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Abstract
We will define a new multi-stage decision process, which is termed Markov-type fuzzy decision

process. By the general framework in the decision process, the optimization problem of the
discounted reward is discussed under a partial order of convex fuzzy numbers.
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1 Introduction
Fuzzy decision making originated by Bellman and Zadeh[2] is a multi-stage process in which
the goals $and/or$ the constraints are fuzzy. The method of the dynamic programming is shown
to be a powerful computational technique for these problem$[2,7]$ . There are many papers on
the analysis of static arguments for the fuzzy theory, however there are a few on optimization
of fuzzy dynamic system. It is desirable that the fuzzification of the state of the system and its
transition by fuzzy relation are are well defined, and a multi-stage decision processes is developed
for a wide application.

In this paper, by trying to do fuzzification of the system, we will define a new multi-stage
decision process with Markov-type fuzzy transition. (see [9,14] for Markov-type fuzzy transition).
The optimization of the discount total reward for the processes under some partial order, called
“fuzzy $\max\cdot order’$ , on the class of convex fuzzy numbers is considered.

The analysis is done by operators on some class of functions, which is popular in Markov
decision processes(for example, $see[4,5]$ ) and, applying Banach’s fixed point theorem, the dis-
counted total fuzzy reward incurred by any fuzzy policy satisfying some reasonable conditions
is obtained as a unique solution of related fuzzy relational equations. Also, optimality fuzzy
relational equation is given to characteristic optimal fuzzy policy.

In section 2, we hst the notations and construct the model to be analyzed for the purpose.
In sections 3, the functional characterization of the discounted total fuzzy reward is given and
several results useful in pohcy improvement are obtained. The optimization is done in section
4, in which the fuzzy optimality equation is studied under some continuity conditions.

2 Notations and Assumptions
In this section, we shall give notations and mathematical facts in order to formulate a fuzzy
decision processes considered in the sequel. Let $E,$ $E_{1},$ $E_{2}$ be convex compact subsets of some
Banach space. Throughout the paper we will denote a fuzzy set and a fuzzy relation by their
membership functions. Refer to Zadeh[14] and Nov\’ak[12] for the theory of fuzzy sets.

The set of all fuzzy sets $\tilde{s}$ on $E$ is denoted by $\mathcal{F}(E)$ , which are assumed that it is upper
semi-continuous and have a compact support with the normality condition: $\sup_{x\in E}\tilde{s}(x)=1$

throughout the paper. The fuzzy relation between the space $E_{1}$ and $E_{2}$ means that $\tilde{p}$ : $E_{1}\cross E_{2}arrow$

$[0,1]$ and $\tilde{p}\in \mathcal{F}(E_{1}\cross E_{2})$ . Its $\alpha$-cut $(\alpha\in[0,1])$ of the fuzzy set $\tilde{s},$ $s_{\alpha}\sim$ , is defined as
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$\tilde{s}_{\alpha}$ $:=\{x\in E|\tilde{s}(x)\geq\alpha\}(\alpha>0)$ and so $:=cl\{x\in E|s\sim(x)>0\}$ ,

where $cl$ denotes the closure on the set. A fuzzy set $s\sim\in \mathcal{F}(E)$ is called convex if

$\tilde{s}(\lambda x+(1-\lambda)y)\geq\tilde{s}(x)\wedge s\sim(y)$ $x,$ $y\in E,$ $\lambda\in[0,1]$ .

Note that $\tilde{s}$ is convex iff the $\alpha$-cut $s_{\alpha}\sim$ is a convex set for all $\alpha\in[0,1](see[4])$ . Some papers un
convex analysis call this notion as quasi-convex.

A fuzzy relation $\tilde{p}\in \mathcal{F}(E_{1}\cross E_{2})$ is called convex if

$\tilde{p}(\lambda x_{1}+(1-\lambda)x_{2}, \lambda y_{1}+(1-\lambda)y_{2})\geq\tilde{p}(x_{1}, y_{1})\wedge\tilde{p}(x_{2}, y_{2})$

for $x_{1},$ $x_{2}\in E_{1},$ $y_{1},$ $y_{2}\in E_{2}$ , and $\lambda\in[0,1]$ . The class of all convex fuzzy set is denoted by using
the sub-index $c$ as

$\mathcal{F}_{c}(E):=$ { $s\sim\in \mathcal{F}(E)|s\sim$ is convex}.
The set of all non-empty convex closed subset of $E$ is denoted by $C(E)$ . Then clearly $\tilde{s}\in \mathcal{F}_{c}(E)$

means that $s_{\alpha}\sim\in C(E)$ for all $\alpha\in[0,1]$ .
Similarly let us restrict the term of convex fuzzy set to be those of the finite support contained

in the interval $[0, M]\subset R+;=[0, \infty]$ with a fixed positive number $M$ , that is,

$\mathcal{F}_{c}([0, M])$ $:=\{\tilde{s}\in \mathcal{F}_{c}(R_{+})|_{S_{0}}^{\sim}\subset[0, M]\}$ .

Let $C([0, M])$ be a set of all closed convex subsets of $[0, M]$ . For a non-empty closed interval,
the Hausedroff metric $\delta$ could be considered and it becomes a complete separable metric space,
i.e.,

$\delta([a, b], [c, d])$ $:=|a-c|V|b-d|$ for $[a, b],$ $[c, d]\in C([0, M])$ .

