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Abstract

We study $multi- d\dot{m}$ensional maps on bounded domains of $R^{d}$ satisfying
the finite range structure (FRS) condition, which leads us to countable state
sofic systems. Such maps admit $\sigma- ffi\dot{u}te$ ergodic invariant measures equivalent
to Lebesgue measures under the local Renyi condition. In this paper we show
that several ergodic properties $stiU$ hold even if such invariant measures are
infinite. We also investigate on the validity of Rohlin’s entropy formula and
Variational principle for the entropy.

1 Introduction
We study piecewise invertible maps with finite range structure (FRS) whose sym-
bolic dynamics are countable state sofic shifts. There are $examp!es$ which do not
satisfy the Markov condition but satisfy the FRS condition (see section 11). More
specffically, assume the following conditions:

1. $T$ : $Xarrow X$ is a map on a bounded domain $X$ of $R^{d}$ .
2. $Q=\{X_{a}\}_{a\in I}$ is a generating countable partition of $X$ , consists of measurable

connected subsets with piecewise smooth boundaries.

3. For each $X_{a},T|_{X_{*}}:$ $X_{a}arrow TX_{a}$ is a homeomorphism.

4. Denote $X_{a_{1}}\cap T^{-1}X_{a_{l}}\cap\ldots\cap T^{-(\prime\iota-1)}X_{a}$. by $X_{a_{1}\ldots a}$. if its interior is not empty.
(Or its interior has positive Lebesgue measure. It is also possible to work with
this measure theoretical definition.) Put $\mathcal{U}=\{T^{n}X_{a_{1}\ldots a}. : \forall X_{a_{1}\ldots a}.,\forall n>0\}$ .
Then $\mathcal{U}$ consists of only finitely many subsets of $X$ with positive Lebesgue
measures. (FRS condition.)
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We call the quadraple $(T,X, Q,\mathcal{U})$ a piecewise invertible system with FRS. Even if
these systems do not satisfy the Markov condition, the condition 4 leads us to nice
countable state symbolic dynamics, “sofic systems“. Many examples of such maps
come from number theory ([8],[9],[11],[18],[22],[23]). If we assume further that $T$ is
a piecewise $C^{1}$ map so that 3 becomes

$3^{*}T|_{X_{*}}$ is a C’-diffeomorphism for ffi $X_{a}\in Q$ ,

we can obtain nice invariant measures under $cert\dot{\infty}n$ regularity conditions. To specify
the conditions, we need some notations. Put

$C(a_{1} \ldots a_{n})=\frac{\sup ae\in x_{1}...\cdot.\cdot.\cdot.\cdot|\det DT^{n}(x)|}{\inf ae\in X_{*}1.|\det DT^{\hslash}(x)|}$

for a cylinder $X_{a_{1}\ldots a}.$ , and define for given $C>1,$ $\mathcal{R}(C.T)$ by the set of cylinders
$X_{a_{1}\ldots a}$. satisfying $C(a_{1}\ldots a_{n})<C$ . $\mathcal{L}^{(n)}$ denotes the $fan\dot{u}ly$ of $aU$ cylinders of rank
$n$ and $\mathcal{L}=\bigcup_{\mathfrak{n}=1}^{\infty}\mathcal{L}^{(n)}$ . The following condition gives a uniform bounds for build-up
of non-linearity under iteration of $T$ .
(Renyi’s condition) There exists a constant $C>1$ such that $\mathcal{R}(C.T)=\mathcal{L}$.
If $T$ satisfies such a bounded distortion property, then the well-known approach
by using a Perron-Frobenius operator applies , so that we could obtain an ergodic
invariant measure with density bounded away $hom$ zero and infinity, and further
ergodic properties were established([3],[4],[5],[9],[11], [12],[16],[21],[25],[26]). Even if
Renyi’s condition does not hold, $stiU$ we could have nice invariant measures which
admit unbounded densities , under the FRS condition and the locd Renyi condition
in [8]. We can find many examples of such maps in [23]([22]).

Theorem 1.1 (The eristence of an ergodic invariant measure equivalent
to Lebesgue measure)

Let $(T,X, Q,\mathcal{U})$ be a piecewise invertible system with $FRSsatish^{;}ng$ the $\omega ndition$

$3^{*}$. Assume that there exists a constant $C>1$ suth that $\mathcal{R}(C.T)\neq 0$ and satisfies
the following conditions:

(1-1) $X_{b_{1}\ldots b_{h}a_{1}\ldots a}$. $\in R(C.T)$ if $X_{a_{1}\ldots a}$. $\in \mathcal{R}(C.T)$ . (The locd Renyi condition.)

(1-2) Each $U\in \mathcal{U}$ contains a cylinder $X_{al\cdots a}$. satisfying $X_{a},$ $\in \mathcal{R}(C.T)$ and $T^{\cdot}X_{a_{1}\ldots a}$ .
$=X$ . (The transitivity condition.)

(1-3) Define $D_{n}=$ { $X_{a_{1}\ldots a}$. : $X_{a_{1}\ldots a:}\not\in \mathcal{R}(C.T)$ for $1\leq i\leq n$} and put $D_{n}=$

$\bigcup_{X_{1\cdots\cdot*}\in \mathcal{D}}.X_{a_{1}\ldots a}.\cdot$ (For $n=0$ we put $D_{0}=X.$) Then $hm_{\mathfrak{n}arrow\infty}\lambda(D,.)=0$ ,
where $\lambda$ is the normalized Lebesgue measure of $X$ .

Under the above conditions, the $(T,X, Q,\mathcal{U})$ admits an ergodi$c\sigma- finite$ invariant
measure $\mu$ equiovalent to $\lambda$ . If we assume
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$($1-3$)^{*}\Sigma_{n=0}^{\infty}\lambda(D_{\iota})<\infty$

instead of (1-3), then $\mu$ is finite.

Remark

(1) The condition (1-1) seems to imply a finite memory of distortion of $T$ and is
called the local Renyi condition.

(2) The condition (1-3) with (1-2) plays an important role in constructing a jump
transformation on a $fuU$ measure set ,which satisfies Renyi’s condition so that
admmits an ergodic invariant measure $\nu$ equivalent to $\lambda$ with a bounded density.
The invariant measure $\mu$ is given by using $\nu$ as (2-1) in section 2.

