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Fundamental Operations on Truncated $L$ Fuzzy Numbers
and

a Parametric Total Order on $L$ Fuzzy Numbers

Nagata Furukawa (Soka University)

Part I. Truncated $L$ Fuzzy Numbers

1. Truncated $L$ Fuzzy Numbers

Definition 1.1 : A fuzzy number $A$ is defined as any fuzzy set on the

space of real numbers $R$ , whose membership function $\mu_{A}$ satisfies the

following conditions:
(i) $\mu_{A}$ is a mapping from $\backslash R$ to the closed interval $[0,1]$ ,

(ii) there exists a unique real number $m$ such that
(a) $\mu_{A}(m)=1$ ,

(b) $\mu_{A}$ is nondecreasing on $(-\infty , m$ ],

(c) $\mu_{A}$ is nonincreasing on $[m, +\infty$).

We call the number $m$ in (ii) the center of $A$ , and denote the center of $A$

by $m_{A}$ similarly the center of $B$ by $m_{B}$ etc.

We denote the set of all fuzzy numbers defined as above by F. Since

the membership function of the real number, $i$ . $e$ . the characteristic function,

satis-fies the conditions of Definition 1.1, it holds that $R\subset F$ .
Definition 1.2: Let $L$ be a function from $R$ to $R$ satisfying the fol-

lowing conditions :
(i) $L(x)=L(-x)$ $\forall x\in R$ ,

(ii) $L(x)=1$ iff $x=0$,

(iii) $L(\cdot)$ is strictly decreasing and continuous on $[0, +\infty$ ),

(iv) $L(x)>0$ for $\forall x\in R$ ,

(v) $\lim_{xarrow+\infty}L(x)=0$ .

Then the function $L$ is called a nonvanishing shape function.
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Definition 1.3: Let $m$ be an arbitrary real number, and let $\alpha$ and $a$

be arbitrary positive numbers. Let $L$ be any shape function. Then a fuzzy
number $A$ whose membership function $\mu_{A}$ is expressed by the formula :

$\mu_{A}(x)=\{L_{0}(\frac{x-m}{\alpha})$
$onon$ $(-\infty,m-a)\cup(m+a[m-a, m+a]+\infty)$ (1.1)

is called a truncated $L$ fuzzy number. The points $m-a$ and $m+a$ are
called the truncation points of A.

By the definition, $m$ in (1.1) is the center of $A$ . We call the numbers $\alpha$

and $a$ the deviation parameter and the truncation parameter of $A$ , respec-
tively.

Notice that

$\mu_{A}(m-a)=\mu_{A}(m+a)=L(\frac{a}{\alpha})$ . (1.2)

By virtue of (v) in Definition 1.2 and (1.2), the graph of the membership
function (1.1) concentrates around the vertical line $x=m$ as $\alpha$ and $a$ both
tend to $+0$. For $\alpha=0$ and $a=0$, hence, we interpret the formula (1.1) as

$\mu_{A}(x)=\{\begin{array}{l}1ifx=m0ifx\neq m\end{array}$ (1.3)

The formula (1.3) is no other than the characteristic function of the real num-
ber $m$. Then we define anew a truncated $L$ fuzzy number as a fuzzy number
whose membership function is given by either (1.1) or (1.3). We introduce
the parameter expression of the truncated $L$ fuzzy number by

$A=(m, \alpha;a)_{L}$ . (1.4)

By the interpretation stated above, we have
$(m, 0;0)_{L}=m$ .

Given a shape function $L$, let us denote the set of all tmncated $L$ fuzzy
numbers by $TF_{L}$ . Then we have $R\subset TF_{L}$ for every shape function $L$ .

2. Fundamental Operations among Truncated $L$ Fuzzy Numbers
For two fuzzy numbers $A,$ $B\in F$ , the fundamental operation $\oplus by$ the
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so-called “ extension principle “ is given by

$\mu_{A\oplus B}(z)=\max_{x+y=z}\min(\mu_{A}(x), \mu_{B}(y))$
, $z\in$ R. (2.1)

Similarly, the fundamental operation $\ominus$ is given by

$\mu_{A}\oplus(z)=\max_{x-y=z}\min(\mu_{A}(x), \mu_{B}(y))$
, $z\in$ R. (2.2)

We apply the fundamental operations (2.1) and (2.2) to the members of
the family $TF_{L}$ .

Let $A=(m, \alpha;a)_{L}$ and $B=(n, \beta;b)_{L}$ be two truncated $L$ fuzzy

numbers. Then the values of the membership functions of $A$ and $B$ at their
truncation points are given by $L(a/\alpha)$ and $L(b/\beta)$ , from (1.2).