-The addition and the multiphcative operation of fuzzy sets(fuzzy numbers) are defined as
follows(see [7]): For $\tilde{n},\tilde{m}\in \mathcal{F}_{c}(R_{+})$ and $\lambda\in R+$ , define

$(\tilde{n}+\tilde{m})(u)$

$:= \sup_{u_{1},u_{2}\in R_{+}:u_{1}+u_{2}=u}$
{ $\overline{n}(u_{1})$ A $\tilde{m}(u_{2})$ }

and
(A $\tilde{n}$) $(u)$ $;=\{I_{\{0\}}(u)\tilde{n}(u/\lambda)$ $if\lambda=0if\lambda>0$ $u\in R_{+}$ ,

where $\lambda$ A $\mu$ $:= \min\{\lambda, \mu\}$ for scalars $\lambda,$
$\mu$ and $I_{A}(\cdot)$ means the classical indicator function of a

set $A\subset R+\cdot$ It is easily seen that, for $\alpha\in(0,1$],

$(\tilde{n}+\tilde{m})_{\alpha}=\tilde{n}_{\alpha}+\tilde{m}_{\alpha}$ and $(\lambda\tilde{n})_{\alpha}=\lambda\tilde{n}_{\alpha}$

holds by this operation. Here the operation for sets means the ordinary definition as $A+B$ $:=$

$\{x+y|x\in A, y\in B\}$ and $\lambda A$ $:=\{\lambda x|x\in A\}$ for $A,$ $B\subset R+\cdot$

The following results have appeared in Chen-wei Xu[6].

Lemma 2.1 $([5,Th.2.3],[6])$ .

(i) For any $\tilde{n},\tilde{m}\in \mathcal{F}_{c}(R_{+})$ and $\lambda\in R+,\tilde{n}+\tilde{m}\in \mathcal{F}_{c}(R_{+})$ and $\lambda\tilde{n}\in \mathcal{F}_{c}(R_{+})$ .
(ii) For any $s\sim\in \mathcal{F}_{c}(E_{1})$ and $\tilde{p}\in \mathcal{F}_{c}(E_{1}\cross E_{2})$ , then $\sup_{x\in E_{1}^{S}}^{\sim}(x)$ A $\tilde{p}(x, \cdot)\in \mathcal{F}_{c}(E_{2})$ .

Now, we consider Markov-type fuzzy decision processes

$(S, A, [0, M],\tilde{q},\tilde{r}, \beta)$

which satisfy the following $(i)-(iii)$ :



182

(i) LetS andA beastate space andaaction space, which are given as convex compact subsets
of some Banach space respectively. The decision process is assumed to be fuzzy itself, so
that both the state of the system and the action taken at each stage are denoted by the
element of $\mathcal{F}_{c}(S)$ and $\mathcal{F}_{c}(A)$ , called the fuzzy state and the fuzzy action respectively.

(ii) The law of motion for the system and the fuzzy reward can be characterized by time
invariant fuzzy relations $\tilde{q}\in \mathcal{F}_{c}(S\cross A\cross S)$ and $\tilde{r}\in \mathcal{F}_{c}(S\cross A\cross[0, M]))$ where $M$ is a
given positive number. Explicitly, if the system is in a fuzzy state $\tilde{s}\in \mathcal{F}_{c}(S)$ and the
fuzzy action $\tilde{a}\in \mathcal{F}_{c}(A)$ is chosen, then it transfers to a new fuzzy state $Q(\tilde{s},\tilde{a})$ and a fuzzy
reward $R(s\sim,\tilde{a})$ has been incurred, where $Q,$ $R$ are defined by the following:

$Q(s\sim,\tilde{a})(y)$ $:=$ $\sup$ $s\sim(x)$ A $\tilde{a}(a)$ A $\tilde{q}(x, a, y)$ $(y\in S)$ (2.1)
$(x,a)\in S\cross A$

and
$R(\tilde{s},\tilde{a})(u)$ $:=$ $\sup$ $\tilde{s}(x)$ A $\tilde{a}(a)$ A $\tilde{r}(x, a, u)$ $(0\leq u\leq M)$ . (2.2)

$(x,a)\in S\cross A$

Note that, by Lemma 2.1, it holds that $Q(s\sim,\tilde{a})(\cdot)\in \mathcal{F}_{c}(S)$ and $R(s\sim,\tilde{a})(\cdot)\in \mathcal{F}_{c}([0, M])$ for
all $\tilde{s}\in \mathcal{F}_{c}(S),\tilde{a}\in \mathcal{F}_{c}(A)$ .

(iii) The constant scaler $\beta$ is a discount rate satisfying $0<\beta<1$ .

Firstly we will define a pohcy based on the fuzzy state and fuzzy action as follows. Let
II $:=\{\pi|\pi : \mathcal{F}_{c}(S)-, \mathcal{F}_{c}(A)\}$ be a set of all maps from $\mathcal{F}_{c}(S)$ to $\mathcal{F}_{c}(A)$ . Any element $\pi\in\Pi$ is
called a strategy. A policy, $\check{\pi}=(\pi_{1}, \pi_{2}, \pi_{3}, \cdots)$ , is a sequence of strategies such that $\pi_{t}\in\Pi$ for
each $t$ . Especially, the policy $(\pi, \pi, \pi, \cdots)$ is a stationary policy and denoted by $\pi^{\infty}$ .

For any policy $\check{\pi}=(\pi_{1}, \pi_{2}, \cdots)\cdot and$ any initial fuzzy state $s\sim\in \mathcal{F}_{c}(S)$ , we define sequentially
the fuzzy state $\{s_{t}\sim\}$ as

$\tilde{s}_{1}$ $:=s\sim$, $s_{t+1}\sim$ $:=Q(s_{t}\sim, \pi_{t}(s_{t}\sim))$ for $t=1,2,$ $\cdots$ (2.3)

The transition of fuzzy states by (2.3) has Markov property, that is, the state of $t+1^{th}$ step
is determined by that of $t^{th}$ step, so that the decision processes defined above could be called
Markov-type, as is said in the title.

To describe the discounted total fuzzy reward incurred from a fuzzy pohcy $\check{\pi}$ , let us consider
the convergence of a sequence of fuzzy numbers belonging to $\mathcal{F}(R_{+})$ .

