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§1 Introduction.

Let © be an exterior domain in R™®(n > 3),i.e., a domain having a compact com-
plement R™\(), and assume that the boundary 0 is of class C?T#(0 < p < 1).
The motion of the incompressible fluid occupying € is governed by the Navier-Stokes
equations:

—Aw+w-Vw+Vr=divF in

(S) divw =0 in €,
w=0 on 0%, w(z) -0 as |z| — oo,
where w = w(z) = (w!(z), - ,w™(z)) and 7 = 7(z) denote the velocity vector

and the pressure of the fluid at point z € {2, respectively, while F = F(z) =
{Fij(z)}i =1, n is the given n x n matrics with div F' the external force. In the
previous paper [14], the first author and Ogawa showed the stability in L™ of solu-
tions w in the class

(CL) we L") and Vw e LY(Q).
In case n > 4 we can show the existence and uinqueness for solutions w of (S) with

(CL). In the three dimensional case, however, the solution in the class (CL) yields
that the net force exerted to the body is equal to zero:

/ (T(w,n)+ F)-vdS =0,
N

where T(w, ) = {Ow'/8z7 4 dw’ 8z — 6;j7}; j=1,.. » and v denote the stress strain
and the unit outer normal to 02, respectively(see Kozono-Sohr [16]). Introducing
another class

(CL") - sup [z([w(z)] + sup |z]*[Vw(z)| = Cy < o0
TEN z€EN

Typeset by ApS-TEX



106

HIDEO KOZONO t AND MASAO YAMAZAKI!

Borchers-Miyakawa [3] constructed the solution with (CL’) and showed that if Cy, is
small, then w is stable under the initial disturbance in weak- L™ space L™>°(Q?).

The purpose of this note is to find a larger class of stable flows than (CL’). Indeed,
we shall show that stationary flows in the class

(CL”) w € L™®(Q)

are stable under such perturbation as Borchers-Miyakawa’s [3]. As a result, we shall
obtain the same class of stable solutions and initial disturbances. More precisesly,
if w is perturbed by a, then the perturbed flow v(z,t) is governed by the following
non-stationary Navier-Stokes equations:

r%—t)t-—Av-i—lev—%—Vq:f in ,t >0,

(N —S) divev=0 in Q,t>0,
v=20 on 0Q,t>0, v(z,t) - 0 as |z| — oo,
| v(2,0) = w(z)+a(z) for z €

In this note we shall show: if the stationary flow w and the initial disturbance a are
both small enough in L™°°(2), then there is a unique global strong solution v of (N-S)
such that the integrals

/ lv(z,t) —w(z)|"de for n<r<oo
Q

converges to zero with definite decay rates as t — oco. Let w and v be solutions of (S)
and (N-S), respectively. Then the pair of functions u = v — w,p = g — 7 satisfies -

(%?—Au+w-Vu+u-Vw+u~Vu+Vp=O in 2,¢ > 0,
(N — 5" J&vuzo in Q,t>0,

u=20 on 0Q,t>0, u(z,t) >0 as |z| > oo,

Ult=0 = a.

Hence our problem on the stability for (S) can now be reduced to investigation into as-
ymptotic behaviour of the solution u of (N-S’). In a three-dimensional exterior domain,
Heywood [10,11} and Masuda [18] considered inhomogeneous boundary condition at
infinity like w(z) — w as |z| — oo, where w™ is a prescribed non-zero constant vec-
tor in R®. They showed the stability for such solutions in L?-spaces. On account of
the parabolically wake region behind obstacles, their decay rates are slower than that
of our solutions. To obtain sharper decay rates in L"-spaces of the solutions of (N-5’)
with the initial data in weak- L™ space, we need to establish L?P'*° — L"-estimates for
the semigroup e~ 'L~ where L, is the operator defined by

Liu=Au+ P(w-Vu+u-Vuw).
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Here P, is the projection operator from L7() onto LL(R2) and A, = —P,A denotes
the Stokes operator in L7(2).

In case w = 0, we have L, = A, and hence our problem coincides with obtaining
a global strong solution and its decay properties of the Navier-Stokes equations in
exterior domains. Since the pioneer work of Kato [13] and Ukai [23], many efforts
have been made to get LP — L"-estimates for the Stokes semigroup e ~*4r in ezterior
domains and there are mainly two methods. One is to characterize the domain D(A2)
of fractional powers A%(0 < a < 1) due to Giga [7],Giga-Sohr [9] and Borchers-
Miyakawa [2] and another is to obtain asymptotic expansion of the resolvent (A,+\)~!
near A = 0 due to Iwashita [12]. In our case, since L, is the operator with variable
coffecients, both of these methods seem to be difficult to get the same asymptotic
behavior of e7'fr as that of e™*4r as t — oco. If we restrict ourselves to the case
n/(n — 1) < r < oo, however, then L, can be treated as a perturbation of A,, and
for such r, we can get satisfactory LP»* — L"-estimates of e 'L~ which is enough to
construct the global strong solution of (N-S’). Our proof needs neither estimates of
the purely imaginary powers L*(s € R) of L, nor asymptotic expansion of (L, +)™!
near A = 0; we need only such a standard resolvent estimate of elliptic differential
operators as Agmon’s [1].