(3) Even if $\mu$ is finite, the invariant density of $\mu$ is not necessarily bounded.

In previous papers ([22],[23]), we obtained under the condition $(1- 3)^{*}$ , exactness,
a characterization of singular points of the invariant density of $\mu$ , and showed a
sufficient condition for the validity of Rohlin’s entropy formula. In this paper, we
will investigate these facts under the condition (1-3), i.e., in case $\mu$ is infinite in sec-
tion 4,7, and prove further results, rationffiy ergodicity“ ( in section 5), “wandering
rates “ (in section 6). In previous works, Ergodic theory for the case of $\dot{u}$ffinite
invariant measures were developed by several people. For example, imer functions
of upper half plane ([1]), and more generally piecewise-C2 Bernoulli maps on $[0,1]$

with indifferent fixed points ([19],[20]) are good examples of one-dimensional maps
preserving infinite invariant measures. For multi-dimensional maps, Markov fibred
systems based on [14] have been studied in [2] with application to parabolic rational
maps on the Riemann sphere. These systems are examples of piecewise invertible
systems with FRS satisfying the Markov condition. Our results in section 4, 5, 6,
and 7 are mostly obtained by generalzing the idea of proofs in [20] and [2]. In
section 8, we investigate on “variational principle for the entropy” under the con-
dition (1-3)*again, applying the results of [25] in which maps satisfy the bounded
distortion property (Renyi’s condition), even if we do not have such a property.
In section 9, we also discuss on the relation between FRS and countable state sofic
shift. We give some examples of our results in section 10, which occur &om number
theory and suggest that countable state sofic shifts can be products of finite state
sofic shifts and countable Bernoulh shifts.

2 Conservativity and Jump transformations
We assume all of conditions in the previous section, throughtout this paper, except
Section 10,$i.e$

)
$(T,X, Q=\{X_{a}\}_{a\in I},\mathcal{U})$ is a piecewise invertible system with FRS

satisfyin$g3^{*},$ $(1- l),(1- 2)$ , and (1-3). We first prepare some notation.
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Let (X, $\mathcal{F},$
$\lambda$) be the normalized Lebesgue space. $\mathcal{L}^{n}$ denotes the set of $aU$ cylin-

ders with respect to $T$ and put $\mathcal{L}=\bigcup_{n\geq 1}\mathcal{L}$ “. For $n\geq 1$ , put

$B_{n}=\{X_{a_{1}\ldots a}$. $\in \mathcal{L}^{n} : X_{al\cdots a.-1}\in \mathcal{D}_{n-1},X_{a_{1}\ldots a}$ . $\in \mathcal{R}(C.T)\}$

and denote $B_{n}= \bigcup_{X_{1}\ldots.\in S}.X_{a_{1}\ldots a}*\cdot$ . It follows $hom(1- 3)$ that $\bigcup_{n=1}^{\infty}B_{n}=X(\lambda$ mod
$0)$ (see [8]). Define a map $T^{\cdot}$ : $\bigcup_{n=1}^{\infty}B_{n}arrow X$ by $T^{\cdot}x=T^{j}x$ for $x\in B_{j}$ . We call the $T^{\cdot}$

a jump transformation over $R(C.T)$. By restricting $T^{\cdot}$ on $X \backslash \bigcup_{m=0}^{\infty}T^{\cdot}-m(\bigcap_{n\geq 0}D_{n})$ ,
we have a transformation of $X$ , and as $X=X(\lambda mod 0)$ we use the same notation
$T$ for this restriction on $X$ . Define $\Gamma=\bigcup_{\mathfrak{n}=1}^{\infty}\{(a_{1}\ldots a_{n})\in I^{n} : X_{a_{1}\ldots a}$. $\in B_{n}\}$ and
$Q^{\cdot}=\{X_{\alpha}\}_{\alpha\in I}\cdot$ . For $\alpha\in\Gamma$ we denote the length of the sequence $\alpha$ by $|\alpha|$ . $\mathcal{L}^{(n)}$

and $\mathcal{L}$ are defined as well as above, with respect to $T^{\cdot}$ . Put $\mathcal{U}^{\cdot}=\{T^{n}X_{\alpha_{1}\ldots\alpha}$. :
$n>0,$ $X_{\alpha_{1}\ldots\alpha}$. $\in \mathcal{L}^{(\mathfrak{n})}$}. Then $(T^{\cdot},X, Q^{\cdot}=\{X_{\alpha}\}_{\alpha\in I}\cdot,\mathcal{U}^{\cdot})$ is a piecewise invertible
system with FRS satisfying the Renyi’s condition for the $C>1$ , so $T^{\cdot}$ admits a
finite ergodic invariant measure $\nu$ equivalent to $\lambda$ with density boumded away from
zero and infinity $(G^{-1}\leq d\nu/d\lambda\leq G)$. $\mu$ is given by using this T’-invariant measure
$\nu$ as follows:

(2-1) $\mu(E)=\Sigma_{n=0}^{\infty}\nu(T^{-n}E\cap D_{n})(\forall E\in \mathcal{F})$ . (Cf [8].)

From the above formula, we can also find the formula of the invariant density of $\mu$ :

(2-2)
$\frac{d\mu}{d\lambda}(x)=\sum_{n=0}^{\infty}\sum_{X_{l\{\cdot)}\in \mathcal{D}}$. I $\det D\psi_{d(n)}(x)|\frac{d\nu}{d\lambda}(\psi_{4}n)(x))I_{T\cdot x_{4\cdot)}}(x)$

for a.e. $x\in X$ , (where $d(n)$ stands for $(d_{1}\ldots d_{n})$). As $\nu$ is finite, $T^{\cdot}$ is conservative
with respect to $\nu$ and so that with respect to $\lambda$ . This fact leads us to the following:

Theorem 2.1 $T$ is conservative.