Definition 1.1 ([9, 11]). For $\tilde{n}_{t},\tilde{n}\in \mathcal{F}_{c}(R_{+})$ ,

$\lim_{tarrow\infty}\tilde{n}_{t}=\tilde{n}$

iff $\lim_{tarrow\infty}\sup_{\alpha\in[0,1]}\delta(\tilde{n}_{t,\alpha},\tilde{n}_{\alpha})=0$ .

The following lemma is a special case of convergence theorem proved in [13].

Lemma 2.2. For $\tilde{s}\in \mathcal{F}_{c}(S)$ and $\check{\pi}=(\pi_{1}, \pi_{2}, \cdots)$ ,

$\{\sim$ (2.4)

is convergent in $\mathcal{F}_{c}([0, M/(1-\beta)])$ .

From the above lemma, we can define the discounted total fuzzy reward as follows:

$\psi(\check{\pi},\tilde{s})$ $:= \sum_{t=1}^{\infty}\beta^{t-1}R(s_{t}\sim, \pi_{t}(s_{t}\sim))\in \mathcal{F}_{c}([0, M/(1-\beta)])$ (2.5)

for $\overline{s}\in \mathcal{F}_{c}(S)$ and $\check{\pi}=(\pi_{1}, \pi_{2}, \cdots)$ .
The problem is to maximize the fuzzy reward $\psi(\check{\pi}, s\sim)$ over a certain class of fuzzy policies

$\{\check{\pi}\}$ with respect to a given partial order on $\mathcal{F}_{c}([0, M/(1-\beta)])$ . In the sequel, the problem is
analyzed by introducing the partial order called “fuzzy $\max$ order”.
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Remarks: The fuzzy decision process defined in the previous argument is compatible with
the extension principle of Zadeh[14], which gives a natural extension of non-fuzzy systems. To
explain the notion, we treat the following usual deterministic systems: For given $x_{t}\in S,$ $a_{t}\in A$ ,
the next describes motion of the system;

$x_{t+1}=f$ ( $x_{t}$ , at) $(t=1,2, \cdots)$ , (2.5)

where $x_{1}\in S$ is an initial state and $f$ : $S\cross A\mapsto S$ is a deterministic transition function. A
fuzzy relation $\tilde{f}\in \mathcal{F}(S\cross A\cross S)$ will be defined by

$\tilde{f}(x, a, y)=\{01ify=f(x,a)ify\neq f(x,a)$

Then, using the above $\tilde{f}$ , the deterministic system can be rewritten. For $\tilde{x}_{t}\in \mathcal{F}(S),\tilde{a}_{t}\in \mathcal{F}(A)$ ,

$\tilde{x}_{t+1}=Q(\tilde{x}_{t},\tilde{a}_{t})$ $(t=1,2, \cdots)$ ,

$\tilde{x}_{1}=1_{\{x_{1}\}},\tilde{a}_{1}=1_{\{a_{1}\}}$ and

$Q(\tilde{x}_{t},\tilde{a}_{t})(y)=$ $\sup$ $\tilde{x}_{t}(x)$ A $\tilde{a}_{t}(a)$ A $\tilde{f}(x, a, y)$ $(y\in S)$ .
$(x,a)\in S\cross A$

This shows that the transition (2.1) of fuzzy states is a fuzzy extension of the deterministic
system (2.5) in extending the state space $S$ and action space $A$ to fuzzy sets $\mathcal{F}(S)$ and $\mathcal{F}(A)$ ,
respectively.

3 Partial order for the optimization
We introduce a partial order on $\mathcal{F}_{c}([0, M])$ and give some results on the optimization of the
fuzzy decision processes defined in the previous section. For $\tilde{n},\tilde{m}\in \mathcal{F}_{c}([0, M])$ , a partial order
for fuzzy numbers is defined as

$\tilde{n}\succeq\tilde{m}$

if $\min\tilde{n}_{\alpha}\geq\min\tilde{m}_{\alpha}$ and $\max\hslash_{\alpha}\geq\max\tilde{m}_{\alpha}$ for all $\alpha\in[0,1]$ where $\min,\max$ means the left or
right end point of the $\alpha$-cut intervals respectively. It is immediate that $(\mathcal{F}_{c}([0, M]), \succeq)$ becomes
a complete lattice (see $[3],[9]$ ). Note also that

$\sup_{t}\tilde{u}_{t}\in \mathcal{F}_{c}([0, M])$ for $\{\tilde{u}_{t}\}\subset \mathcal{F}_{c}([0, M])$

holds, where the supremum is taken with respect to the $order\succeq$ .

Definition 3.1. The fuzzy strategy $\check{\pi}$ : $\mathcal{F}_{c}(S)rightarrow \mathcal{F}_{c}(A)$ is called admissible if the $\alpha$-cut set
$\pi(\tilde{s})_{\alpha}$ of $\pi$ depends only on the scaler $\alpha$ and the set $\tilde{s}_{\alpha}$ , that is, it could be written as

$\pi(s\sim)_{\alpha}=\pi(\alpha, s_{\alpha}\sim)$ . (31)

Let $\Pi_{A}$ be the collection of all admissible fuzzy strategies. Similarly a policy $\check{\pi}=(\pi_{1}, \pi_{2}, \cdots)$ is
called admissible if $\pi_{t}\in\Pi_{A}(t=1,2, \cdots)$ .

Assumption 1. It is sufficient for the optimization of $\psi(\check{\pi}, s\sim)$ to deal with admissible pohcies.

Our problem is to maximize $\psi(\check{\pi},\tilde{s})$ over all admissible policies $\check{\pi}$ with respect to the order
$\succeq\circ n\mathcal{F}_{c}([0, M])$ .

