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ON REPRESENTATIONS OF SUPER-POINCARE ALGEBRA

Shoji KANEMAKI* and Izumi FURUOYA**
Mo M X OREAME) HR A R (GERAER)

Abstract. A 4-component spinor covariant derivative
representation of a new graded Lie algebra of infinite
dimension in the general relativity is obtaind from a
4-component Spinor partial derivative representation
of a super-Poincaré algebra in the special relativity.

1. Poincaré Algebra. A Poincaré algebra TD(Pu, Muv) is

a Lie algebra with a set (P“, N&v ) of ten generators Pu, Muv

(M =-M ; u=0,1,2,3 ) satisfying commtation relations

Hv Vu
WD (2R =0,
W2 My P = ity P P,
(1.3) Muvs Mog 1 = 2y Mg Mgt gMyp Mgy )

where we use (nuv)=diag(l,-l,-1,-l). These relations satisfy the

Jacobi identity, namely, the system of equations

W8 @yl e, 00 =0, ®,2,P),
(1.5) [PH.’ [vaMp(,]]*[pvp [Mpd’Pu]]+[Mp0’ [PM’P\)]]- o, »,P,M),
(6) (B, DM M J1+I M PN [P M 1) = 0, (@M,
(1' 7) ) @ (KHD) (A\)O) [MK}\’ [MuV’Mp(J]] = 0, (M:MsM) ’

*Department of mathematics, Science University of Tokyo, Wakamiya-cho
26, Shinjuku-ku Tokyo, 162.  **Department of Physics, Hosei University
Aihara 4342, Machida-shi Tokyo, 194-02, t



33

whereGSﬁvp denotes the cyclic summation with respect to u,v ,p . The
Dirac gamma-matrices v* is connected with the metric (nuv) in the

anticommutation relations {Yu’Yv} = 2n Both spin angular

uv*

momentum Suv and orbital angular momentum zuv

-1 = j -
(1.8) suv__z_'cuv" qu 1(xu3v xvau)
satisfy the equation (1.3), where qu=i[Yu’Yv]/2 and (x“) denotes a

coordinate system of the Minkowski space-time.

A matrix representation (1.9) of a Poincaré algebra 1?(Pu,Muv)

can be given by the fundamental generators Pu s Mﬁv defined by

1.9 p H M = s,
ORI P

in the full matrix algebra M4(C), where stv are determined by the Weyl

representation of the y-matrices

and oy (j=1,2,3) denote the Pauli matrices and g = 12‘.

A partial derivative representation (1.10) of a Poincaré algebra

? (Pu, Muv) can be given by the fundamental genetators Pu; Muv defined

by

(1.10) Py = iBu ) M~ ﬂﬁv.
in a derivation algebra.
Consequently, we have an algebraic representation (1.9) and an analytic

representation (1.10) of a Poincare algebra.



- 2. Super-Poincaré Algebra. A super-Poincaré algebra ’?s (Pu ’Mu\)’Qa)

is a graded Lie algebra with a set (%J’Muv’ch of ten bosonic ( even )
generators Pu, Muv and four fermionic ( odd ) generators Q (¢1,2,3,4)
o

satisfying the relations (1.1)~(1.3) and

(2.1) [Pll’ Qq] =0,

2.2) My Q= =50,),%
(2.3)  1Q,, Q) —%—(y“C)uBPu .

These relations satisfy the super-Jacobi identity, namely, the system of

equations (1.4)v(1.7) and

(2.4)  [B,,[R,,Q,11+[P,,[Q,,P 11+IQ,, [P ,P 1] = 0, (P,P,Q),
(2.5) [P, 1Q,.M,,11+[Q,, M, P 11+ [M,, [P, Q) 1= 0, (P,M,Q),
(2.6)  [Qys My, Moo T T+ M, M0, Qu 10+ M, [Qy M 1] = 05 (M,M,Q),
(2.7)  [,,(Q,,Q11+(Q,, [Qg,P, 1} -(Qg, [P,Q 1} = 0, .09,
(2.8) M, 1Q,,Q)1+1Q, [Qg,M, 13-1Qg, M ,,Q,1} = 0, M,Q,Q),
(2.9)  ©g Q10,01 = 0, Q.

A matrix representation (2.10) of a super-Poincaré algebra Tﬂ_(Pu,

Muv’Qa) can be given by Pu, Muv’ Qa defined by
3
( 0 ( 0\
0O o
u 0 Sy O
Pu- 0 08 , Ml-.l\’= 8 ,
00000, 00000
3
r 0 ( 11
..1 0
0
(2.10) . Qlé g , QZ - 0 8 ’
L 00000 J 00000
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in the full matrix algebra MS(C). Here we use the charge conjugation
C of the form C= iyg Y% . We note that only units *1, i of the
Gauss' complex integer ring Z[C] and their halves have chosen as
non-zero components of these matrices (cf.1)n5)).

A 4-component spinor partial derivative representation (2.11) of a

super-Poincaré algebra @g(Pp,Mpv,Qu) can be given by Pu, th, Qu defined
by
. _ ) AP TP
P =ip =2+ (") 8" .
(2.11) L oo T Pa B

=%

. _ " B,0 9
+ = ——
th ”~ §uv , where Euv (suv)a 0

598

with Grassmann variables 6% in a derivation-antiderivation algebra of

2, and 3/306%.

3. Covariant Derivation Algebra ”53% on a Curved Space-time.

We solve a problem: Can one find a covariant derivative representation,
(Pu(sivu), M's, Q's ), of a graded Lie algebra on a curved space-time
from (Pu(siau), Muv, Qa) of (2.11) on the flat space-time ? For this

purpose we assume that +y"(x) satisfies
(3.1) Y, &+ v Ky, &) =2 g ),
and a covariant derivation Vp satisfies

(3.2) 71,09 = 0,

on a curved space-time with a metric gpv(x).6)
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By a straightfoward calculation we see that the following generators are
solutions of the super-Jacobi identity, the system of equations (1.4)v(1.7)
and (2.4)~(2.9):

s _ 9 i, u B
P =iV, QG = o * T O

U
(3.3)

M(E) , = 2(8) \* 5, (), where 2(g)  =(g v, -£¥)

for an arbitrary vector field g". The commutation and anticommutation

relations of these generators are written as
(3'4) [Pu st]= "[Vu ’V\)]’

(3.5 ME),, ,P01=Auvgcppav)Pu+ EJP P},
(3.6) [M(&)

ok fip) vo) PuBed VP B8 Py Pl b

VAV wv’ po Hv’ oo

LGSILIENREIRES. N
(.7 2,01 3P0 00 P T,
‘ ]J’ , Z" [ aB }1, P ’
. - B9 1 A B 1.2
(5.8) ME), Q)" -0 ) g * T, g0 Pyt T 0o M@ Py

(3.9) Q,Qg) = 70", gP + T50M0), (170 58¥6% P P 1,

where ‘)Luv denotes the alternating summation with respect to y and v ,

and

[ 1= (s ,s 1) Pe®—2_.

Suv23pod = Uy 0355dy 508

Consequently, we have obtained a 4-component spinor covariant derivative

- representation (3.3) of a graded Lie algebra. We note that this covariant

derivation algebra, say‘QuaSi-Super-PoinCaré algebra 1%5 (Pp(sivu),M(g)pv,

Q1)’ on the curved space-time is of infinite dimension because [Pu,Rv]%O,
and that the cyclic sum @5uvp[vu,[vv;vp]]=0 is nothing but the Bianchi -

identity of the co i vo.
y the connection V}1
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