3 Induced transformations and the uniqueness
of $\mu$

We call the constant $C(>1)$ satisfying (1-1) of Theorem 1.1, the local Renyi constant
for $T$ , and we say that $T$ satisfies the local Renyi condition if $T$ admits such a local
Renyi constant. The formula (2-1) in section 2 seems to suggest a dependence of $\mu$

on $C$ , because the jump transformation itself depends on the local Renyi constant.
As the $\mu$ we obtained $hom(2- 1)$ is usuffiy ergodic, equivalent to $\lambda$ , so under the
condition $(1- 3)^{*}$ we can say that the existence of $\mu$ is unique. Even if (1-3)*does not
hold, the condition (1-3) under which $\mu$ can be infinite is enough to obtain such a
uniqueness of the existence of $\mu$ . We can prove this by two ways, one of these uses the
induced transformation and the other uses the Chacon-Ornstein-Silva-ThieuUen’s
ratio ergodic theorem”.([15].)
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Theorem 3.1 Asuume that $T$ satisfies the local Renyi condition. Let $C>C’$ $>1$

be the local Renyi constants for T. Let $\mu^{C}$ and $\mu^{C^{\partial}}$ be $T$ invartant measures which
are given by the formula $(\ell- 1)$, respectively. Then for any $A\in \mathcal{F}$ satiskng

$0<\mu^{C’}(A)<\infty$ , we have $\mu^{C}|A=\mu^{C’}|A$ .
Remark A $\mu^{C}\leq G^{2}\mu^{C’}$ for $C’<C$ .
In fact, as $R(C’.T)\subseteq \mathcal{R}(C.T)$ and so $D^{C_{*}}\subseteq D_{n}^{C’}(\forall n\geq 0)$ ,

$G \mu^{C’}(E)\geq\sum_{n=0}^{\infty}\lambda(T^{-n}E\cap D_{n}^{C’})$

$\geq\sum_{\mathfrak{n}=0^{\lambda(T^{-n}E\cap D_{n}^{C})\geq G^{-1}\mu^{C}(E)}}^{\infty}$

for $\forall E\in \mathcal{F}$.
Corollary 3.1 For $\forall A\in \mathcal{F}$ with $0<\mu^{C’}(A)<\infty,$ $\mu^{C}(A)=\mu^{C’}(A)$ .

As $T$ is conservative with respect to $\lambda$ , we can define the induced transformation
$T_{A}$ over $A\in \mathcal{F}$ with positive finite measure. Let us define

$A_{1}=A\cap T^{-1}A,$ $A_{k}=A \cap(\bigcap_{j=1}^{k-1}T^{-j}A^{c})\cap T^{-k}A$ $(k\geq 2)$

inductively. Put $F_{0}=A$ and we define $F_{k}=A \cap(\bigcap_{j=1}^{k}T^{-j}A^{c})$ for $k\geq 1$ . Then
$A=( \bigcup_{n=1}^{l}A_{n})\cup F_{l}$ is a disjoint union for each $l\geq 1$ , and it follows ffom the
conservativity of $T$ that $\bigcup_{n=1}^{\infty}A_{\iota}=A(\lambda mod 0)$ . So $T_{A}$ is defined on $\bigcup_{n=1}^{\infty}A_{n}$ and
$T_{A}x=T^{n}x$ for $x\in A_{n}$ .
Lemma 3.1 $p|_{A}$ gives $T_{A}$ -invanant measure which is finite, ergodic and equivalent
to $\lambda|_{A}$ .
Lemma 3.2 Let $0<\lambda(A)<\infty$ and let $\nu_{A}$ be a finite $T_{A}$ -invariant measure. Then
the following $(Kacs)$ formula gives T-invariant measure; $i.e.$ , define

$\mu_{\nu_{A}}(E)=\sum_{k=0}^{\infty}\nu_{A}(F_{k}\cap T^{-k}E)$ ,

where $F_{0}=A$ . Then $\mu_{\nu_{4}}$ is a T-invariant measure.

Remark B The finiteness of $\mu_{\nu_{A}}$ is determined by the finiteness of $\Sigma_{k=1}^{\infty}\nu_{A}(F_{k})$ .
Note that $\bigcup_{k=1}^{\infty}F_{k}=A(\lambda mod 0)$ and so $\mu_{\nu_{4}}$ is $\sigma- finite$ . Assume that $\nu_{A}<<$

$\lambda|_{A}$ . Then even if $\Sigma_{k=1}^{\infty}\nu_{A}(F_{k})=\infty$ , the conservativity of $T$ with respect to $\lambda$

allows us to have:
$k arrow\infty 1\dot{m}\nu_{A}(F_{k})=\bigcap_{k=0}^{\infty}\nu_{4}(F_{k})=0$ .

Lemma 3.3 If $\bigcup_{j=0}^{\infty}T^{-j}A=X(\lambda mod 0)$ , then $\mu_{\mu 1z}=\mu$ .

Remark C The conservativity and the ergodicity of $T$ with respect to $\lambda$ allows us
to have $\bigcup_{k=0}^{\infty}T^{-k}A=X(\lambda mod 0)$ .
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4 Exactness
As we mentioned in section 1, we have already obtained exactness of $(T, \mu)$ under
the condition $(1- 3)^{*}$ . In this section, we only assume (1-3) which admits an infinite
invariant measure.

Theorem 4.1 Under all conditions of Theorem 1.1, $T$ is an exact endomorphism.

Lemma 4.1 Let $(T,X, Q,\mathcal{U})$ be a piecewis $e$ invertible system with $FRS$ and admit
a constant $C>1$ such that $\mathcal{R}(C.T)=\mathcal{L},$ $i.e_{J}T$ satisfy Renyi’s condition. Then for
any measurable set $A$ and for any cylinder $X_{a_{1}\ldots a}$. $\in \mathcal{L}$ , we have

$C^{-1} \lambda(T^{k}X_{a(k)}\cap A)\leq\frac{\lambda(X_{a(k)}\cap T^{-k}A)}{\lambda(X_{a(k)})}\leq C(\dot{m}n\{\lambda(U) ; U\in \mathcal{U}\})^{-1}\lambda(T^{k}X_{a(k)}\cap A)$ .

(Here $a(k)$ stands for $a_{1}\ldots a_{k}.$)

5 Rationally ergodicity
Definition

A conservative ergodic measure preserving transformation on a $\sigma$-finite measure
space (X, $\mathcal{F},$

$\mu$) is cffied rationally ergodic, if there erists a set $A\in \mathcal{F}$ of positive
measure such that

(5-1)
$\sup_{n\geq 1}\{\int_{4}(\sum_{k=0}^{n-1}1_{A}T^{k}/a_{n}(A))^{2}d\mu(x)\}<\infty$,

where $a_{n}(A)=\Sigma_{k=0}^{n-1}\mu(A\cap T^{-k}A)$ . This condition (5-1) implies that the following
ratio limiting theorem holds for all $A_{1},A_{2},$ $C_{1},$ $C_{2}\in A\cap \mathcal{F}$ of positive measure

(5-2)

$1 \dot{u}n_{narrow\infty}\frac{\Sigma_{k=0}^{n-1}\mu(A_{1}\cap T^{-k}C_{1})/\mu(A_{1})}{\Sigma_{k=0}^{-1}\mu(A_{2}\cap T^{-k}C_{2})/\mu(A_{2})}=\mu(C_{1})/\mu(C_{2})$.
([20]).