In order to discuss the fuzzy transition and the fuzzy reward, some notations are introduced.
A map $\tilde{q}_{\alpha}$ : $C(S)\cross C(A)rightarrow C(S)(\alpha\in[0,1])$ is defined by

$\tilde{q}_{\alpha}(D\cross B)$ $:=\{\{y\in S|q\sim(x,a,y)\geq\alpha forsome(x,a)\in D\cross B\}cl\{y\in S|\tilde{q}(x,a,y)>0forsome(x,a)\in D\cross B\}$ $for\alpha>0for\alpha=0$

,
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and a map $\tilde{r}_{\alpha}$ : $C(S)\cross C(A)\mapsto C([0, M])(\alpha\in[0,1])$ by

$\tilde{r}_{\alpha}(D\cross B);=\{\{u\in R_{+}|_{l}^{\sim}(x,a,u)\geq\alpha forsome(x,a)\in D\cross B\}cl\{u\in R_{+}|_{7}^{\sim}\langle x,a,u)>0forsome(x,a)\in D\cross B\}$ $for\alpha=0for\alpha>0,$

.

By using $\tilde{q}$ and $\tilde{r}$, define maps $Q_{\alpha}^{\pi}$ : $C(S)-\succ C(S)$ and $R_{\alpha}^{\pi}$ : $C(S)rightarrow C([0, M])(\pi\in\Pi_{A}, \alpha\in[0,1])$

by
$Q_{\alpha}^{\pi}(D)$ $;=\tilde{q}_{\alpha}(D\cross\pi(\alpha, D))$

$R_{\alpha}^{\pi}(D)$ $;=\tilde{r}_{\alpha}(D\cross\pi(\alpha, D))$

for $D\in C(S)$ . For any admissible fuzzy policy $\check{\pi}=(\pi_{1}, \pi_{2)}\cdots),$ $Q_{t,\alpha}^{\overline{\pi}}(t\geq 1)$ is defined inductively
by using the composition of maps as follows:

$Q_{0,\alpha}^{\overline{\pi}}(D).:=I$ (identity), $Q_{1,\alpha}^{\check{\pi}}(D);=Q_{\alpha}^{\pi_{1}}(D)$

and
$Q_{t+1,\alpha}^{\overline{\pi}}(D)$

$:=Q_{\alpha}^{\pi_{1}}Q_{t,\alpha}^{(\pi_{2},\pi_{3,}\cdots)}(D)$ $:=Q_{t,\alpha}^{(\pi_{2},\pi_{3},\cdots)}Q_{\alpha}^{\pi_{1}}(D)$

for $t=1,2,$ $\cdots$ and $D\in C(S)$ .
Then, the following lemma holds regarding $\alpha$-cuts of fuzzy states and fuzzy reward for each

step.

Lemma 3.1. Let $\tilde{s}\in \mathcal{F}_{c}(S)$ and $\check{\pi}=(\pi_{1}, \pi_{2}, \cdots)$ be any admissible policy. Then, for
$t=1,2,$ $\cdots$ and $\alpha\in[0,1]$ ,

(i)
$\tilde{s}_{t+1,\alpha}=Q_{t,\alpha}^{\overline{\pi}}(\tilde{s}_{\alpha})$ ;

(ii)
$R(s_{t}\sim, \pi_{t}(s_{t}\sim))_{\alpha}\cdot=R_{\alpha^{t}}^{\pi}(s_{t,\alpha}\sim)$ ;

(iii)

$\psi(\check{\pi},\tilde{s})_{\alpha}=\sum_{t=0}^{\infty}\beta^{t}R(\tilde{s}_{t}, \pi_{t}(s_{t}\sim))_{\alpha}$ .

Proof. (i) For $t=1$ , let $\pi=\pi_{1}\in II_{A}$ and $\alpha\in[0,1]$ . we have

$Q_{1,\alpha}^{\overline{\pi}}(\tilde{s}_{\alpha})=Q_{\alpha}^{\pi}(\tilde{s}_{\alpha})=\tilde{q}_{\alpha}(\tilde{s}_{\alpha}\cross\pi(\alpha,\tilde{s}_{\alpha}))=\tilde{q}_{\alpha}(\tilde{s}_{\alpha}\cross\pi(s\gamma_{\alpha})=\tilde{q}(\tilde{s}, \pi(s\gamma)_{\alpha}=\tilde{s}_{2,\alpha}$.

Inductively we obtain the result for $t=2,3,$ $\cdots$ . (ii) For $t=1,2,$ $\cdots$ we have $R_{\alpha^{t}}^{\pi}(s_{t,\alpha}\sim)=$

$\tilde{r}_{\alpha}(\tilde{s}_{t,\alpha}\cross\pi_{t}(\alpha,\tilde{s}_{t,\alpha}))=7_{\alpha}\sim\cdot(s_{t,\alpha}\sim\cross\pi_{t}(s_{t}\sim)_{\alpha})=R(s_{t}\sim, \pi_{t}(s_{t}\sim))_{\alpha}$ . by letting $D=\tilde{s}_{t,\alpha}$ . (iii) It is
immediately obtained from (ii) and the convexity of the fuzzy set. $q.e.d$.

Let $V$ $:=.\{v : C(S)rightarrow C([0, M])\}$ . Define a metric $d_{V}$ on $V$ by

$d_{V}(v, w)$
$:= \sup_{D\in C(S)}\delta(v(D), w(D))$ for $v,$ $w\in V$.

Then (V, $d_{V}$ ) is a complete metric space. For $v,$ $w\in V$ , we define an order

$v\succeq w$

by $v(D)\succeq_{ci}w(D)$ for all $D\in C(S))$ where $\succeq_{ci}$ means that $[a, b]\succeq_{ci}[c, d]$ iff $a\geq c$ and $b\geq d$

for closed intervals $C([0, M])$ . Further define a map $U_{\alpha}^{\pi}$ : $V-V(\pi\in\Pi_{A}, \alpha\in[0,1])$ by

$U_{\alpha}^{\pi}v(D)$ $:=R_{\alpha}^{\pi}(D)+\beta v(Q_{\alpha}^{\pi}(D))$ (3.2)

for $v\in V$ and $D\in C(S)$ .
We will prove the contractive property of the operator $U_{\alpha}^{\pi}$ . To do it, it needs the following

lemma whose proof is easy.
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Lemma 3.2.
(i) Let $\Gamma$ $:=\{\gamma\}$ be an index set and $[a_{\gamma}, b_{\gamma}],$ $[c_{\gamma}, d_{\gamma}]\in C([0, M/(1-\beta)])$ for $\gamma\in\Gamma$ . Then

$\delta(\sup_{\gamma\in\Gamma}[a_{\gamma}, b_{\gamma}],\sup_{\gamma\in\Gamma}[c_{\gamma}, d_{\gamma}])\leq.\sup_{\gamma\in\Gamma}\delta([a_{\gamma}, b_{\gamma}], [c_{\gamma}, d_{\gamma}])$
.