In the case where $L(a/\alpha)=L(b/\beta)$ , the fundamental operations on $A$

and $B$ follow the usual manners. Then we treat the case where $L(a/\alpha)\neq$

$L(b/\beta)$ . Without loss of generality we may assume that
$L(a/\alpha)<L(b/\beta)$ (2.3)

Let $x=c_{A}$ be the uniqe solution of the system:

$\{\begin{array}{l}\mu_{A}(x)=L(b/\beta)x<m\end{array}$ (2.4)

and let $x=d_{A}$ be the unique solution of the system:

$\{\begin{array}{l}\mu_{A}(x)=L(b/\beta)x>m\end{array}$ (2. 5)

Then we have
$m+n-a-b<c_{A}+n-b<d_{A}+n+b<m+n+a+b$ . (2.6)

Theorem 2.1: Let $L$ be an arbitrary nonvanishing shape function. For
two truncated $L$ fuzzy numbers $A=(m, \alpha;a)_{L}$ and $B=(n, \beta;b)_{L}$ , we
assume (2.3). Then the membership function of the sum $A\oplus B$ computed
from the extension principle is given by
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$\mu_{A\oplus B}(z)=\{\begin{array}{l}L(\frac{m+n-b-z}{\alpha})ifm+n-a-b\leq z<c_{A}+n-bL(\frac{m+n-z}{\alpha+\beta})ifc_{A}+n-b\leq z\leq d_{A}+n+bL(\frac{m+n+b-z}{\alpha})ifd_{A}+n+b<z\leq m+n+a+b0ifz<m+n-a-borz>m+n+a+b\end{array}$

Theorem 2.2: Let $L$ be an arbitrary nonvanishing shape function. For
two truncated $L$ hzzy numbers $A=(m, \alpha;a)_{L}$ and $B=(n, \beta;b)_{L}$ , we
assume (2.3). Then the membership function of the difference $A\ominus B$

computed from the extension principle is given by

$\mu_{A\ominus B(Z)=}\{\begin{array}{l}L(\frac{m-n-b-z}{\alpha})ifm-n-a-b\leq z<c_{A}-n-bL(\frac{m-n-z}{\alpha+\beta})ifc_{A}-n-b\leq z\leq d_{A}-n+bL(\frac{m-n+b-z}{\alpha})ifd_{A}-n+b<z\leq m-n+a+b0ifz<m-n-a-borz>m-n+a+b\end{array}$

The proofs of Theorems 2.1 and 2.2 are owing to the results given by
Dubois and Prade ([ 1 ]) and the formulae (2.1) and (2.2).

3. Fuzzy ${\rm Max}$ Order on Truncated $L$ Fuzzy Numbers
Definition 3.1: (Fuzzy ${\rm Max}$ order) For two fuzzy numbers $A,$ $B\in$

$F,$ $A\preceq B$ iff it holds that
(i) $m_{A}\leq m_{B}$ ,

(ii) there exists a real number $c$ such that
(a) $m_{A}\leq c\leq m_{B}$ ,

(b) $\mu_{A}(x)\geq\mu_{B}(x)$ $\forall x<c$,

(c) $\mu_{A}(x)\leq\mu_{B}(x)$ $\forall x>c$ .
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Theorem 3.1: The set $F$ of all fuzzy numbers is a partially ordered
set with respect to the Fuzzy ${\rm Max}$ order.

We apply the Fuzzy ${\rm Max}$ order to the family $TF_{L}$ to get the following

characterization theorem of the order in terns of the parameters.
Theorem 3.2: Let $L$ be an arbitrary nonvanishing shape function. For

two truncated $L$ fuzzy numbers $A=(m, \alpha;a)_{L}$ and $B=(n, \beta;b)_{L}$ , then we
have

$A\preceq B$ $\Leftrightarrow\{\begin{array}{l}|a-b|\leq n-ma(\alpha-\beta)\leq\alpha(n-m)b(\beta-\alpha)\leq\beta(n-m)\end{array}$

Part II. A Parametric Total Order on $L$ Fuzzy Numbers

4. Fuzzy Numbers Generated by Vanishing Shape Functions
In Part II we treat the class of fuzzy numbers generated by vanishing

shape functions, whereas we have considered fuzzy numbers generated by
nonvanishing ones in Part I. Our aim of this part is to introduce a new
concept of a total order relation on fuzzy numbers. For this purpose we
restrict the shape function to the vanishing one.

$Defin\ddagger tion4.1$ : Let $L$ be a function from $R$ to $R$ satisfying the fol-
lowing conditions :

(i) $L(x)=L(-x)$ $\forall x\in R$ ,

(ii) $L(x)=1$ iff $x=0$,

(iii) $L(\cdot)$ is nonincreasing on $[0, +\infty$ ),

(iv) let $x_{0}= \inf\{x>0|L(x)=0\}$ then $0<x_{0}<+\infty$ .
Then the function $L$ is called a vanishing shape function, and we call the
point $x_{0}$ in (iv) the zero point of $L$.