Remark D We have already known the following fact $hom$ the “Chacon-Ornstein’s
ratio ergodic theorem ” ; $\mu$ a.e. $x\in X$

$\exists hm_{narrow\infty}\frac{\Sigma_{k=0}^{n-1}1_{C_{1}}(T^{k}x)}{\Sigma_{k=0}^{n-1}1_{C},(T^{k}x)}=\mu(C_{1})/\mu(C_{2})$ .

Under some additional conditions, we have further result.
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(5-3) there exists a sequence $\{M_{n}\}_{n\geq 1}$ such that for each $n\geq 1$

$C(a_{1}\ldots a,.)\leq M_{n}$ for $\forall X_{o_{1}\ldots a}$. $\in \mathcal{L}^{(n)}$ .

Remark E Under (k3) we can obtain a monotone increasing sequence $\{M_{n}’\}_{n\geq 1}$

such that for each $n\geq 1$

$C(a_{1}\ldots a_{n})\leq M_{n}’$ for $\forall X_{a_{1}\ldots a}$. $\in \mathcal{L}^{(k)}$ and $\forall k\in\{1,2, \ldots n,\}$ .
In fact, it is enough to put $M_{n}’= \max\{M_{n-1}’, M_{n}\}(M_{1}’=M_{1})$ inductively.

For $m\geq 1$ , put

$W_{m}= \sum_{n}^{\infty_{=0}}\sum_{X_{d(*)}\in \mathcal{D}}.\sup ae\in\tau\cdot x_{d(\cdot)}\cap t\bigcup_{=1}^{-}B.)|\det D\psi_{d(n)}(x)|$.

Then

(5-4)
$W_{m}<\infty$ for $\forall m\geq 1$ .

Theorem 5.1 Suppose that all assumptions of Theoreml.1 are satisfied. Assume
further (5-3) and (5-4). Then $T$ is rationally ergodic. In fact for each $m\geq 1,$ $\bigcup_{k=1}^{m}B_{k}$

satisfies (5-1).

Remark F The quantity $W_{m}$ can be checked explicitly for many number theoretical
transformations ([22],[23]).

Lemma 5.1 $(5-\dot{4})$ implies that

$\frac{d\mu}{d\lambda}(x)\leq W_{m}<\infty$ for $a.e$ . $x \in\bigcup_{k=1}^{m}B_{k}$ .

6 On wandering rates
In this section, under the assumption $\Sigma_{n=0}^{\infty}\lambda(D_{n})=\infty$ with (1-3), we $wiU$ prove the
results on wandering rates which are a generahzation of Theorem 4.1 of [2] (Cf.[20]).

Let $A\in \mathcal{F}$ and put $A_{0}=A$ . We define $A_{k}$ for $k\geq 1$ inductively by

$A_{k}=T^{-k}A \backslash (\bigcup_{j=0}^{k-1}T^{-j}A)$ .

The wandering rate of $A$ is defined by

$L_{4}(n)= \mu(\bigcup_{l=0}^{n}T^{-l}A)=\sum_{k=0}^{n}\mu(A_{k})$ .

Let $\mathcal{F}_{0}$ denotes the ring generated by $\mathcal{R}(C.T)$ .
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Theorem 6.1 Under all conditions of Theorem $Ll$ , assume further that
$\Sigma_{n=0}^{\infty}\lambda(D_{n})=\infty$ and (5-4) holds. If $A\in \mathcal{F}$ be a finite union of sets in $\mathcal{R}(C.T)$ ,
then $L_{A}(n)\sim L_{B}(n)$ as $narrow\infty$ , for $\forall B\in \mathcal{F}\cap A,$ $\lambda(B)>0$ .
Corollary 6.1 There exzsts an increasing sequence $L(n)$ such that

$L_{B}(n)\sim L(n)$

as $narrow\infty$ for $\forall A\in \mathcal{F}_{0},$ $B\in A\cap \mathcal{F},$ $\lambda(B)>0$ .
Lemma 6.1 Let $X_{a(k)}\in \mathcal{R}(C.T),$ $B\in \mathcal{F}\cap X_{a(k)}$ , and put

$L=( \max\{\lambda(U_{i}):0\leq i\leq N\}/m\dot{m}\{\lambda(U_{i});0\leq i\leq N\})^{2}$.
Then for $\forall n>0$ and $\forall X_{\aleph n)}\in \mathcal{L}^{(n)}$ with $\lambda(X_{K\mathfrak{n})}\cap T^{-n}B)>0$ , there exists a constant
$\gamma\in[C^{-4}L^{-1}, C^{4}L]$ satisfying:

$\frac{\lambda(X_{\aleph n)}\cap T^{-n}B)}{\lambda(X_{\aleph n)a(k)})}=\gamma\frac{\lambda(B)}{\lambda(X_{a\langle k)})}$ .

(Cf.Lemma 2.3 in [2].)

7 Rohlin’s entropy formula
We have already obtained a sufficient condition for the validity of Rohlin’s formula
under the condition (1-3)*which guarantees the finiteness of $\mu$ ([23]). Here we will
discuss on the validity of the Rohhn’s formula in case $\mu$ is infinite.

(7-1) There exists a cylinder $X_{a}\in \mathcal{B}_{1}$ such that

$\log|\det DT_{X}.(x)|\in L^{1}(X_{a}, \lambda|_{X_{*}})$ ,

where $T_{X}$. denotes the induced transformation of $T$ over $X_{a}$ .

Theorem 7.1 Under the condition (7-1),

$h( \mu,T)=\int_{X}\log$ I $\det DT(x)|d\mu(x)<\infty$ .

Remark H For $A\in \mathcal{F}$ with $0<\mu(A)<\infty$ , the number $\mu(A)h(\frac{\mu 1_{4}}{\mu(A)},T_{A})$ is inde-
pendent of $A$ , so that the number is defined as entropy of $T$ with respect to
$\mu$ .