(ii) If $[a_{1}, b_{1}],$ $[c_{1}, d_{1}],$ $[a_{2}, b_{2}],$ $[c_{2}, d_{2}]\in C([0, M])$ , then

$\delta([a_{1}, b_{1}]+[c_{1}, d_{1}], [a_{2}, b_{2}]+[c_{2}, d_{2}])$

$\leq$ $\delta([a_{1}, b_{1}], [a_{2}, b_{2}])+\delta([c_{1}, d_{1}], [c_{2}, d_{2}])$ .

(iii) If $[a, b],$ $[c, d]\in C([0, M])$ , then

$\delta(\beta[a, b], \beta[c, d])=\beta\delta([a, b], [c, d])$ .

Now can state our main results in this section.

Theorem 3.1. Let $\pi\in\Pi_{A}$ and $\alpha\in[0,1]$ . It holds that $U_{\alpha}^{\pi}$ is monotone, contractive and has
a unique map $v_{\alpha}^{\pi}\in V$ such that

$v_{\alpha}^{\pi}=U_{\alpha}^{\pi}v_{\alpha}^{\pi}$ . (3.3)
Proof. Fix any $\pi\in II_{A}$ and $\alpha\in[0,1]$ . For any $v,$ $w\in V$ , since

$U_{\alpha}^{\pi}v(D)$ $=R_{\alpha}^{\pi}(D)+\beta v(Q_{\alpha}^{\pi}(D))$ ,
$U_{\alpha}^{\pi}w(D)$ $=R_{\alpha}^{\pi}(D)+\beta w(Q_{\alpha}^{\pi}(D))$ ,

and Lemma 3.2, we have

$\delta(U_{\alpha}^{\pi}v(D), U_{\alpha}^{\pi}w(D))$ $\leq$ $\delta(R_{\alpha}^{\pi}(D)),$ $R_{\alpha}^{\pi}(D))+\delta(\beta v(Q_{\alpha}^{\pi}(D)), \beta w(Q_{\alpha}^{\pi}(D)))$

$=$ $\beta\delta(v(Q_{\alpha}^{\pi}(D)), w(Q_{\alpha}^{\pi}(D)))$

$\leq$ $\beta d_{V}(v, w)$

for all $D\in C(S)$ . This means
$d_{V}(U_{\alpha}^{\pi}v, U_{\alpha}^{\pi}w)\leq\beta d_{V}(v, w)$ .

That is, $U_{\alpha}^{\pi}$ is contractive and, by Banach’s fixed point theorem, has a unique map $v_{\alpha}^{\pi}\in V$ such
that $v_{\alpha}^{\pi}=U_{\alpha^{\pi}}v_{\alpha}^{\pi}$ . Further if $v\succeq Vw$ , then we have

$U_{\alpha}^{\pi}v(D)$ $=$ $R_{\alpha}^{\pi}(D)+\beta v(Q_{\alpha}^{\pi}(D))$

$\succeq_{ci}$ $R_{\alpha}^{\pi}(D)+\beta w(Q_{\alpha}^{\pi}(D))$

$=$ $U_{\alpha}^{\pi}w(D)$

for all $D\in C(S)$ . So $U_{\alpha}^{\pi}v\succeq VU_{\alpha}^{\pi}w$ . Therefore $U_{\alpha}^{\pi}$ is monotone. $q.e.d$.

Theorem 3.2. For $s\sim\in \mathcal{F}_{c}(S)$ and a admissible stationary policy $\pi^{\infty}=(\pi, \pi, \pi, \cdots)$ ,

$\psi(\pi^{\infty}, s\sim)_{\alpha}=v_{\alpha}^{\pi}(\tilde{s}_{\alpha})$

holds for $\alpha\in[0,1]$ .
Proof. Let $s\sim\in \mathcal{F}_{c}(S),$ $\pi^{\infty}=(\pi, \pi, \pi, \cdots)$ and $\alpha\in[0,1]$ . And define $\psi_{\alpha}$ by

$\psi_{\alpha}(\pi^{\infty}, D)$ $:= \sum_{t=0}^{\infty}\beta^{t}R_{\alpha}^{\pi}(Q_{t,\alpha}^{\pi^{\infty}}(D))$

for $D\in C(S)$ . Then from Lemma 3.1(ii) we have

$\psi(\pi^{\infty}, s\sim)_{\alpha}$ $=$ $\sum_{t=0}^{\infty}\beta^{t}R(s_{t}\sim, \pi(\tilde{s}_{t}))_{\alpha}$

$=$ $\sum_{t=0}^{\infty}\beta^{t}R_{\alpha}^{\pi}(s_{t,\alpha}\sim)$

$=$ $\psi_{\alpha}(\pi^{\infty},\tilde{s}_{\alpha})$ .

From Lemma 3.1(i),(ii) we have
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.

