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Observations* on Conditions Assuring
$intA+B=int(A+B)$
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Abstract. The aim of this paper is to $caU$ attention to some elementary properties
of convex sets for the core operator and the interior operator in a linear space and a
linear topological space, respectively.
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set.

1. INTRODUCTION AND PRELIMINARIES

The concept of convexity is very important in various fields of mathematics as well as
the area of applied mathematics. The origin of interest in convexity arises froII\‘i areas
of application related to fixed point theory and optimization theory. Nowadays, most of
basic properties of convex sets are found in much literature, and we can also find many
books which are concerned with convex analysis. Nevertheless, to the best of the authors’
knowledge, the elementary property as in this paper’s title is not taken up in those books
except for special cases; e.g., Corollary 6.6.2 in [5] limited to $R^{n}$ . Hence, the aim of this
paper is to prove such property of convexity and call attention to it. For this end we
will show some properties of convex sets for the core operator and the interior operator
in a linear space and a linear topological space, respectively. Also, we will observe some
family on which each operator behaves like a linear mapping. Moreover, we will show that
$corA+B$ is midconvex if and only if $corA+B$ is convex.

Throughout this paper, the term linear space will refer to a linear space over the real field
$R$ or over the complex field $C$ . Given a linear space $X$ , and $a,$ $b\in X,$ $a\neq b$ , we will use the
following notation for line segment subsets (joining $a$ and b) of $X;[a, b]$ $:=\{\lambda a+(1-\lambda)b$ :
$0\leq\lambda\leq 1\},$ $[a, b$) $:=[a, b]\backslash \{b\}$ , and $(a, b)$ $:=[a, b$) $\backslash \{a\}$ . A subset $A$ of $X$ is said to be
convex if for every $a,$ $b\in A,$ $a\neq b$ , the line segment $[a, b]$ is a subset of $A$ . Also, a subset
$A$ of $X$ is said to be midconvex if for every $a,$ $b\in A,$ $\frac{1}{2}(a+b)\in A$ . Of course, any convex
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set is also midconvex. We usuaUy define addition and scalar multiplication on the family
$P(X)$ of nonempty subsets of $X$ as follows:

$A+B$ $:=\{a+b : a\in A, b\in B\}$ ,

$\lambda A$ $:=\{\lambda a : a\in A\}$ ,

where $A,$ $B\in P(X)$ and $\lambda$ is a scalar. Then, we recall that for a subset $C$ of $X$ , a subset $A$

of $\dot{X}$ is said to be C-convex if $A+C$ is a convex set. This concept is usually used in vector
optimization and multiobjective programming when the set $C$ is a convex cone. Also, we
will use the following symbols: $x+A:=\{x+a:a\in A\}$ , where $x\in X$ . The addition and
scalar multiphcation do not define a linear space structure on $P(X)$ , but we can define an
operator which behaves like a linear mapping on $P(X)$ . For example, it is well-known that

$co(\alpha A+\beta B)=\alpha co(A)+\beta co(B)$ ,

where $A,$ $B\in P(X)$ and $\alpha,\beta$ are scalars, and $co(A)$ denotes the convex hull of the set
$A\in P(X)$ ; see page 6 in [2]. In this paper, we will show that each of the core operator
and the interior operator behaves like a linear mapping on the family $C(X)$ of nonempty
convex subsets of $X$ . Of course, the convex hull operator co behaves like an identity on
$C(X)$ . Recall that $A+B$ and $\lambda A$ are convex for any $A,$ $B\in C(X)$ and scalar $\lambda$ , that is,
$C(X)$ behaves like a linear subspace of $P(X)$ except for some axioms.