Notice, in the above definition, that any continuity is not assumed to the
shape function.
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DefinitIon 4.2: Let $m$ be any real number and let $\alpha$ any positive
number. Let $L$ be any shape function. A fuzzy number $A$ whose membership
function $\mu_{A}$ is expressed by the formula :

$\mu_{A}(x)=L(\frac{x-m}{\alpha})\vee 0$, $x\in R$ , (4.1)

is called a (nontruncated) $L$ fuzzy number, where $a \vee b=\max(a, b)$ .
By the definition, $m$ in (4.1) is equal to the center of $A$ . We call the

number $\alpha$ the deviation parameter of $A$ .
Given a vanishing shape function $L$, we denote the family of all $L$ fuzzy

numbers by $F_{L}$ . By the same reason as for the truncated $L$ fuzzy numbers
we can assume that $R\subset F_{L}$ .

For the $L$ fuzzy number $A$ whose membership function is expressed by
(4.1), we use a parameter expression as follows:

$A=(m, \alpha)_{L}$ .

5. A Parametric Total Order on $L$ Fuzzy Numbers
Let $\preceq$ denote the Fuzzy ${\rm Max}$ order introduced in Definition 3.1 of Part I.

As stated in Theorem 3.1, the Fuzzy ${\rm Max}$ order is not necessarily a total
order, but usually a partial order. Therefore, for two given fuzzy numbers A
and $B$ , it may happen that neither $A\preceq B$ nor $B\preceq A$ holdst.

$Defin\ddagger tion5.1$ : Let $L$ be an arbitrary shape function. Let $A=(m, \alpha)_{L}$

and $B=(n, \beta)_{L}$ be two $L$ fuzzy numbers. We denote the relation that
neither $A\preceq B$ nor $B\preceq A$ holds by $A\succ\prec B$ .

Proposition 5.1 : For $A=(m, \alpha)_{L}$ and $B=(n, \beta)_{L}$ , it holds that

$A\succ\prec B$ $\Leftrightarrow$ $x_{0}|\alpha-\beta|>|m-n|$ (5.2)

We introduce a new concept of an order relation on $F_{L}$ by the following
Definition 5.2 : Let $0\leq\lambda\leq 1$ be fixed arbitrarily. For two $L$ fuzzy

numbers $A=(m, \alpha)_{L}$ and $B=(n, \beta)_{L}$ , we define an order relation with

the parameter $\lambda$ by
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$A\leq_{\lambda}B\Leftrightarrow def$

(i) $A\preceq B$ ,

or
(ii) $\lambda x_{0}|\alpha-\beta|<n-m<x_{0}1\alpha-\beta|$ , (5.3)

or
(iii) I $n-m|\leq\lambda x_{0}|\alpha-\beta|$ and $\beta>\alpha$ .

Proposition 5.2 : (a) When $\lambda=0$ , we have

$A\leq 0^{B}\Leftrightarrow m\leq n$ . (5.4)

(b) When $\lambda=1$ , we have

$A\leq_{1}B\Leftrightarrow\{(ii)(i)orA\preceq BA\succ\prec B$

and $\beta>\alpha$ .
(5.5)

Proposition 5.2 states that the relation $\leq 0$ is equal to the order among the
centers of $L$ fuzzy numbers, and the relation $\leq_{1}$ is the order relation that

makes fuzzy numbers, unordered with respect to the partial order $\preceq$ , arrange
according to their sizes of ambiguity. These two orders are the extreme
ones, and situated on opposite sides each other.

When $0<\lambda<1$ , the relation $\leq\lambda dete-ines$ an intermediate order as
follows. For two $L$ fuzzy numbers $A=(m, \alpha)_{L}$ and $B=(n, \beta)_{L}$ such that
$A\succ\prec B$ , they are ordered according to their values of center when 1 $m-n|$

is comparatively large ((ii) of (5.3)), and ordered according to their sizes of
ambiguity when 1 $m-n|$ is comparatively small ((iii) of (5.3)). In this con-
texst, an index which gives a criterion of the judgment whether $|m-n|$ is
comparatively small or not is the parameter $\lambda$ . The smaller $\lambda$ is, the larger
the possibility of ordering by the value of center is, and on the contrary the
larger $\lambda$ is, the larger the possibility of ordering by the size of ambiguity is.

Finally we can prove the following theorem.
Theorem 5.2: For every vanishing shape function $L$, the order $\leq_{\lambda}$ is a

total order relation on $F_{L}$ .
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We call the order relation $\leq_{\lambda}$ a parametric total order with the parameter
$\lambda$ .
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