$\psi_{\alpha}(\pi^{\infty}, s_{\alpha}\sim)$ $=$ $\sum_{t=0}^{\infty}\beta^{t}R_{\alpha}^{\pi}(s_{t,\alpha}\sim)$

$=$ $R_{\alpha}^{\pi}(s_{\alpha} \sim)+\beta\{\sum_{t=1}^{\infty}\beta^{t-1}R_{\alpha}^{\pi}(Q_{t-1,\alpha}^{\pi}(\tilde{s}_{t-1,\alpha}))\}$

$=$ $R_{\alpha}^{\pi}(s_{\alpha}\sim)+\beta\psi_{\alpha}(\pi^{\infty}, Q_{\alpha}^{\pi}(s_{\alpha}\sim))$

$=$ $U_{\alpha}^{\pi}\psi_{\alpha}(\pi^{\infty}, s_{\alpha}\sim)$ .

Therefore $\psi_{\alpha}(\pi^{\infty}, s_{\alpha}\sim)=U_{\alpha^{\pi}}\psi_{\alpha}(\pi^{\infty}, s_{\alpha}\sim)$. From Theorem 3.1 and (3.3), we obtain $\psi(\pi^{\infty},\tilde{s})_{\alpha}=$

$\psi_{\alpha}(\pi^{\infty}, s_{\alpha}\sim)=v_{\alpha}^{\pi}(s_{\alpha}\sim)$ . $q,e.d$.

Lemma 3.3. Let $\tilde{s}\in \mathcal{F}_{c}(S)$ be any initial fuzzy state and let $\check{\pi}=(\pi_{1}, \pi_{2}, \cdots)$ be any pohcy.
Then

(i)
$\psi_{\alpha}(\check{\pi}, s_{\alpha}\sim)=U_{\alpha}^{\pi_{1}}U_{\alpha^{2}}^{\pi}\cdots U_{\alpha}^{\pi_{\ell-1}}\psi_{\alpha}(\check{\pi}_{t}, s_{\alpha}\sim)$

where $\check{\pi}_{t}=(\pi_{t}, \pi_{t+1}, \pi_{t+2}, \cdots)$ .

(ii) For any $v\in V$ ,
$\psi_{\alpha}(\check{\pi}, s_{\alpha}\sim)=\lim_{tarrow\infty}U_{\alpha}^{\pi_{1}}U_{\alpha^{2}}^{\pi}\cdots U_{\alpha^{4-1}}^{\pi}v(s_{\alpha}\sim)$ .

Proof. (i) It is similar to the proof of Theorem 3.2. (ii) Similar to Theorem 3.1 we have

$\delta(U_{\alpha}^{\pi_{1}}U_{\alpha^{2}}^{\pi}\cdots U_{\alpha}^{\pi_{l-1}\sim}\psi_{\alpha}(\check{\pi}_{t}, s_{\alpha}),$ $U_{\alpha}^{\pi_{1}}U_{\alpha^{\pi_{2}}}\cdots U_{\alpha}^{\pi_{t-1}}v(\tilde{s}_{\alpha}))$

$\leq$ $\beta^{t-1}\delta(\psi_{\alpha}(\check{\pi}_{t},\overline{s}_{\alpha}),$ $v(s_{\alpha}\sim))$ .

Therefore we obtain the result. $q.e.d$.

Theorem 3.3. Let $\check{\pi}=(\pi_{1}, \pi_{2}, \cdots)$ be any pohcy. Suppose

$\psi_{\alpha}(\check{\pi}, D)\succeq_{ci}U_{\alpha}^{\pi}\psi_{\alpha}(\check{\pi}, D)$ for all $D\in C(S),$ $\pi\in\Pi_{A}$ and $\alpha\in[0,1]$ . (3.4)

Then we have
$\psi(\check{\pi},\tilde{s})\succeq\psi(\check{\sigma},\tilde{s})$ for all $\tilde{s}\in \mathcal{F}_{c}(S)$ and any pohcy $\check{\sigma}$ .

Proof. By Lemma 3.3 and the monotonicity of $U_{\alpha}^{\pi}$ , it could be shown easily that $\psi_{\alpha}(\check{\pi}, D)\succeq_{ci}$

$\psi_{\alpha}(\check{\sigma}, D)$ for all $D\in C(S),$ $\alpha\in[0,1]$ and any policy $\check{\sigma}$ . Therefore we have obtained the theorem.
$q.e.d$ .

Theorem 3.4. Let $\check{\pi}=(\pi_{1}, \pi_{2}, \cdots)$ be any pohcy and let $\pi\in II_{A}$ . Suppose

$U_{\alpha}^{\pi}\psi_{\alpha}(\check{\pi}, D)\succeq_{ci}\psi_{\alpha}(\check{\pi}, D)$ for all $D\in C(S)$ and $\alpha\in[0,1]$ .

Then we have
$\psi(\pi^{\infty},\tilde{s})\succeq\psi(\dot{\pi}, s\sim)$ for all $s\sim\in \mathcal{F}_{c}(S)$ .

Proof. Similarly to Theorem 3.3, it could be shown easily. $q.e.d$.

Remark. The results like Theorem 3.3 and 3.4 have appeared already in the classic discounted
Markov decision model and used for the policy improvement([4,5]). By the same idea, the above
theorems would be useful for the policy improvement under the fuzzy decision model.

4 Optimality equation
The objective in this section is to give a fuzzy optimality equation which is used in the opti-
mization of the decision processes.
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Define a map $U_{\alpha}$ : $V\mapsto V(\alpha>0)$ by

$U_{\alpha}v(D)$
$:= \sup_{B\in C(A)}\{\tilde{r}_{\alpha}(D\cross B)+\beta v(\tilde{q}_{\alpha}(D\cross B))\}$

(4.1)

for $v\in V$ and $D\in C(S)$ , where $\sup$ is taken over the $order\succeq$ .