Next, we define the core operator, the interior operator, and the closure operator. For
a subset $A$ of a linear space $X$ , the core of $A$ (or algebraic interior of $A$), written $corA$,
is the set of all points $a\in A$ such that for each $x\in X\backslash \{a\}$ there exists $b\in(a, x)$ for
which $[a, b]\subset A$ . For a subset $A$ of a linear topological space (X, $\mathcal{T}$ ), the interior of $A$

(or topological interior of $A$), written intA, is defined by int$A;=\cup\{U\in \mathcal{T} : U\subset A\}$ . It
is clearly open and is the largest open set included in $A$ . Also, for a subset $A$ of a linear
topological space (X, $\mathcal{T}$ ), the closure of $A$ (or topological closure of $A$), written c1A, is
defined by c1A $:=\cap$ { $F\subset X$ : $F\supset A$ and $F$ is closed}. It is clearly closed and is the
smallest closed set including $A$ .

Remark 1.1. We give some elementary properties of convex sets, which we shall need
later. First, it is clear that for any $A\in P(X)$ and scalar $\lambda,$ $cor(\lambda A)=\lambda corA,$ $int(\lambda A)=$

$\lambda intA$ (whenever $corA\neq\emptyset$ , int $A\neq\emptyset$ , and $\lambda\neq 0$), $c1(\lambda A)=\lambda c1A$ , and also int(intA) $=$

intA, $c1(c1A)=$. c1A. Second, remark that $corA,$ intA, and c1A are convex (or empty)
whenever $A$ is convex. Finally, let $C_{0}(X)$ $:=$ {$A\in C(X)$ : int $A\neq\emptyset$ } then int(clA) $=intA$

and cl(int$A$) $=c1A$ for any $A\in C_{0}(X)$ ; see page 59 in [2].

2. ADDITIVITY OF CORE OPERATOR AND INTERIOR OPERATOR

At first, we observe some properties of the core operator and the interior operator without
convexity. Those properties are elementary but for the reader’s convenience we will give
the proofs.

Proposition 2.1. Let $A$ and $B$ be nonempty sets in a linear space X. If $corA\neq\emptyset$ then

$corA+B\subset cor(A+B)$ . (2.1)

Proof. For any $x\in corA+B$ , there are $a\in corA$ and $b\in B$ such that $x=a+b$.
Then for each $z\in X\backslash \{x\}$ , there exists $y\in(a, z-b)$ such that $[a, y]\subset A.$ Hence,
$[x, y+b]=[a, y]+b\subset A+B$ and $y+b\in(x, z)$ . Therefore, we have $x\in cor(A+B)$ . I
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Proposition 2.2. (See page 40 in [1].) Let $A$ and $B$ be nonempty sets in a linear topo-
logical space X. If int$A\neq\emptyset$ then

$intA+B\subset int(A+B)$ . (2.2)

Proof. Since for any non-zero scalar $\alpha$ and vector $x_{0}\in X$ the map $x$ }$arrow x_{0}+\alpha x$ is a
homeomorphism of $X$ with itself, the set

$intA+B=\bigcup_{b\in B}(intA+b)$

is open and contained in $A+B$ . Hence, int$A+B\subset int(A+B)$ . I
Remark 2.1. The converses of Propositions 2.1 and 2.2 are not always true. We give

the following simple examples:

(i) Let $X$ $:=R^{2},$ $A$ $:=$ { $x=(x_{1},$ $x_{2})\in R^{2}$ : $0\leq x_{i}\leq 1$ for $i=1,2$ } $\cup\{x=(0, x_{2})\in R^{2}$ :
$-1\leq x_{2}\leq 0\}$ , and $B:=\{x=(x_{1^{\wedge}}, O)\in R^{2} : 2\leq x_{1}\leq 3\}$ . Then the converses of the
conditions (2.1) and (2.2) are not true though $A$ is connected with int$A=corA\neq\emptyset$

and $B$ is convex.

(ii) Let $X$ $:=R^{2},$ $A$ $:=$ { $x=(x_{1},$ $x_{2})\in R^{2}$ : $0\leq x_{i}\leq 1$ for $i=1,2$ }, and $B$ $:=\{x=$
$(x_{1},0)\in R^{2}$ : $0\leq x_{1}\leq 1$ } $\cup\{x=(1, x_{2})\in R^{2} :-1\leq x_{i}\leq 0\}\cup\{x=(x_{1}, -1)\in$

$R^{2}$ : $0\leq x_{i}\leq 1$ }. Then the converses of the conditions (2.1) and (2.2) are not true
though $A$ is convex with intA $=corA\neq\emptyset$ and $B$ is connected (but not convex).