Remark I As the induced system $(T_{X_{*}}, \mu|_{X}.)$ satisfies the Renyi’s condition, $\mu|_{X_{*}}$

is a finite invariant measure with density bounded away &om zero and infinity,
so that (7-1) is enough to obtain the following formula:

$h(T_{X_{*}}, \mu|_{X}.)=\int_{X_{*}}\log|\det DT_{X_{*}}(x)|d(\mu|_{X_{*}})(x)$

(see [13],[23]).
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Remark J Under the condition (7-1), we have for $A=X$. the following:

$h( \mu,T)=\mu(A)h(\frac{\mu 1_{A}}{\mu(A)},T_{A})=\int_{A}\log|\det DT_{A}(x)|d(\mu|_{A})(x)<\infty$.

Lemma 7.1 For $A=X$.
$\int_{4}\log|\det DT_{4}(x)|d(\mu|_{A})(x)=\int_{X}\log|\det DT(x)|d\mu(x)<\infty$ .

8 Variational $pr\dot{u}$lciple for the entropy
In [25], the existence and ergodic properties of maps $wl\dot{u}ch$ expand distances sat-
isfying the bounded distortion property (Renyi’s condition) were established along
the line of well-known theory. The key to the proof are to define a Perron-Frobenius
operator acting on a suitable space of measurable functions and to show the conver-
gence theorem for the powers of the operator. As mentiond in Introduction, we can
not use Renyi’s condition so that we can not use any such a operator. However we
have already succeeded to $obt\dot{\infty}Il$ nice invariant measures([8]) and Rohlin’s entropy
formula in case $\mu$ is finite([23]).

First we summarize the notations. Let $\overline{X}$ be a compact metric space and $X$ be an
open dense subset of $\overline{X}$. $C(\overline{X})$ denotes the Banach space of real-valued continuous
functions on $\overline{X}$, and $C(X)$ denotes the space of continuous functions on $X.\mathcal{M}(\overline{X})$

denotes the collection of all probabihty measures on the $\sigma$-algebra of Borel sets of
X. If $\mu\in \mathcal{M}(\overline{X})$ and $f\in C(\overline{X})\mu(f)$ denotes the integral of $f$ with respect to $\mu$ .
Let $X_{0}$ be an open dense subset of $X$ and suppose $T:X_{0}arrow X$ is a continuous map
of $X_{0}$ onto $X$ such that $\{T^{-1}x\}$ is at most countable for each $x\in X$ .
Remark K A piecewise invertible system $(T, X, Q,\mathcal{U})$ satisfies the above condi-

tions. It suffices to see that $X_{0}=X \backslash \bigcup_{a\in I}\theta X_{a}$ and $\lambda(X_{0})=\lambda(X)$ .
Let $M(X)$ be the collection of $aU$ probabihty measures defined on the Borel subsets
$\mathcal{F}$ of $X$ and $\mathcal{M}(X, T)$ denotes the collection of $g$ T-invariant ones. For $m\in \mathcal{M}(X)$

and for a subalgebra $\mathcal{F}’$ of $\mathcal{F},$ $E_{m}(f|\mathcal{F}’)$ denotes the conditional expectation of $f$

with respect to $\mathcal{F}’$ and $I_{m}(\mathcal{F}|\mathcal{F}’)$ denotes the conditional $\dot{u}$Sormation of $\mathcal{F}$ with
respect to $\mathcal{F}’$ .

Definition

We say that $\mu\in \mathcal{M}(X, T)$ is an equilibrium state for $\varphi\in C(X_{0})$ if

(8-1)

$\mu(I_{\mu}(\mathcal{F}|T^{-1}\mathcal{F})+\varphi)\geq m(I_{m}(\mathcal{F}|T^{-1}\mathcal{F})+\varphi)$

for $\forall m\in \mathcal{M}(X,T)$ .
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Let $h(x)$ be the invariant density of $\mu$ , i.e., $d\mu/d\lambda(x)=h(x)$ . If Renyi’s condition
is valid, then $h(x)\in C(X)$ so that $h(x)$ is uniformly bounded $hom$ above and below.
Thus

$g(x)= \frac{h(x)}{|\det DT(x)|hT(x)}$

belongs to $C(X_{0})$ . Without such a regular condition, we can not obtain such a
evidence. However we can see the follwing fact:

Lemma 8.1 $\sum_{u\in T^{-1}ae}g(y)=1$ .
Let $f\in C(\overline{X})$ . Then $\exists F>0$ such that $f(x)\in[F^{-1}, F]$ on $\overline{X}$ , so that $hom$

Lemma 8.1 we have
$\sum_{\in T^{-1}ae}g(y)f(y)\in[F^{-1},F]$

.

Thus $\Sigma_{\nu\in\tau-1}aeg(y)f(y)$ is uniformly bounded on $X$ , so that integrable on $X$ . This
consideration leads to the following important property of $g(x)$ for our purpose.

Lemma 8.2

$\int_{X}$ $\sum g(y)f(y)d\mu(x)=\int_{X}f(x)d\mu(x)(\forall f\in C(\overline{X}))$

$\in r-l_{g}$

Lemma 8.3 $\mu- a.e$ . $x\in X$

$E_{\mu}(f|T^{-1} \mathcal{F})(x)=\sum_{\in T^{-1}Tae}g(y)f(y)$
.

Lemma 8.4 $I_{\mu}(\mathcal{F}|T^{-1}\mathcal{F})(x)=-\log g(x)$ .
More generally, we have:

Proposition 8.1 Let $m\in \mathcal{M}(X,T)$ and let $g_{ n}$ : $X_{0}arrow R$ be the function defined
$a.e$ . $m$ by

$E_{m}(f|T^{-1}\mathcal{F})(x)=$ $\sum$ $g_{ n}(y)f(y)$ .
$z\in T^{-1}Tae$

Then
$I_{n*}(\mathcal{F}|T^{-1}\mathcal{F})=-\log g_{*}$

and
$\int_{X}\{I_{m}(\mathcal{F}|T^{-1}\mathcal{F})+\log g(x)\}dm(x)\leq 0$ .