Theorem 4.1. Let $\alpha\in[0,1]$ . $U_{\alpha}$ is monotone, contractive and has a unique map $v_{\alpha}^{*}\in V$

such that
$v_{\alpha}^{*}=U_{\alpha}v_{\alpha}^{*}$ . (4.2)

Proof. Using Lemma 2.2, for $v,$ $w\in V$ we obtain

$\delta(U_{\alpha}v(D), U_{\alpha}w(D))$ $\leq$

$\sup_{B\in C(A)}\delta(\beta v(q_{\alpha}\sim(D\cross B), \beta w(\tilde{q}_{\alpha}(D\cross B))$

$=$ $\beta\sup$ $\delta(v(\tilde{q}_{\alpha}(D\cross B), w(q_{\alpha}\sim(D\cross B))$

$B\in C(A)$

$\leq$ $\beta d_{V}(v, w)$

for $D\in C(S)$ . Therefore $d_{V}(U_{\alpha}v,- U_{\alpha}w)\leq\beta d_{V}(v, w)$ . By contraction, there exists a unique
$v_{\alpha}^{*}\in V$ such that $v_{\alpha}^{*}=U_{\alpha}v_{\alpha}^{*}$ . $q.e.d$.

Put, for $\alpha\in[0,1]$ ,

$E_{\alpha}^{\tilde{r}}$ $:=\{(x, a, u)\in S\cross A\cross[0, M/(1-\beta)]|\tilde{r}\langle x, a, u)\geq\alpha\}$ ,
$E_{\alpha^{\sim}}^{q}$

$:=\{(x, a, y)\in S\cross A\cross S|\tilde{q}(x, a, y)\geq\alpha\}$ .

For $\epsilon>0$ we define their $\epsilon$-covering of each set by

$E_{\alpha}^{\tilde{r}}(\epsilon)$ $;=$ $\{(x’, a’, u’)\in S\cross A\cross[\mathfrak{h}M/(1-\beta)]|||(x’, a’, u’)-(x, a, u)||<\epsilon$

for some $(x, a, u)\in E_{\alpha}^{\tilde{r}}$ },
$E_{\alpha^{\sim}}^{q}(\epsilon)$ $;=$ $\{(x’, a’, y_{\sim}’)\in S\cross A\cross S|||(x’, a’, y’)-(x, a, y)||<\epsilon$

for some $(x, a, y)\in E_{\alpha}^{\tilde{q}}$ }.

Assumption 2 (A uniform continuity on $\tilde{r}$ and $q\sim$). There exists $\eta$ : $[0, \infty$ ) $arrow>[0, \infty$ ) such that

(i) $\eta(t)arrow 0$ as $t\downarrow 0$ ;

(ii) $E_{\alpha}^{\tilde{r}}(\eta(|\alpha’-\alpha|))\supset E_{\alpha}^{\tilde{r}}$ , for $0\leq\alpha’<\alpha$ ;

(iii) $E_{\alpha}^{\tilde{q}}(\eta(|\alpha’-\alpha|))\supset E_{\alpha}^{\tilde{q}}$ , for $0\leq\alpha’<\alpha$ .

Lemma 4.1. Suppose Assumption 2. Let $D_{\alpha’}\downarrow D_{\alpha}$ as $\alpha’\uparrow.\alpha$ for $D_{\alpha’}\in C(S)$ and $\alpha\in(0,1$].

Then

(i) $\sup_{B\in C(A)}\delta(\tilde{r}_{\alpha’}(D_{\alpha’}\cross B),\tilde{r}_{\alpha}(D_{\alpha}\cross B))arrow 0$ as $\alpha’\uparrow\alpha$ ;

(ii) $\sup_{B\in C(A)}\rho(q_{\alpha}\sim(D_{\alpha’}\cross B),1^{\vee}q_{\alpha}(D_{\alpha}\cross B))arrow 0$ as $\alpha’\uparrow\alpha$ .

Proof. (i) We have

$\delta(\tilde{r}_{\alpha’}(D_{\alpha’}\cross B),\tilde{r}_{\alpha}(D_{\alpha}\cross B))$

$\leq$ $\delta(\tilde{r}_{\alpha’}(D_{\alpha’}\cross B),\tilde{r}_{\alpha}(D_{\alpha’}\cross B))+\delta(\tilde{r}_{\alpha}(D_{\alpha’}\cross B),\tilde{r}_{\alpha}(D_{\alpha}\cross B))$

$\leq$ $\eta(|\alpha’-\alpha|)+\rho(D_{\alpha’}, D_{\alpha})arrow 0$ as $\alpha’\uparrow\alpha$

uniformly with respect to B. (ii) It is similarly proved. $q.e.d$.

Under these assumptions, we can prove the following properties of $v_{\alpha}^{*}(\alpha\in[0,1])$ .
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Theorem 4.2. Suppose that Assumption 2 holds. Let $D_{\alpha’}(\in C(S))\downarrow D_{\alpha}$ as $\alpha’\uparrow\alpha$ for all
$\alpha\in(0,1]$ . Then

(i) $v_{\alpha^{J}}^{*}(D_{\alpha^{J}})\supset v_{\alpha}^{*}(D_{\alpha})$ for $\alpha’<\alpha$ ,

(ii) $\lim_{\alpha’\uparrow\alpha}v_{\alpha}^{*},(D_{\alpha’})=v_{\alpha}^{*}(D_{\alpha})$ .

Proof. (i) Let $D_{\alpha’}(\in C(S))\downarrow D_{\alpha}$ as $\alpha’\uparrow\alpha$ for all $\alpha\in(0,1$ ]. Let $\alpha’<\alpha$ and $v,$ $w\in V$ such
that. $v(D)\subset w(D’)$ for all $D,$ $D’\in C(S)$ : $D\subset D’$ . Let $D,$ $D’\in C(S)$ : $D\subset D’$ . Then

$\tilde{r}_{\alpha}(D\cross B)+\beta v(q_{\alpha}\sim(D\cross B))\subset\tilde{r}_{\alpha’}(D’\cross B)+\beta w(q_{\alpha}\sim(D’\cross B))$ for $B\in C(A)$ .

Therefore
$U_{\alpha}v(D)\subset U_{\alpha’}w(D’)$ for $D,$ $D’\in C(S)$ : $D\subset D’$ .