Figure 2.1: The example of (i) of Remark 2.1.

Next, we cite the following results without proofs.

Lemma 2.1. (See pages 10 and 59 in [2].) The following statements hold:

(i) If $A$ is a convex set in a linear space $X$ and $p\in corA$ , then $|p,$ $a$) $\subset corA$ for any
$a\in A,$ $a\neq p$ ;



127

Figure 2.2: The example of (ii) of Remark 2.1.

(ii) If $A$ is a convex set in a linear topological space $X$ and int$A\neq\emptyset$ , then $tc1A+(1-$
$t)intA\subset intA$ for $0\leq t<1$ .

By (ii) of Lemma 2.1 above, we have the following lemma.

Lemma 2.2. (See page 59 in [2].) Let $A$ be a set in a linear topological space X. If
intA $\neq\emptyset$ then the following statements hold:

(i) int$A\subset corA$ ;

(ii) int$A=corA$ whenever $A$ is convex.

Remark 2.2. Without the convexity of $A$ , (ii) of Lemma 2.2 is not always true. We give
the following simple example: Let $X$ $:=R^{2}$ , and $A:=\{x=(x_{1}, x_{2})\in R^{2}$ : $(x_{1}+1)^{2}+x_{2}^{2}\leq$

$1\}\cup\{x=(x_{1}, x_{2})\in R^{2} :(x_{1}-1)^{2}+x_{2}^{2}\leq 1\}\cup\{x=(0, x_{2})\in R^{2} :-\infty<\dot{x}_{2}<\infty\}$ . Then,
$(0, O)\in corA,$ $(0, O)\not\in intA$ , and hence int$A\neq corA$ .

Figure 2.3: An example with intA $\neq corA$ and $cor(corA)\neq corA$ .
Now, we prove the main theorems.
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Theorem 2.1. Let $A$ and $B$ be nonempty convex sets in a linear space X. If $corA\neq\emptyset$

then
$corA+B\supset cor(A+B)$ , (2.3)

and hence
$corA+B=cor(A+B)$ . (2.4)

Moreover, if $corB\neq\emptyset$ then

$corA+corB=corA+B=A+corB=cor(A+B)$ . (2.5)

Proof. For any $x\in cor(A+B)$ , there are $a\in A$ and $b\in B$ such that $x=a+b$. If
$a\in corA$ , then (2.3) holds. Let $a\not\in corA$ . Since $corA\neq\emptyset$ , there exists a vector $p\in corA$ ,
and so $|p,$ $a$ ) $\subset corA$ by (i) of Lemma 2.1. For $2a-p+b\in X,$ $x\in cor(A+B)$ implies
that there exists $0<\lambda<1$ such that $x_{1}$ $:=\hat{\lambda}(2a-p+b)+(1-\lambda)x\in A+B$. Let
$x_{2}$ $:=\lambda(p+b)+(1-\lambda)x$ then we have $A^{x\pm x}2^{\lrcorner}=x$ and $x_{2}\in[p+b, x$ ) $=[p, a$) $+b$. Hence,
$x_{2}-b\in[p, a)\subset corA$. Since there are $\hat{a}\in A$ and $\hat{b}\in B$ such that $x_{1}=\hat{a}+\wedge$も, we have

$x= \frac{x_{2}+x_{1}}{2}=\frac{x_{2}-b+(\hat{a}+\hat{b})+b}{2}=\frac{x_{2}-b+\hat{a}}{2}+\frac{\hat{b}+b}{2}\in corA+B$

by (i) of Lemma 2.1 again. Thus, (2.3) is proved. So we have (2.4) by Proposition 2.1.
Moreover, if $corB\neq\emptyset$ then using analogy of (2.4), we have $corA+corB=cor(A+corB)=$
$convexcor(cor.(A+B))$ . The last set is equivalent to. $cor(A+B)$ since $cor(A+B)$ is

