NAVIER-STOKES EQUATIONS WITH DISTRIBUTIONS AS INITIAL DATA

HIDEO KOZONO[†] AND MASAO YAMAZAKI[‡] (小薗 英雄) (山崎 昌男) † Department of Applied Physics Nagoya University ‡ Department of Mathematics Hitotsubashi University

§1 Introduction.

Let Ω be an exterior domain in $\mathbb{R}^n (n \geq 3)$, i.e., a domain having a compact complement $\mathbb{R}^n \setminus \Omega$, and assume that the boundary $\partial \Omega$ is of class $C^{2+\mu}(0 < \mu < 1)$. The motion of the incompressible fluid occupying Ω is governed by the Navier-Stokes equations:

(S)
$$\begin{cases} -\Delta w + w \cdot \nabla w + \nabla \pi = \operatorname{div} F \quad \text{in} \quad \Omega, \\ \operatorname{div} w = 0 \quad \text{in} \quad \Omega, \\ w = 0 \quad \text{on} \quad \partial\Omega, \quad w(x) \to 0 \quad \text{as} \quad |x| \to \infty, \end{cases}$$

where $w = w(x) = (w^1(x), \dots, w^n(x))$ and $\pi = \pi(x)$ denote the velocity vector and the pressure of the fluid at point $x \in \Omega$, respectively, while $F = F(x) = \{F_{ij}(x)\}_{i,j=1,\dots,n}$ is the given $n \times n$ matrics with div F the external force. In the previous paper [14], the first author and Ogawa showed the stability in L^n of solutions w in the class

(CL)
$$w \in L^{n}(\Omega)$$
 and $\nabla w \in L^{n/2}(\Omega)$.

In case $n \ge 4$ we can show the existence and unqueness for solutions w of (S) with (CL). In the three dimensional case, however, the solution in the class (CL) yields that the net force exerted to the body is equal to zero:

$$\int_{\partial\Omega} (T(w,\pi) + F) \cdot \nu dS = 0,$$

where $T(w, \pi) = \{\partial w^i / \partial x^j + \partial w^j / \partial x^i - \delta_{ij}\pi\}_{i,j=1,\dots,n}$ and ν denote the stress strain and the unit outer normal to $\partial \Omega$, respectively(see Kozono-Sohr [16]). Introducing another class

$$(CL') \qquad \qquad \sup_{x \in \Omega} |x| |w(x)| + \sup_{x \in \Omega} |x|^2 |\nabla w(x)| \equiv C_w < \infty$$

Typeset by $\mathcal{A}_{\mathcal{M}}S\text{-}T_{E}X$

HIDEO KOZONO † AND MASAO YAMAZAKI‡

Borchers-Miyakawa [3] constructed the solution with (CL') and showed that if C_w is small, then w is stable under the initial disturbance in weak- L^n space $L^{n,\infty}(\Omega)$.

The purpose of this note is to find a larger class of stable flows than (CL'). Indeed, we shall show that stationary flows in the class

$$(CL^{"}) w \in L^{n,\infty}(\Omega)$$

are stable under such perturbation as Borchers-Miyakawa's [3]. As a result, we shall obtain the same class of stable solutions and initial disturbances. More precisely, if w is perturbed by a, then the perturbed flow v(x,t) is governed by the following non-stationary Navier-Stokes equations:

$$(N-S) \qquad \begin{cases} \frac{\partial v}{\partial t} - \Delta v + v \cdot \nabla v + \nabla q = f \quad \text{in } \Omega, t > 0, \\ \text{div } v = 0 \quad \text{in } \Omega, t > 0, \\ v = 0 \quad \text{on } \partial\Omega, t > 0, \quad v(x,t) \to 0 \quad \text{as } |x| \to \infty, \\ v(x,0) = w(x) + a(x) \quad \text{for } x \in \Omega. \end{cases}$$