Thus inductively we obtain

$(U_{\alpha})^{t}v(D)\subset(U_{\alpha^{j}})^{t}w(D’)$ for $t=1,2,$ $\cdots$ and $D,$ $D’\in C(S)$ : $D\subset D’$ .

Since $U_{\alpha}$ and $U_{\alpha’}$ are contractive, from Theorem 3.1 we get

$v_{\alpha}^{*}(D_{\alpha})\subset v_{\alpha}^{*},(D’)$ for $D,$ $D’\in C(S):D\subset D’$ .

Therefore
$v_{\alpha}^{*}(D_{\alpha})\subset v_{\alpha}^{*},(D_{\alpha’})$ for $\alpha’<\alpha$ .

(ii) Let $D_{\alpha’}(\in C(S))\downarrow D_{\alpha}$ as $\alpha’\uparrow\alpha$ for all $\alpha\in(0,1$ ]. We $defi\dot{n}eJ\in V$ by

$J(D)$ $:=[0, M/(1-\beta)]$ for all $D\in C(S)$ .

Put $v_{\alpha}^{(t)}(D)$ $:=(U_{\alpha})^{t}J(D)$ for $t=1,2,$ $\cdots$ and $D\in C(S)$ . Since $U$ is a contraction map by
Theorem 4.1, we have

$v_{\alpha}^{(t)}(D)arrow v_{\alpha}^{*}(D)$ uniformly for $\alpha$ and $D\in C(S)$ .

In order to prove this theorem, it is sufficient to show that, for all $t=1,2,$ $\cdots$ ,

$\delta(v_{\alpha}^{(t)}(D_{\alpha’}), v_{\alpha}^{*}(D_{\alpha}))arrow 0$ as $\alpha’\uparrow\alpha$ . (4.3)

We show this by induction on $t$ . In the case of $t=1$ , from Lemma 4.1

$\delta(v_{\alpha}^{(1)}(D_{\alpha’}), v_{\alpha}^{(1)}(D_{\alpha}))\leq\sup_{B\in C(A)}\delta(\tilde{r}_{\alpha’}(D_{\alpha’}, B),\tilde{r}_{\alpha}(D_{\alpha}, B))arrow 0$

as $\alpha’\uparrow\alpha$ . Assuming (4.3) for $t$ , from Lemmas 3.2 and 4.1,

$\delta(v_{\alpha}^{(t+1)}(D_{\alpha’}), v_{\alpha}^{(t+1)}(D_{\alpha}))$
$\leq$

$\sup_{B\in C(A)}\delta(\tilde{r}_{\alpha’}(D_{\alpha’}, B),\tilde{r}_{\alpha}(D_{\alpha}, B))$

$+$
$\beta\sup_{B\in C(A)}\delta(v_{\alpha}((q_{\alpha’}\sim(D_{\alpha’}, B)),$

$v_{\alpha}^{(t)}(q_{\alpha}(D_{\alpha},\dot{B})))arrow 0$

as $\alpha’\uparrow\alpha$ . Thus inductively we get (4.3) for all $t=1,2,$ $\cdots$ . Therefore we complete the proof.
$q.e,d$ .

For $s\sim\in \mathcal{F}_{c}(S)$ , define

$v^{*}(s\gamma(u)$ $:=$ $\sup$ { $\alpha$ A $1_{v_{\alpha}^{*}(\tilde{S}_{\alpha})}(u)$ } $u\in[0, M]$ .
$\alpha\in[0,1]$

Then we obtain the following result.
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Theorem 4.3. Suppose that Assumption 2 holds. Then

$v^{*}(\tilde{s})\in \mathcal{F}_{c}([0, M/(1-\beta)])$ for all $s\sim\in \mathcal{F}_{c}(S)$

and
$v^{*}(s\sim)\succeq\psi(\check{\pi},\tilde{s})$ for all admissible policies $\check{\pi}$ and $s\sim\in \mathcal{F}_{c}(S)$ .

Proof. Let $s\sim\in \mathcal{F}_{c}(S)$ . From Theorem 4.2 and [l,Lemma 3], it is trivial that $v^{*}(\tilde{s})\in$

$\mathcal{F}_{c}([0, M/(1-\beta)])$ . Next

$v_{\alpha}^{*}(\tilde{s}_{\alpha})=Uv_{\alpha}^{*}(\tilde{s}_{\alpha})\succeq_{ci}U_{\alpha}^{\pi}v_{\alpha}^{*}(s_{\alpha}\sim)$ for $\pi\in\Pi_{A}$ .

Let $\check{\pi}=(\pi_{1}, \pi_{2}, \cdots)$ be an admissible Markov pohcy. Then

$\psi(\check{\pi},\tilde{s})_{\alpha}=\psi_{\alpha}(\check{\pi},\tilde{s}_{\alpha})=\lim_{tarrow\infty}U_{\alpha}^{\pi_{1}}U_{\alpha^{2}}^{\pi}\cdots U_{\alpha}^{\pi_{t-1}}v^{*}(s_{\alpha}\sim)\preceq_{ci}v_{\alpha}^{*}(\tilde{s}_{\alpha})=v^{*}(\tilde{s})_{\alpha}$

for $\alpha\in[0,1]$ . Therefore we obtain that

$\psi(\check{\pi},\tilde{s})\preceq v^{*}(\tilde{s})$ .

$q.e.d$,

Corollary 4.1. Suppose that there exists $\pi^{*}\in\Pi_{A}$ such that $U_{\alpha}^{\pi}v_{\alpha}^{*}=v_{\alpha}^{*}$ for all $\alpha\in[0,1]$ .
Then $\pi^{*\infty}$ is absolutely optimal, i.e.,

$\psi(\pi^{*\infty\sim})s)\succeq\psi(\dot{\pi}, s\sim)$ for all admissible policies $\check{\pi}$ and $s\sim\in \mathcal{F}_{c}(S)$ .
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