$nonemptyI$

Theorem 2.2. Let $A$ and $B$ be nonempty convex sets in a linear topological space $X$ .
If int $A\neq\emptyset$ then

$intA+B\supset int(A+B)$ , (2.6)

and hence
int$A+B=int(A+B)$ . (2.7)

Moreover, if int $B\neq\emptyset$ then

$intA+intB=intA+B=A+intB=int(A+B)$ . (2.8)

Proof. Since $A$ is a convex set with int $A\neq\emptyset,$ $\prime it$ follows from (ii) of Lemma 2.2 that
intA $=corA$. Also, we have int$(A+B)=cor(A+B)$ by the convexity of $A+B$ . Thus,
the conclusions (2.6), (2.7), and (2.8) follow from Theorem 2.1. I

Corollary 2.1. The following statements hold:

(i) Let $A_{1},$
$\ldots,$

$A_{n}$ be nonempty convex sets in a hnear space $X_{J}$ and $\alpha_{1},$
$\ldots,$

$\alpha_{n}$ scalars,
not all zero. If $corA_{i}\neq\emptyset(i=1, \ldots, n)$ then

cor $( \sum_{i=1}^{\tau\iota}\alpha_{i}A_{i})=\sum_{i=1}^{n}\alpha_{i}cor4$ . (2.9)
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(ii) Let $A_{1},$
$\ldots,$

$A_{n}$ be nonempty convex sets in a linear topological space $X$ , and $\alpha_{1},$
$\ldots,$

$\alpha_{n}$

scalars, not all zero. If intA $\neq\emptyset$ $(i=1, \ldots , n)$ then

int $( \sum_{i=1}^{n}\alpha_{i}A_{i})=\sum_{i=1}^{n}\alpha_{*}\cdot intA$. (2.10)

The conclusion of (2.9) [resp. (2.10)] shows that the core operator [resp. the interior oper-
ator] behaves like a linear mapping on the family $C(X)$ of nonempty convex subsets of a
linear space [resp. a linear topological space] $X$ .

Remark 2.3. The properties (2.7), (2.8), and (2.10) may be useful for simplifying
expressions of sets in $C_{0}(X)$ or $C(X)$ . For instance, using them we get

$intA+clB=int(A+B)$ (2.11)

for any $A\in C_{0}(X)$ and $B\in C(X)$ . Because $intA+clB=int(clA)+clB=int(clA+clB)\subset$
$int(cl(A+B))=int(A+B)\subset int(A+clB)=intA+c1B$ by (2.7), Remark 1.1, and the
property

$c1A+c1B\subset c1(A+B)$ ,
see page 40 in [1].

Moreover, we can generalize the previous theorems to the followings.

Theorem 2.3. Let $A$ and $B$ be sets in a linear space X. If $A$ is convex with $corA\neq\emptyset$

and $corA+B$ is midconvex, then

$corA+B\supset cor(A+B)$ , (2.12)

and hence
$corA+B=cor(A+B)$ . (2.13)

Proof. For any $x\in cor(A+B)$ , there are $a\in A$ and $b\in B$ such that $x=a+b$.
If $a\in corA$ , then (2.12) holds. Let $a\not\in corA$ . Since $corA\neq\emptyset$ , there exists a vector
$p\in corA$ , and so $\lceil p,$ $a$) $\subset corA$ by (i) of Lemma 2.1. For $2a-p+b\in X,$ $x\in cor(A+B)$
implies that there exists $0<\lambda<1$ such that $x_{1}$ $:=\lambda(2a-p+b)+(1-\lambda)x\in A+B$ .
Let $x_{2}$ $:=\lambda(p.+b)+(1-\vee\lambda)x$ then we have $x_{2}\in[p+b, x$) $=[p, a$) $+b$, and hence
$x_{2}-b\in[p, a)\subset corA$ . Since there are $\hat{a}\in A$ and $\hat{b}\in B$ such that $x_{1}=\hat{a}+\hat{b}$ , we have