On account of the restriction n/(n — 1) < r < oo, we cannot construct the strong
solution directly in the same way as Giga-Miyakawa [8] and Kato [13]. Therefore,
we need to first introduce a mild solution which is an intermediate between weak
and strong solutions (see Definition below). This procedure is due to Kozono-Ogawa
[14]. Then we shall show the existence and uniqueness of the global mild solution u of
(N-S’) in the class C((0,00); L™°(Q)) with decay property ||u(t)||, = O(t~1/2+"/2r)
ast — oo for n < r < co. Using a similar uniqueness criterion to Serrin [21] and
Masuda [19], we may identify the mild solution with the strong solution. As a result,
it will be clarified that the restriction on r causes no obstruction for our purpose.

§2 Results.

Before stating our results, we introduce some notations and function spaces and
then give our definition of rmld solutions of (N-S’). Let C§°, denote the set of all C>°-
real vector functions ¢ = (¢!, -+, ¢™) with compact support in §2, such that div ¢ = 0.
L7 is the closure of Cg5, with respect to the L™-norm || ||,; (-,-) denotes the L2-
inner product and the duality pairing between L™ and L", where 1/r + 1/r' = 1. L"
stands for the usual(vector-valued)L"-space over , 1 < r < co. Hj’l denotes the
closure of C§, with respect to the norm ’

18l = l¢ll- + 1Vl

" where V¢ = (6¢i/3zj;i,j = 1,---,n). When X is a Banach space, its norm is
denoted by ||-]| x. Then C™((%1,t2); X) is a usual Banach space, where m = 0,1, 2, - -
and ¢; and t; are real numbers such that ¢; < to. BC™((t1,t2); X) is the set of all

functions u € C™((t1,t2); X) such that sup; .,, ”%”X < 00
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Let us recall the Helmholtz decomposition:
L"=L] ®G" (direct sum), 1< r < oo,

where G™ = {Vp € L";p € L} (Q)}. For the proof, see Fujiwara-Morimoto[6],
Miyakawa[20] and Simader-Sohr[22]. P, denotes the projection operator from L™
onto L’ along G". The Stokes operator A, on L, is then defined by A, = —P,A with
domain D(4,) = {u € H>"(Q);u|sq = 0} N L. It is known that

(LL)*(the dual space of L7)= L;’, A7 (the adjoint operator of A,)= A,

where 1/r +1/r' = 1.
Furthermore, for 1 < r < oo and 1 < ¢ < oo, L™? denotes the Lozentz space over
2 with norm || - ||rq. Then we define L7 as

L={ueLl"divu=0 in Qu-v=0 on 0Q}.

Let us introduce the operator L, in L. To this end, we make the following assumption
on w.

Assumption. w is a smooth solenoidal vector function on Q with w|sq = 0 in the
class w € L™

For the existence of such solutions w of (S), see Finn [4] and Fujita [5]. Under this
assumption, we define the operator B, on L] by

B,u = P (w-Vu+u-Vw) with domain D(B,) = H;”;.
L, is now defined by
D(L,)=D(A,) and L,=A,+ B,.

Since div w = 0 in 2, we can easily verify that the operator L' defined by

Lu=Au—P(w-Vu+ Y wVul), D(L,)=D(4,)
. =1

is the adjoint operator of L, on L;'. It should be noted that the operator L' contains
no derivative Ow/0z’(j = 1,--- ,n) of w in its coeflicients.
Our definition of mild solutions of (N-S’) is as follows:

Definition. Let a € L?»* and let w satisfy the Assumption. Suppose that n <r <
00. A measurable function u defined on § x (0, 00) is called a mild solution of (N-S’)
in L7 if
(1) u € BO((0,00); L) and t0-"/1/2u(-) € BC((0,00); LL);
) ,
(ut)#) = (a0 + [ (u(s)- Ve g, u(s))ds
0

for all ¢ € C§%, and all 0 <t < oco.

Our results now read:
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Theorem 1. (1)(existence) Let a € L}* and let w satisfy the Assumption. Then
for every n < r < oo, there is a positive number A = A(n,r) such that if

lallnco <A [lwlin,e0 < A,
there exists a mild solution u of (N-S’) in Ly, such that
u(t) - a weakly xin L3} as t| +0.

(2) (uniqueness) There is a constant k = k(n,r) such that any mild solution u of
(N-S’) in L, with

lu(@®ll- < &

lim sup 3 (-7

is unique.
Concerning the regularity of the solution, we have

Theorem 2. The mild solution u given in Theorem 1 is actually a stronng solution
in the following sense:

(1) u € CY((0,00); L7);

(2) u(t) € D(L,) fort € (0,00) and L,u € C((0,00); L7);

(3) wu satisfies

%+Lru+Pr(u-Vu)=0, t>0 in L7

Remarks. (1) The above theorems show that the space L}'* is the class of sta-
ble stationary flows and that it is the same class as that of initial disturbances.
Borchers-Miyakawa [3] obtained, among others, similar results to ours including the
uniform L estimate in time. They make, however, such a stronger assumption as
sup,cq |z||lw(z)| + sup,eq |z|*|Vw(z)| is small enough. On the other hand, our the-
orems assert that the assumption on the spacial decay of Vw(z) as |z| — oo is not
necessary. Moreover, the class of the space L™ is larger than that of functions w
such that sup,cq |z||w(z)| < oo.

(2) Since the semigroup {e~'L};>¢ is not strongly continuous in L?°°, we cannot
assure whether our solution u satisfies

. nel_ 1
Jim 12D (o)), = 0.

(3) When Q = R™(n > 3), without assuming any regularity on the stationary flow
w, Kozono-Yamazaki [17] obtained a similar strong solution with a uniform decay
estimate.
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