In this note we shall show: if the stationary flow w and the initial disturbance a are both small enough in $L^{n,\infty}(\Omega)$, then there is a unique global strong solution v of (N-S) such that the integrals

$$\int_{\Omega} |v(x,t) - w(x)|^r dx \quad \text{for} \quad n < r < \infty$$

converges to zero with definite decay rates as $t \to \infty$. Let w and v be solutions of (S) and (N-S), respectively. Then the pair of functions $u \equiv v - w, p \equiv q - \pi$ satisfies

$$(N - S') \qquad \begin{cases} \frac{\partial u}{\partial t} - \Delta u + w \cdot \nabla u + u \cdot \nabla w + u \cdot \nabla u + \nabla p = 0 & \text{in } \Omega, t > 0 \\ \text{div } u = 0 & \text{in } \Omega, t > 0, \\ u = 0 & \text{on } \partial \Omega, t > 0, \quad u(x, t) \to 0 \quad \text{as } |x| \to \infty, \\ u|_{t=0} = a. \end{cases}$$

Hence our problem on the stability for (S) can now be reduced to investigation into asymptotic behaviour of the solution u of (N-S'). In a three-dimensional exterior domain, Heywood [10,11] and Masuda [18] considered inhomogeneous boundary condition at infinity like $w(x) \to w^{\infty}$ as $|x| \to \infty$, where w^{∞} is a prescribed non-zero constant vector in \mathbb{R}^3 . They showed the stability for such solutions in L^2 -spaces. On account of the parabolically wake region behind obstacles, their decay rates are slower than that of our solutions. To obtain sharper decay rates in L^r -spaces of the solutions of (N-S') with the initial data in weak- L^n space, we need to establish $L^{p,\infty} - L^r$ -estimates for the semigroup e^{-tL_r} , where L_r is the operator defined by

$$L_r u \equiv A_r u + P_r(w \cdot \nabla u + u \cdot \nabla w).$$

Here P_r is the projection operator from $L^r(\Omega)$ onto $L^r_{\sigma}(\Omega)$ and $A_r \equiv -P_r \Delta$ denotes the Stokes operator in $L^r_{\sigma}(\Omega)$.

In case $w \equiv 0$, we have $L_r = A_r$ and hence our problem coincides with obtaining a global strong solution and its decay properties of the Navier-Stokes equations in exterior domains. Since the pioneer work of Kato [13] and Ukai [23], many efforts have been made to get $L^p - L^r$ -estimates for the Stokes semigroup e^{-tA_r} in exterior domains and there are mainly two methods. One is to characterize the domain $D(A_r^{\alpha})$ of fractional powers $A_r^{\alpha}(0 < \alpha < 1)$ due to Giga [7], Giga-Sohr [9] and Borchers-Miyakawa [2] and another is to obtain asymptotic expansion of the resolvent $(A_r + \lambda)^{-1}$ near $\lambda = 0$ due to Iwashita [12]. In our case, since L_r is the operator with variable coffecients, both of these methods seem to be difficult to get the same asymptotic behavior of e^{-tL_r} as that of e^{-tA_r} as $t \to \infty$. If we restrict ourselves to the case $n/(n-1) < r < \infty$, however, then L_r can be treated as a perturbation of A_r , and for such r, we can get satisfactory $L^{p,\infty} - L^r$ -estimates of e^{-tL_r} , which is enough to construct the global strong solution of (N-S'). Our proof needs neither estimates of the purely imaginary powers $L_r^{is}(s \in \mathbf{R})$ of L_r nor asymptotic expansion of $(L_r + \lambda)^{-1}$ near $\lambda = 0$; we need only such a standard resolvent estimate of elliptic differential operators as Agmon's [1].

On account of the restriction $n/(n-1) < r < \infty$, we cannot construct the strong solution directly in the same way as Giga-Miyakawa [8] and Kato [13]. Therefore, we need to first introduce a *mild solution* which is an intermediate between weak and strong solutions (see Definition below). This procedure is due to Kozono-Ogawa [14]. Then we shall show the existence and uniqueness of the global mild solution u of (N-S') in the class $C((0,\infty); L^{n,\infty}(\Omega))$ with decay property $||u(t)||_r = O(t^{-1/2+n/2r})$ as $t \to \infty$ for $n < r < \infty$. Using a similar uniqueness criterion to Serrin [21] and Masuda [19], we may identify the mild solution with the strong solution. As a result, it will be clarified that the restriction on r causes no obstruction for our purpose.