$x= \frac{x_{2}+x_{1}}{2}=\frac{x_{2}-b+(\hat{a}+\hat{b})+b}{2}$ ,

and
$\frac{x_{2}-b+\hat{a}}{2}+\hat{b},$ $\frac{x_{2}-b+\hat{a}}{2}+b\in corA+B$

by (i) of Lemma 2.1 again. Since $corA+B$ is midconvex, we obtain

$x= \frac{1}{2}\{(\frac{x_{2}-b+\hat{a}}{2}+\hat{b})+(\frac{x_{2}-b+\hat{a}}{2}+b)\}\in corA+B$. (2.14)

Thus, (2.12) is proved. So we have (2.13) by Lemma 2.1. I
The essential point of the proof of Theorem 2.3 is (2.14).
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Theorem 2.4. Let $A$ and $B$ be sets in a linear topological space X. If $A$ is convex with
intA $\neq\emptyset$ and int$A+B$ is midconvex, then

int$A+B\supset int(A+B)$ , (2.15)

and hence
int$A+B=int(A+B)$ . (2.16)

Proof. Since $A$ is a convex set with intA $\neq\emptyset$ , it follows from (ii) of Lemma 2.2 that
intA $=corA$. Hence, we have

int$(A+B)\subset cor(A+B)\subset corA+B=intA+B$ ,

by (i) of Lemma 2.2 and Theorem 2.3. Thus, (2.15) is proved, and hence (2.16) follows
from Lemma 2.2. I
Theorems 2.3 and 2.4 are generalizations of Theorems 2.1 and 2.2, respectively. In fact,
from the proposition below, it follows that Theorems 2.3 and 2.4 coincide with (i) and (ii)
of Corollary 2.2 in the following, respectively.

Proposition 2.3. Let $A$ and $B$ be nonempty sets in a linear space X. If $A$ is convex
with $corA\neq\emptyset$ , then the following assertions are equivalent to each other:

(i) $corA$ is B-convex, $i.e.,$ $corA+B$ is convex;

(ii) $corA+B$ is midconvex.

Proof. Clearly (i) implies (ii). Conversely, let $x$ and $y$ be distinct two points of $corA+B$ ,
then there are $x_{a},$ $y_{a}\in corA$ and $x_{b},$ $y_{b}\in B$ such that $x=x_{a}+x_{b}$ and $y=y_{a}+y_{b}$ . Since
$x_{a},$ $y_{a}\in corA$ , by (i) of Lemma 2.1, there is $0<\delta<1$ such that line segment subsets
$L$ $:=$ [$x_{a},$ $x_{a}+\delta(y-x))$ and $R$ $:=(y_{a}+\delta(x-y),$ $y_{a}$] are contained in $corA$ . Hence,
$L_{0}$ $:=L+x_{b}$ and $R_{0}$ $:=R+y_{b}$ are included in $corA+B$ . Using the midconvexity of
$corA+B$ , we have

$I_{0}^{(1)}$ $:= \frac{1}{2}L_{0}+\frac{1}{2}R_{0}=(\frac{1+\delta}{2}x+\frac{1-\delta}{2}y,$ $\frac{1-\delta}{2}x+\frac{1+\delta}{2}y)\subset corA+B$ .

These line segments $L_{0},$ $R_{0},$ $I_{0}^{(1)}$ are parts of the line segment $[x, y]$ , and can be obtained by
translating the line segment $\delta(x-y)$ , in other words, each of them is an interval in the line
segment $[x_{\wedge}, y]$ with the ratio $\delta$ : 1. Similarly, a double sequence of intervals $I_{n}^{(m)}\subset corA+B$

in the line segment $[x, y]$ with the ratio $\delta$ : 1 can be defined recursively. Then for $n$ large
enough so that $(2^{n+1}+1)\delta>1$ , we have

$( \bigcup_{i=0}^{n}\bigcup_{j=1}^{2}I_{i}^{(j)})\cup L_{0}\cup R_{0}=[x, y]$ .