Conbining the above results we can obtain the desired result.
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Theorem 8.1 The T-invariant finite measure $\mu$ obtained in Theorem 1.1 is an
equilibrium state for — $\log|\det DT(x)|$ . If Rohlin’s entropy formula holds, then we
can restate (8-1) as

$h_{\mu}(T)- \int_{X}\log|\det DT(X)|d\mu(x)\geq m(I_{m}(\mathcal{F}|T^{-1}\mathcal{F})-\log|\det DT(x)|)$

for $\forall m\in \mathcal{M}(X,T)$ .

Remark L We have already obtained a sufficient condition for the validity of
Rohlin’s entropy formula in [23].

9 FRS and countable state sofic shifts
As mentioned before, the well-known way to show the existence ofnice invariant mea-
sures by using Perron-libobenius operator do not rely on any information $hom$ their
symbolic dynamics, but rely on Renyi’s condition and the Markov condition. On
the other hand, we can find easily examples of multi-dimensional piecewise smooth
maps which do not satisfy both of these conditions but admuit nice invariant mea-
sures. Such maps typically satisfy Renyi’s condition (locaUy’ (i.e., the local Renyi
condition) and the FRS condition. We can see that the FRS condition plays an
important role in showing the existence and further metrical properties of such in-
variant measures([8],[22],[23]). For these reason,we are mostly intereted in “FRS”
which gives more general situation than the Markov property. Main purpose in
thuis section is to show that the FRS condition leads us to countable state “sofic”
shifts.(We do not need $(1- 3)^{*}$ in this section.) There are several works on the rela-
tion between piecewise smooth dynamics and their symbolic dynamics ([6],[7] ,[17]).
In particular, in case of multi-dimensional maps, piecewise linear Markov maps are
studied in [6], whose symbolic dynamics are finite state Markov shifts. These works
seem to suggest a possibihty of similar relation between piecewise invertible sytems
with FRS and countable state sofic shifts.

Theorem 9.1 Let $(T, X, Q=\{X_{a}\}_{a\in I},\mathcal{U})$ be a piecewise invertible system with
$FRS$. Suppose that $\mathcal{U}=\{U_{0}, U_{1}, \ldots, U_{N}\}$ and $X=U_{0}$ . Then there exists a
countable state sofic shift which realizes $T$ in the following sence: Define a directed
graph whose vertex set is the finite set $\mathcal{U}$ , arc set is the countable alphabet $I$, where

(10-1) there is an edge $c$ flom $U_{:}$ to $U_{j}$ if for $\forall(a_{1}\ldots a_{l})$ such that $T^{l}X_{a_{1}\ldots a_{l}}=$

$U_{i},X_{al\cdots a\iota c}\in \mathcal{L}$ and $T^{l+1}X_{a_{1}\ldots a_{I}c}=U_{j}$ .
1. This labelled graph defines $a$ one-sided edge $SFT\sigma$ with countable alphabet and

$a$ one-block map $\pi:\sigmaarrow\sigma’$ where $\sigma$
‘ is a subshift with the countable alphabet

I.
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2. Let $(\sigma’, \Sigma’)$ be the one-sided sofic shift in the above , and for $(a_{0}a_{1}\ldots)\in\Sigma’$

put

$\rho(a_{0}a_{1}\ldots)=\bigcap_{i=0}^{\infty}T^{-i}X_{a:}$.

Then the map $\rho:\Sigma’arrow X$ is defined $a.e$ . $\rho$ is a bijective continuous conjugacy
map, $i.e.,$ $T\rho=\rho\sigma’$ .

3. There exists a Markov partition for T. More specifically, let V be a disjoint
partition generated by $\mathcal{U}i.e.,V=\{V_{0}\cap V:_{1}\cap\ldots\cap V_{\pi} : V_{i_{h}}\in\{U_{i}, U_{i^{c}}\}\}$ . Then
$Q\vee \mathcal{V}$ be the Markov partition for T. In particular, we can see

$T(Q\vee V)\subseteq \mathcal{V}$ .

We use the following facts in order to prove Theorem 10.1.

Remark $PT(T^{k}X_{a_{1\cdot 0*}}..\cap X_{c})=T^{k+1}X_{a_{1}\ldots a_{h}c}$ .

Remark $Q(a_{-n}\ldots a_{-1})(c_{0}\ldots c_{m})$ is admissible (i.e., $X_{a-\cdots.a-lc\circ\cdots c_{r}}\in \mathcal{L}$ ) if and
only if $\lambda(T^{n}X_{a-\cdots.a-1}\cap X_{q\ldots c_{\wedge}})>0$. (It suffices to note the non-singularity of
$T$ with respect to $\lambda.$ )

Next remark gives a realization of the original system $(T,X, Q,\mathcal{U})$ .

Remark R Define

$\sum=\{(a_{0}a_{1}\ldots)\in I^{N} : \forall n\geq 0, \lambda(\bigcap_{i=0}^{n}T^{-i}X_{a_{i}})>0\}$

and let $\sigma$

‘ be the shift map on $I^{N}$ . It follows bom the non-singularity of $T$

with respect to $\lambda$ that $\Sigma$ is $\sigma$ invariant. Put

$\sum_{\iota}=\{(a_{0}a_{1}\ldots)\in\sum : \bigcap_{i=0}^{\infty}T^{-i}X_{a:}=0\}$.

The generator condition guarantees the following:

For $\forall(a_{0}a_{1}\ldots)\in\sum,\bigcap_{i=0}^{\infty}T^{-i}X_{a:}$ is at most a single point.

As $\acute{\Sigma}\backslash \Sigma_{0}$ is also $\sigma$ -invariant, we can define $\rho:\Sigma\backslash \Sigma_{0}arrow X$ by

$\rho(a_{0}a_{1}\ldots)=\bigcap_{i=0}^{\infty}T^{-:}X_{o:}$,
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which is onto continuous and shift commuting. As $\rho$ is not necessarily one to
one, we have to restrict $\rho$ to a suitable subset of $\Sigma\backslash \Sigma_{l}$ in order to obtain a
one to one conjugacy map. Define

$\sum=\bigcap_{i=0}^{\infty}\sigma-:\{(a_{0}a_{1}\ldots)\in\sum\backslash \sum_{l} : \bigcap_{i=0}^{\infty}T^{-i}X_{a:}\in X_{u}\}’$ .