§2 Results.

Before stating our results, we introduce some notations and function spaces and then give our definition of mild solutions of (N-S'). Let $C_{0,\sigma}^{\infty}$ denote the set of all C^{∞} real vector functions $\phi = (\phi^1, \dots, \phi^n)$ with compact support in Ω , such that div $\phi = 0$. L_{σ}^r is the closure of $C_{0,\sigma}^{\infty}$, with respect to the L^r -norm $\| \quad \|_r$; (\cdot, \cdot) denotes the L^2 inner product and the duality pairing between L^r and $L^{r'}$, where 1/r + 1/r' = 1. L^r stands for the usual(vector-valued) L^r -space over Ω , $1 < r < \infty$. $H_{0,\sigma}^{1,r}$ denotes the closure of $C_{0,\sigma}^{\infty}$ with respect to the norm

$$\|\phi\|_{H^{1,r}} = \|\phi\|_r + \|\nabla\phi\|_r,$$

where $\nabla \phi = (\partial \phi^i / \partial x_j; i, j = 1, \dots, n)$. When X is a Banach space, its norm is denoted by $\|\cdot\|_X$. Then $C^m((t_1, t_2); X)$ is a usual Banach space, where $m = 0, 1, 2, \dots$ and t_1 and t_2 are real numbers such that $t_1 < t_2$. $BC^m((t_1, t_2); X)$ is the set of all functions $u \in C^m((t_1, t_2); X)$ such that $\sup_{t_1 < t < t_2} \|\frac{d^m u(t)}{dt^m}\|_X < \infty$.

HIDEO KOZONO [†] AND MASAO YAMAZAKI[‡]

Let us recall the Helmholtz decomposition:

 $L^r = L^r_{\sigma} \oplus G^r$ (direct sum), $1 < r < \infty$,

where $G^r = \{\nabla p \in L^r; p \in L^r_{loc}(\overline{\Omega})\}$. For the proof, see Fujiwara-Morimoto[6], Miyakawa[20] and Simader-Sohr[22]. P_r denotes the projection operator from L^r onto L^r_{σ} along G^r . The Stokes operator A_r on L^r_{σ} is then defined by $A_r = -P_r\Delta$ with domain $D(A_r) = \{u \in H^{2,r}(\Omega); u|_{\partial\Omega} = 0\} \cap L^r_{\sigma}$. It is known that

 $(L^r_{\sigma})^*$ (the dual space of $L^r_{\sigma}) = L^{r'}_{\sigma}$, A^*_r (the adjoint operator of $A_r) = A_{r'}$,

where 1/r + 1/r' = 1.

Furthermore, for $1 < r < \infty$ and $1 \le q \le \infty$, $L^{r,q}$ denotes the Lozentz space over Ω with norm $\|\cdot\|_{r,q}$. Then we define $L^{r,q}_{\sigma}$ as

$$L^{r,q}_{\sigma} \equiv \{ u \in L^{r,q}; \text{div } u = 0 \text{ in } \Omega, u \cdot \nu = 0 \text{ on } \partial \Omega \}.$$

Let us introduce the operator L_r in L_{σ}^r . To this end, we make the following assumption on w.

Assumption. w is a smooth solenoidal vector function on $\overline{\Omega}$ with $w|_{\partial\Omega} = 0$ in the class $w \in L^{n,\infty}_{\sigma}$

For the existence of such solutions w of (S), see Finn [4] and Fujita [5]. Under this assumption, we define the operator B_r on L^r_{σ} by

$$B_r u \equiv P_r(w \cdot \nabla u + u \cdot \nabla w)$$
 with domain $D(B_r) = H_{0,\sigma}^{1,r}$.