This shows that $corA+B$ is a convex set. I
Corollary 2.2. The following statements hold:

(i) Let $A$ and $B$ be sets in a linear space X. If $A$ is convex with $corA\neq\emptyset$ and $corA$ is
B-convex, then (2.12) and (2.13) hold.
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(ii) Let $A$ and $B$ be sets in a linear topological space X. If $A$ is convex with intA $\neq\emptyset$

and intA is B-convex, then (2.15) and (2.16) hold.

Secondly, we give another condition assuring $corA+B=cor(A+B)$ .
Theorem 2.5. Let $A$ and $B$ be sets in a linear space X. If $B$ is algebraic open, $i.e.$ ,

$B=corB$ , then
$A+corB=cor(A+B)=A+B$. (2.17)

Moreover, if $A$ is convex with $corA\neq\emptyset$ , then

$A+B=corA+B=corA+corB$. (2.18)

Proof. By Proposition 2.1 and $B=corB$ , we have

$A+corB\subset cor(A+B)\subset A+B=A+corB$ ,

which implies (2.17). Next, let $A$ be convex with $corA\neq\emptyset$ , and we show that $A+B=$
$corA+B$ . For any $x\in A+B$ , there are $a\in A$ and $b\in B$ such that $x=a+b$. If $a\in corA$ ,
then $x\in corA+B$ holds. Let $a\not\in corA$ . Since $corA\neq\emptyset$ , there exists a vector $p\in corA$ ,
and so $\lceil p,$ $a$ ) $\subset corA$ by (i) of Lemma 2.1. For $a+b-p\in X,$ $b\in B=corB$ implies that
there exists $0<\lambda<1$ such that $x_{1}$ $:=\lambda(a+b-p)+(1-\lambda)b=b+\lambda(a\cdot-p)\in B$ . Let
$x_{2}$ $:=a+\lambda(p-a)$ , then we have $x_{1}+x_{2}=a+b=x$ , and also $x_{1}\in B$ and $x_{2}\in corA$ . This
shows that $x\in corA+B$ . Then, $A+B\subset corA+B$ , and hence we have $A+B=corA+B$ .
Thus, (2.18) is proved. 1
Similarly, the following theorem can be proved.

Theorem 2.6. Let $A$ and $B$ be sets in a linear topological space X. If $B$ is topological
open, $i.e.,$ $B=intB$ , then

$A+intB=int(A+B)=A+B$. (2.19)

$Mor_{(}eover$, if $A$ is convex with intA $\neq\emptyset$ , then

$A+B=intA+B=intA+int$B. (2.20)

Let $O_{1}(X)$ [resp. $O_{2}(X)$ ] be the family of nonempty algebraic open [resp. topological
open] subsets of a linear space [resp. a linear topological space] $X$ . Also, let $C_{1}(X)$ [resp.
$C_{2}(X)]$ be the family of convex subsets with nonempty core [resp. nonempty interior] of
a linear space [resp. a linear topological space] $X$ . Then, by the theorems above and
Corollary 2.1, we obtain the following results.

Corollary 2.3. The following statements hold:

(i) $LetX$ be a linear space, and let $A_{1},$
$\ldots$ , $A_{n}\in O_{1}(X)\cup C_{1}(X)$ and $\alpha_{1},$ $\ldots$ , $\alpha_{n}$ scalars,

not all zero. Then

cor $( \sum_{i=1}^{n}\alpha_{i}A_{i})=\sum_{i=1}^{n}\alpha_{i}$cor$A_{i}$ . (2.21)

(ii) Let $X$ be a linear topological space, and let $A_{1},$
$\ldots,$

$A_{n}\in O_{2}(X)\cup C_{2}(X)$ and $\alpha_{1},$
$\ldots,$

$\alpha_{n}$

scalars, not all zero. Then

int $( \sum_{i=1}^{n}\alpha_{i}A_{i})=\sum_{i=1}^{n}\alpha_{i}intA$ . (2.22)
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3. OPERATORS BEHAVING LIKE LINEAR MAPPINGS

The conclusion of (2.21) [resp. (2.22)] shows that the core operator [resp. the interior
operator] behaves like a linear mapping on the family $O_{1}(X)\cup C_{1}(X)$ [resp. $O_{2}(X)\cup C_{2}(X)$ ].