Then we have the desired conjugacy map,$i.e.,$ $(\Sigma\sigma|_{\Sigma’}., \rho|_{\Sigma’}.)’,$ is a realza-
tion of $(T, X, Q,\mathcal{U})$ .

Lemma 9.1 $\{T^{n}X_{a-\cdots.a-1}\}.>0$ is a monotone neasting sequence of subsets of $X$

with positive Lebesgue measures, and $\bigcap_{n>0}\{T^{n}X_{a-\cdots.a-1}\}$ is exactly some $U_{j}\in \mathcal{U}$ .
Let us define for alphabets $a,$ $b\in I$ :

$a\simeq b\Leftrightarrow for\forall i,j\in\{0,1, \ldots N\}$ , there is an edge from $U_{:}$ to $U_{j}$ labelled $a$

iff there is an edge &om $U_{i}$ to $U_{j}$ labelled $b$ .
If we put $E(i,j)=$ {$a\in I:int(X_{n}\cap U_{:})\neq l$ and $T(X_{a}\cap U_{i})=Uj$}, then we also
can write:

$a\simeq b\Leftrightarrow for\forall i,j\in\{0,1, \ldots N\},a\in E(i,j)$ iff $b\in E(i,j)$ .
The $relation\simeq defined$ above is an equivalence relation on the alphabet $I$ . There are
only finitely many equivalence classes $[a](a\in I)$ because of the FRS condition. As
mentioned in Theorem 10.1 the graph $G$ has finitely many vertexes and countably
many edges. If we replace an edge labelled $a$ by a bumdle of edges labelled $[a]$ , then
we can obtain a quotient graph $G^{\cdot}$ with the same vertex set as $G$ and with only
finitely many edges. Let $\mathcal{F}(U:)$ be the set of sequences of labels $(a_{0}a_{1}\ldots)$ of paths
starting at $U;$ . It follows &om the generator condition that each niap $U_{:}arrow \mathcal{F}(U_{i})$ is
bijective, so we have

if $i\neq j$ then $\mathcal{F}(U_{i})\neq \mathcal{F}(U_{j})$ .

Theorem 9.2 The graph $G$ gives the Fisher-cover ($i.e.$ , minimal, right-resolving,
irreducible cover) of the sofic shift it defines. So the quotient graph $G^{\cdot}$ is also
minimal.

Remark S The countable state sofic shift $(\Sigma’,\sigma’)$ can be written as a product
of a finite state sofic shift and a countable state Bernoulli shift, in some
case. Such examples will be given in the next section.
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10 Examples and applications

In this section, we give two examples of our results in this paper which occur
from number theory. Their symbolic dynamics re countable state sofic shifts
and furthermore each of them is topological conjugate to a product of a finite
state sofic shift and a countable state Bernoulh shift.

Example 1

Let $X=\{(x, y):0\leq x, y<1\}$ and $T$ is defined by

$T(x,y)=(-1/x-[-1/x], -y/x-[-y/x])$, where $[x]= \max\{n\in Z ; n\leq x\}$ .

Put $a(x)=-[-1/x],$ $b(x, y)=-[-y/x]$ . Since for $(x, y)\in X,$ $(-1/x, -y/x)$ is
in the following slash part (Figure 1), the index set $I$ is given by

$I=\{(a, b)\in N\cross(N\cup\{0\}) : a\geq 2,a>b\}$ .
The partition of $X,$ $Q=\{X_{(a,b)} : (a, b)\in I\}$ is defined by as follows:

$(x, y)EX_{(a,b)}$ iff $a(x)=a$ and $b(x,y)=b$.

A collection ofrange sets $\mathcal{U}$ is consist of only two subsets of $X,$ $U_{0}=X$ and $U_{1}=$

$\{(x, y)\in X : x<y\}$ . This map $T$ is related to number theory as follows. Let
us define inductively

$a_{\mathfrak{n}}(x)=a(r_{\mathfrak{n}-1}(x)),$ $b_{n}(x, y)=b(r_{\mathfrak{n}-1}(x), s_{n-1}(x,y))$ ,

where $(r_{\mathfrak{n}}(x), s_{n}(x,y))=T^{n}(x, y)(n\geq 0)$ . We remark that we must restrict
the domain $X$ to the set

$\{(x, y)\in X : T^{n}(x, y)\in X(\forall n>0)\}$.
However ,the Lebesgue measure of this set is equal to one, so we denote for
the restricted set by $X$ for convenience. From the definition of $T$, it is easy to
see that for

$\forall(x, y)\in X$
$x= \frac{1}{a_{1}(x)-\frac{1}{a(ae)-\ldots-\frac{l}{t\cdot 1-\cdot 1\cdot 1}}}$

and

$y= \sum_{k=1}^{n}(-1)^{k-1}xx_{1}x_{2}\ldots x_{k-1}b_{k}(x, y)+(-1)^{n}xx_{1}\ldots x_{n-1}s_{n}(x,y)$,

where
$x_{k-1}= \frac{1}{a_{k}(x)-\frac{1}{a_{h+1}(ae)-\ldots-\frac{1}{(\cdot)-\cdot 1\cdot 1}}}$.
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$T$ is a piecewise invertible system with FRS which satisfies $g$ conditions of
Theorem 1.1, so $T$ has a a-finite ergodic invariant measure. In fact, the explicit
form of the invariant density $h(x, y)$ was given in [8] as follows:

$h(x,y)=\{\frac{2-W}{\frac{2(1-W)1}{2(1-\epsilon)}}i^{i}f_{X>}^{fx<}y^{y}$

For convenience, let $c(x)=a(x)-b(x)$ and so inductively $c_{\mathfrak{n}}(x)=a_{n}(x)-b_{n}(x)$

for $n>0$ . Then the admissibility rule of symbols of $I$ is given as follow:

(A) if $c:=1$ , then $b_{i+1}\neq 0$ .
Let us define a new index set

$I’=\{(c, b) : (b+c,b)\in I\}$ .
Then the admissible rule (A) can be written as follows: $(1, b)(c, 0)cm$ not happen
Let us devide $I’$ into three subsets of $I’$ :

$I_{1}’=\{(1, b) : b\geq 0\},I_{2}’=\{(c, b) : c\geq 2, b\neq 0\},I_{3}’=\{(c, 0) : c\geq 2\}$

(Figure 2). Then we can obtain a quotient graph $G^{\cdot}$ with two vertexes and
with finitely many bundles consists of countably many edges (Figure 3). In
this example, the partition $Q$ itself is the Markov partition.
Next we will show an example which does not satisfy the Markov condition.