 L_r is now defined by

$$D(L_r) = D(A_r)$$
 and $L_r \equiv A_r + B_r$.

Since div w = 0 in Ω , we can easily verify that the operator L' defined by

$$L'_r u = A_r u - P_r(w \cdot \nabla u + \sum_{j=1}^n w^j \nabla u^j), \quad D(L'_r) = D(A_r)$$

is the adjoint operator of $L_{r'}$ on $L_{\sigma}^{r'}$. It should be noted that the operator L' contains no derivative $\partial w/\partial x^j (j = 1, \dots, n)$ of w in its coefficients.

Our definition of mild solutions of (N-S') is as follows:

Definition. Let $a \in L^{n,\infty}_{\sigma}$ and let w satisfy the Assumption. Suppose that $n < r < \infty$. A measurable function u defined on $\Omega \times (0,\infty)$ is called a mild solution of (N-S') in L^{r}_{σ} if

(1)
$$u \in BC((0,\infty); L^{n,\infty}_{\sigma})$$
 and $t^{(1-n/r)/2}u(\cdot) \in BC((0,\infty); L^{r}_{\sigma});$
(2)

$$(u(t),\phi) = (e^{-tL}a,\phi) + \int_0^t (u(s) \cdot \nabla e^{-(t-s)L'}\phi, u(s))ds$$

for all $\phi \in C^{\infty}_{0,\sigma}$ and all $0 < t < \infty$.

Our results now read:

Theorem 1. (1)(existence) Let $a \in L^{n,\infty}_{\sigma}$ and let w satisfy the Assumption. Then for every $n < r < \infty$, there is a positive number $\lambda = \lambda(n,r)$ such that if

$$||a||_{n,\infty} \leq \lambda, \quad ||w||_{n,\infty} \leq \lambda,$$

there exists a mild solution u of (N-S') in L_{σ}^{r} such that

$$u(t) \to a$$
 weakly $*$ in $L^{n,\infty}_{\sigma}$ as $t \downarrow +0$.

(2) (uniqueness) There is a constant k = k(n,r) such that any mild solution u of (N-S') in L^r_{σ} with

$$\limsup_{t \to +0} t^{\frac{n}{2}(\frac{1}{n} - \frac{1}{r})} \|u(t)\|_{r} \le k$$

is unique.

Concerning the regularity of the solution, we have

Theorem 2. The mild solution u given in Theorem 1 is actually a strong solution in the following sense:

(1) $u \in C^1((0,\infty); L^r_{\sigma});$ (2) $u(t) \in D(L_r)$ for $t \in (0,\infty)$ and $L_r u \in C((0,\infty); L^r_{\sigma});$ (3) u satisfies

$$\frac{du}{dt} + L_r u + P_r(u \cdot \nabla u) = 0, \quad t > 0 \quad in \quad L_{\sigma}^r$$

Remarks. (1) The above theorems show that the space $L_{\sigma}^{n,\infty}$ is the class of stable stationary flows and that it is the same class as that of initial disturbances. Borchers-Miyakawa [3] obtained, among others, similar results to ours including the uniform L^{∞} estimate in time. They make, however, such a stronger assumption as $\sup_{x\in\Omega} |x||w(x)| + \sup_{x\in\Omega} |x|^2 |\nabla w(x)|$ is small enough. On the other hand, our theorems assert that the assumption on the spacial decay of $\nabla w(x)$ as $|x| \to \infty$ is not necessary. Moreover, the class of the space $L^{n,\infty}$ is larger than that of functions w such that $\sup_{x\in\Omega} |x||w(x)| < \infty$.

(2) Since the semigroup $\{e^{-tL}\}_{t\geq 0}$ is not strongly continuous in $L^{n,\infty}_{\sigma}$, we cannot assure whether our solution u satisfies

$$\lim_{t \to +0} t^{\frac{n}{2}(\frac{1}{n} - \frac{1}{r})} \|u(t)\|_{r} = 0.$$

(3) When $\Omega = \mathbf{R}^n (n \ge 3)$, without assuming any regularity on the stationary flow w, Kozono-Yamazaki [17] obtained a similar strong solution with a uniform decay estimate.