In order to increase understanding, let us investigate some families on which the closure
and convex-hull operators behave like linear mappings. As shown in page 6 in [2], it is
well-known that

$co(\alpha A+\beta B)=\alpha coA+\beta coB$ , (3.1)

where $A,$ $B$ are nonempty subsets of a linear space $X$ and $\alpha,\beta$ are scalars. Let $F(X)$ be
the family of nonempty relatively compact subsets of a linear topological space $X$ . If $X$ is
Hausdorff, then $\alpha c1(A)+\beta c1(B)$ is closed for any $A,$ $B\in F(X)$ and scalars $\alpha,\beta$ , and hence

$c1(\alpha A+\beta B)=\alpha c1A+\beta c1B$. (3.2)

Also, given a subset $A$ of a linear topological space $X$ , the asymptonic cone of $A$ , written
As$(A)$ , is the set of all points $a= \lim t_{\lambda}x_{\lambda}$ for some nets $x_{\lambda}\in A$ and $t_{\lambda}>0$ converging
to $0$ , which implies that As$(A)= \bigcap_{t>0}c1\{\alpha x : x\in A, 0<\alpha\leq t\}$ ; see [3] and [4]. Then,
when $A$ is a cone, we can easily verify that As$(A)=c1A$ . Hence, in the same way as the
proof of Theorem 2.12 in [3], we have the following: if $A$ and $B$ are nonempty cones with
As$(A)\cap-As(B)=\{0\}$ , and if one of them is convex and locally compact, then

$c1(A+B)=C1^{A}+c1B$ . (3.3)

Given a pointed (i.e., $C\cap(-C)=\{0\}$ ) convex cone $C$ , let $K_{C}(X)$ be the family of nonempty
convex, locally compact cones, included in $C$ , in a linear topological space $X$ . Then, from
(3.3) it follows that (3.2) holds for any $A,$ $B\in K_{C}(X)$ and scalars $\alpha,\beta$ , and hence it is true
for any $A,$ $B\in F(X)\cup K_{C}(X)$ and scalars $\alpha,$

$\beta$ whenever $X$ is Hausdorff, since the sum
of a compact set and a closed set is closed in $X$ . Therefore, for any pointed closed cone
$C$ , we can see that three operators int, cl, co behave like linear mappings on the family
$(O_{2}(X)\cup C_{2}(X))\cap(F(X)\cup K_{C}(X))$ in a Hausdorff linear topological space $X$ .

Moreover, as presented in Section 2, we have $intA+intA=intA+A=A+intA=2intA$,
$intA+clA=clA+intA=2intA$ , and $c1A+c1A=2c1A$ for any $A\in C_{2}(X)$ . Also, as
shown in page 59 in [2], we note that int(int$A$) $=intA,$ $c1(c1A)=$ c1A, int(clA) $=$ int$A$ ,
and cl(int$A$) $=\cdot clA$ for any $A\in C_{2}(X)$ . These can be interpreted in the following way.
Let int $(A)$ $:=$ intA, $c1(A)$ $:=$ c1A, $co(A)$ $:=coA$ for $A\subset X$ , and let $(int+cl)(A)$ $:=$

$int(A)+cl(A),$ $(\alpha int)(A)$ $:=\alpha(intA)$ , (int $oc1$) $(A)$ $:=int(cl(A))$ , etc. Then we can give
the following relation tables on the family of closed convex subsets with nonempty interior,
where the binary $relations+ando$ mean (row)+(column) and (row)o(column), respectively.
Whenever limited to the convex cones, the scalar multipliers 2 on the left-hand table are
superfluous.
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