Example 2

Let $X=\{(x, y\rangle : 0\leq x, y<1\}$ and $T$ is defined by

$T(x,y)=(- \frac{1}{x}-[-\frac{1}{x}], \frac{y}{x}-[\frac{y}{x}])$ .
Let $a(x)=-[-1/x]$, and $b(x, y)=[y/x]$ . Since for $(x,y)\in X,$ $(-1/x, y/x)$
is in the following slash part (Figure 4), and the index set $I$ is given by $I=$

$\{(a, b)\in N\cross(N\cup\{0\}) : a\geq 2, a>b\neq 0\}$ . The partition $Q=\{X_{(a,b)}\}_{(a,b)\in I}$

is defined by the saene way as in the previous example. Let $U_{0}=X$ and
$U_{1}=\{(x, y)\in X : x+y\leq 1\}$ . The appearance of $U_{1}$ does not allow us to
have the Markov property. However, $T$ provides a $\sigma$-finite ergodic invariant
measure with the density $h(x, y)$ :

$h(x,y)=\{\frac{2-\approx}{\frac{2(1-x)1}{2(1-W)}}ifx+y<1ifx+y>1$

(See [8].) Define $c(x)=a(x)-b(x)$ and $c_{\mathfrak{n}}(x)=a_{n}(x)-b_{\mathfrak{n}}(x)$ inductively.
Then the adnuissibility rule of symbols of $I$ is given as foUow: If $c;=1$ , then
$c_{i+1}\neq 1$ . Devide $I$ into three groups as follows:

$I_{1}=\{(a,b)\in I : c=1\},I_{2}=\{(a, b)\in I : c=2\},$ $I_{3}=\{(a, b)\in I : c>2\}$ .
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(Figure 5). Then we can obtain a quotient labelled graph $G^{\cdot}$ with two vertexes
and finitely many bundles consists of countably many edges (Figure 6).

References
[1] J.Aaronson. Ergodic theory for inner functions of the upper half plane.

Ann.Inst.H.Poincare.14 $(1978),233- 253$ .
[2] J.Aaronson,M.Denker&M.Urbanski. Ergodic theory for Markov fibered

systems and parabolic rational maps. Preprint.
[3] R.L.Adler.F-expansions revisited, in Recent in Topological Dynamics,1-

5.New York,Springer-Verlag,1975.
[4] P.Bilhngsley.Ergodic Theory and Information, New York,Wiley,1965.
[5] R.Bowen.Invariant measures for Markov maps of the interval. Comm.Math. $P_{l}$

(1979) $,1- 17$ .
[6] W.Bayrs, P.Gora&A.Boyarsky. Maxinal absolutely continuous invariant

measures for piecewise linear Markov transformations. Preprint.

[7 ]F.Hofbauer. Maximal measures for simple piecewise monotone transfor-
mations. Z. Wahrsch. Verw. Gebiete.52 (1980), 289-300.

[8] Sh.Ito &M.Yuri. Number theoretical transformations with finite range
structure and their ergodic properties. Tokyo J.Math. 10 $(1987),1- 32$ .

[9] R.Kaneiwa,I.Shiokawa&T.Tamura. A proof of Perron’s theorem on Dio-
phantine approximation of complex numbers.Keio Engrg.Rep.28 $(1975),131$.
147.

[10] J.C.Lagarias. The quality of the Diophantine approximations found by
the Jacobi-Perron algorithm and related algorithms. Preprint.

[11] H.Nakada. On the Kuzmin’s theorem for complex continued fractions.
Keio Engrg.Rep.29 (1976), 93-108.

[12] A.Renyi. Representations for real nunbers and their ergodic proper-
ties.Acta.Math. Acad.Sc.Hungar.8 $(1957),477- 493$ .

[13] V.A.Rohlin.Exact endomorphism ofa Lebesgue spaces. Amer.Math.Soc. Ib
2. 39 (1964), 1-36.

[14] F.Schweiger. Some remarks on ergodicity and invariant measures.Michigan
Math.J.22 $(1975),181- 187$.

[15] C.\’E.Silva &P.Thieullen. The subadditive ergodic theorem and re-
currence properties of Markovian transformations.J.Math.Anal.Appl.154
(1991) $,83- 99$ .

[16] Y.G.Sinai.Markov partitions and C-diffeomorphism. Anal. and Appl.2
(1968), 70-80.



109

[17] Y.Takahashi. Shift with orbit basis and redization of one-dimensional
maps. Osaka J.Math.20 $(1983),599- 629$

[18] S.Tanaka. A complex continued &action trrsformation and its ergodic
properties. Tokyo J.Math. 8 $(1985),191- 214$ .

[19] M.Thaler. Estimates of the invariant densities of endomorphisms with
indifferent fixed points. Israel J.Math.37 $(1980),303- 315$ .

[20] M.Thaler. Transformations on [0,1] with infinite invariant measures.
Israel J.Math. 46 (1983), 67-97.

[21] M.Yacobson. Topologicd and metric properties of one-dimensional en-
domorphisms. Dokl.Akad.Nauk USSR. 243 $(1978),866- 869$ .

[22] M.Yuri. On a BernouUi property for multi- dimensional maps with finite
range structure. Tokyo J.Math. 9 $(1986),457- 485$.

[23] M.Yuri. Invariant measures for certain multi-dimensional maps. Preprint.
[24] M.Yuri. Multi-dimensional maps with infinite invariant measures and

countable state sofic shifts. Preprint.

[25] P.Walters. Invariant measures and equulibrium states for some mappings
which expand distances. $\mathcal{I}\succ ans.Amer.Math$. Soc. 236 $(1978),121- 151$ .

[26] M.S.Waterman. Some ergodic properties ofmulti- dimensional f-expansion:
Z. Wahrsch. Verw. Gebiete. 16 (1971), 77-103.



110

$\underline{\prime\vdash\prime\cdot\mu rl/}$



111

$F,\iota_{\Gamma^{\iota/\nearrow\Gamma\sim e}}^{C}\backslash$ 2
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$\frac{F_{T4\mathcal{X}}J\backslash ^{\backslash \not\simeq}\wedge\prime}{\sqrt{}}$
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