$ , $A_{r}^{*}$ ( $the$ adjoint operator of $A_{r}$ ) $=A_{r’}$ ,

where $1/r+1/r’=1$ .
Furthermore, for $1<r<\infty$ and $1\leq q\leq\infty,$ $L^{rq}$) denotes the Lozentz space over

$\Omega$ with norm $\Vert\cdot\Vert_{r,q}$ . Then we define $L_{\sigma}^{r,q}$ as

$L_{\sigma}^{r,q}\equiv$ { $u\in L^{r,q};divu=0$ in $\Omega,$ $u\cdot\nu=0$ on $\partial\Omega$ }.

Let us introduce the operator $L_{r}$ in $L_{\sigma}^{r}$ . To this end, we make the following assumption
on $w$ .

Assumption. $w$ is a smooth solenoidal vector $fu$nction on St with $w|_{\text{\^{o}}\Omega}=0$ in the
$c1assw\in L_{\sigma}^{n,\infty}$

For the existence of such solutions $w$ of (S), see Finn [4] and Fujita [5]. Under this
assumption, we define the operator $B_{r}$ on $L_{\sigma}^{r}$ by

$B_{r}u\equiv P_{r}(w\cdot\nabla u+u\cdot\nabla w)$ with domain $D(B_{r})=H_{0,\sigma}^{1,r}$ .

$L_{r}$ is now defined by

$D(L_{r})=D(A_{r})$ and $L_{r}\equiv A_{r}+B_{r}$ .

Since $divw=0$ in $\Omega$ , we can easily verify that the operator $L’$ defined by

$L_{r}’u=A_{r}u-P_{r}(w \cdot\nabla u+\sum_{j=1}^{n}w^{j}\nabla u^{j})$ , $D(L_{r}’)=D(A_{r})$

is the adjoint operator of $L_{r’}$ on $L_{\sigma}^{r’}$ . It should be noted that the operator $L’$ contains
no derivative $\partial w/\partial x^{j}(j=1, \cdots n)$ of $w$ in its coefficients.

Our definition of mild solutions of (N-S’) is as follows:

Deflnition. Let $a\in L_{\sigma}^{n,\infty}$ and let $w$ sa $t$isfy the $Ass$umption. $Su$ppose that $n<r<$
$\infty.$ A measurable function $u$ defined on $\Omega\cross(0, \infty)$ is called a mild solu tion of (N-S’)
in $L_{\sigma}^{r}$ if

(1) $u\in BC((0, \infty);L_{\sigma}^{n,\infty})$ and $t^{(1-n/r)/2}u(\cdot)\in BC((0, \infty);L_{\sigma}^{r})$ ;
(2)

$(u(t), \phi)=(e^{-tL}a, \phi)+\int_{0}^{t}(u(s)\cdot\nabla e^{-(t-s)L’}\phi, u(s))ds$

for all $\phi\in C_{0}^{\infty_{\sigma}}$ and all $0<t<\infty$ .
$O$ur $res$ults $now$ read:
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Theorem 1. (l)(existence) Let $a\in L_{\sigma}^{n,\infty}$ and let $w$ satisfy the Assumption. Then
for every $n<r<\infty$ , there is a positive number $\lambda=\lambda(n, r)$ such that if

$\Vert a\Vert_{n,\infty}\leq\lambda$ , $||w\Vert_{n,\infty}\leq\lambda$ ,

there exists a mild solution $u$ of (N-S’) in $L_{\sigma}^{r}$ such that

$u(t)arrow a$ $\mathfrak{n}^{r}eakly*in$ $L_{\sigma}^{n,\infty}$ as $t\downarrow+O$ .

(2) (uniqueness) There is a constant $k=k(n, r)$ such that any mild solution $u$ of
(N-S) in $L_{\sigma}^{r}$ with

$\lim_{tarrow}\sup_{+0}t^{\frac{n}{2}(\frac{1}{n}-\frac{1}{r})}\Vert u(t)||_{r}\leq k$

is $uni$que.

Concerning the regularity of the solution, we have

Theorem 2. The mild solution $u$ given in Theorem 1 is actually a $st$ronng solution
in the following $sen$se:

(1) $u\in C^{1}$ ( ( $0$ , oo); $L_{\sigma}^{r}$ );
(2) $u(t)\in D(L_{r})$ for $t\in(O, \infty)$ an$dL_{r}u\in C((0, \infty);L_{\sigma}^{r})$ ;
(3) $u$ satisfies

$\frac{du}{dt}+L_{r}u+P_{r}(u\cdot\nabla u)=0$ , $t>0$ in $L_{\sigma}^{r}$

Remarks. (1) The above theorems show that the space $L_{\sigma}^{n,\infty}$ is the class of $st$a-
$ble$ stationary flows and that it is the same class as that of initial disturbances.
Borchers-Miyakawa [3] obtained, among others, $sim$ilar results to ours including the
uniform $L^{\infty}$ estimate in time. They make, however, such a stronger assumption as
$\sup_{x\in\Omega}|x||w(x)|+\sup_{x\in\Omega}|x|^{2}|\nabla w(x)|$ is small enough. On the other hand, our the-
orems assert that the assumption on the spacial decay of $\nabla w(x)$ as $|x|arrow\infty$ is not
necessary. Moreover, the class of the space $L^{n,\infty}$ is larger $th$an that of functions $w$

such that $\sup_{x\in\Omega}|x||w(x)|<\infty$ .
(2) Since the semigroup $\{e^{-tL}\}_{t\geq 0}$ is not $st$rongly continuous in $L_{\sigma}^{n,\infty}$ , we cannot

assure whether our solu tion $u$ satisfies

$\lim_{tarrow+0}t^{\frac{n}{2}(\frac{1}{n}-\frac{1}{r})}\Vert u(t)\Vert_{r}=0$.

(3) When $\Omega=R^{n}(n\geq 3)$ , without $ass$uming any regularity on the stationary flow
$w$ , Kozono-Yamazaki [17] obtain$ed$ a similar strong solution with a uniform decay
estimate.
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