References

- [[1]] Agmon, S., On the eigenfunctions and on the eigenvalues of genereal elliptic boundary value problems, Comm. Pure Appl. Math. 15 (1962), 119-147.
- [[2]] Borchers, W. and Miyakawa, T., Algebraic L^2 decay for Navier-Stokes flows in exertor domains, Acta Math. 165 (1990), 189-227.
- [[3]] Borchers, W. and Miyakawa, T., On stability of exterior Navier-Stokes flows, preprint.
- [[4]] Finn, R., On exterior stationary problem for the Navier-Stokes equations and associated perturbation problems., Arch. Rational Mech. Anal. 19 (1965), 363-406.
- [[5]] Fujita, H., On the existence and regularity of steady syste solutions of the, J. Fac.Sci.Univ.Tokyo, Sec. IA Math. 9 (1961), 59-102.
- [[6]] Fujiwara, D. and Morimoto, H., An L^r-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, Sec IA Math. 24 (1977), 685-700.
- [[7]] Giga, Y., Domains of fractional powers of the Stokes operator in L_r spaces, Arch. Rational Mech. Anal. 89 (1985), 251-265.
- [[8]] Giga, Y. and Miyakawa, T., Solution in L_r of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal. 89 (1985), 267-281.
- [[9]] Giga, Y. and Sohr, H., On the Stokes operator in exterior domains, J. Fac. Sci. Univ. Tokyo, Sec I. 36 (1989), 103-130.
- [[10]] Heywood, J. G., On stationary solutions of the Navier-Stokes equations as limits of nonstationary solutions, Arch. Rational Mech. Anal. 37 (1970), 48-60.
- [[11]] Heywood, J. G., The Navier-Stokes equations :On the existence, regularity and decay of solutions, Indiana Univ. Math. J. 29 (1980), 639-681.
- [[12]] Iwashita, H., $L_q L_r$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problems in L_q spaces, Math. Ann. 285 (1989), 265-288.
- [[13]] Kato, T., Strong L^p -solution of the Navier-Stokes equation in \mathbb{R}^m , with applications to weak solutions, Math. Z. 187 (1984), 471-480.
- [[14]] Kozono, H. and Ogawa, T., On stability of the Navier-Stokes flows in exterior domains, preprint.
- [[15]] Kozono, H. and Sohr, H., On a new class of generalized solutions for the Stokes equations in exterior domains, Ann. Scuola Norm. Sup. Pisa 19 (1992), 155-181.
- [[16]] Kozono, H. and Sohr, H., On stationary Navier-Stokes equations in unbounded domains, to appear, Ricerche Mat. Univ. Napoli.
- [[17]] Kozono, H. and Yamazaki, M., Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, preprint.
- [[18]] Masuda, K., On the stability of incompressible viscous fluid motions past object, J. Math. Soc. Japan 27 (1975), 294-327.
- [[19]] Masuda, K., Weak solutions of the Navier-Stokes equations, Tohoku Math. J. 36 (1984), 623-646.
- [[20]] Miyakawa, T., On nonstationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J. 12 (1982), 115-140.
- [[21]] Serrin, J., The initial value problem for the Navier-Stokes equations, Noninear Problem, R. Longer ed., The University of Wisconsin Press, Madison, 1960, pp. 69-98.
- [[22]] Simader, C. G. and Sohr, H., A new approch to the Helmholtz decomposition and the Neumann problem in L^q-spaces for bounded and exterior domains, "Mathematical Problems Relating to the Navier-Stokes Equations", series on Advanced in Mathematics for Applied Sciences, G.P.Galdi ed., (1992), 1-35, World Scientific, Singapore-New Jersey-London-Hong Kong.
- [[23]] Ukai, S., A solution formula for the Stokes equation in \mathbb{R}^{n}_{+} , Comm. Pure Appl. Math. 40 (1987), 611-621.