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Abstaract The relationship between the diffusion equation and the

Lefkovitch matrix model $\ddagger s$ examined. It $\ddagger s$ shown that the dynamics with the one-
step Lefkovitch matrix model corresponds to a difference equation of the diffusion

equation and that the dynamics with the two-step and three-step Lefkovitch

matrix model correspond to the difference equation of the 4-th order and 6-th

order Kramers-Moyal expansion equation, respectively. The type of a Lefkovitch

matrix is determined by the distribution function of growth rate and the ratio of

the interval of size-classes to that of successive censuses.

Introduction In these ten years, the diffusion equation model has

been employed in plant population ecology $\ddagger n$ order to analyze the dynamics of

growth and size structure in annual plants and trees ($e$ . $g$ . $Haral984a,$ $b$ , 1985,

$1986b$ ; Petersen 1988; Kohyama 1987, 1989; Kohyama and Hara 1989; West et al. 1989;

Petersen et al. 1990; Hara et al. 1991). The models is continuous in time and size,

and can describe the dynamics of size distribution mathematically based on
individual growth, mortality, recruitment as continuous functions of time and size.
The diffusion equation model (Hara $1984a,b$ , 1988) contains three parameter

functions, mean of growth rates of individuals of size $x$ at time $t$ , variance in

growth rate of individuals of size $x$ at time $t$ and mortality rate of individuals of size
$x$ at time $t$ , together with a left boundary condition as a recruitment rate.
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On the other hand, many authors (Sarukh\’an and Gadgil (1974), Hartshorn

(1975), Bierzychudek (1982), Meagher (1982), Burns and Ogden (1985), Kinoshita

(1987), Kawano et al. (1987)) have employed the Lefkovitch matrix model as a
useful tool for demographic analysis. This model is discrete in time and size, and

can describe mathematically the dynamics of discrete size-class structure of a
population with reproduction. Therefore, most of the authors examined the

yearly demography of perennial plant populations using the Lefkovitch matrix

model. The Lefkovitch matrix model contains $s^{2}$ parameters ( $s$ is the number of

size-classes), each of which represents the transition probability from one size-

class to another at the next time-step,

Although both models describe the dynamics of size structure of populations

and thus there seems to be some relationships between them, there has been no
theoretical studies on the relationship. In the present paper, we first examine the

relationship between the diffusion equation and the Lefkovitch matrix model

without both mortality and $reproduction$ .

The relationship between the Lefkovitch matrix and the diffusion

$equ$ a $tion$

Let $n_{\ddagger t}n_{t}=$ $(n_{lt}, n2t, \ldots. , n_{st})^{T}$ be the population density of size-class $i$ at

time $t$ and the size-class vector at time $t$ , respectively, where $s$ is the number of

size-classes. The sizes of individuals in the size-class $i$ ranges between $(i- 1/2)h$

and $(i+1/2)h$ , where $h$ is the interval of size-classes. Let A be the Lefkovitch
matrix, each of whose elements, $aij$ , represents the transition probability from the
size-class $j$ to $i$ per unit time and depends on the interval $h$ , i.e. $aij\equiv aij^{(h)}$ .
According to the knowledge on Lefkovitch matrix model (Lefkovitch1965), the
dynamics of population with size-structure can be written as:

(1) $n_{t+\Delta t}=A\Delta tn_{t}$ ,

$i.e$ .
(2) $n_{i,t+\Delta t}=\sum_{j=1}^{s}a_{ij}\Delta tn_{j,t}$ $(i=1,\ldots.,s)$ .

For simplicity, assuming that the population has no mortality and no
recrui tment,

(3) $\sum_{k=1}^{s}a_{ki}\Delta t=1(i=1,\ldots.,s)$



45

since individuals of size-class $i$ at time $t$ move to another size-classes at time $t+\Delta t$

without loss. From Eq. (3), equation (2) can be rewritten as:

(4) $\frac{n_{i,t+\Delta t}-n_{i,\iota}}{\Delta t}=\sum_{j\neq i}^{s}a_{ij}n_{j,t}-(\sum_{k\neq i}^{s}a_{ki})n_{i,t}$
$(i=1,\ldots.,s)$ .

The k-th order moment of growth rate of individuals belonging to the i-th

size-class during the time $\Delta t$ is

(5) $\frac{1}{\Delta t}\Sigma(a_{i+j,i^{\Delta t)}}(|h)^{k}\cong M_{k,i}$

$j$

We here define the one-step Lefkovitch matrix, which describes the only

one-step transition from the starting size-class; i.e.

$aij=0$ for 1 i-j $1>1$

(6)

$a_{ij}>0$ otherwise,

$A_{1}$ $=[$ $0$ $a_{i1,....\cdot\cdot’ i1}^{i}a_{a_{i^{2}’}}0_{i}0^{i- 1^{1}}$

$a_{i+,.\cdot 1}^{i-.1,i_{i}}a_{a_{0}^{\dot{0_{ii}}}}$

,

$a_{i+1,i+1}a_{i+2,i+1}^{a_{i}}\dot{0^{:}}_{i+1}0$
$0^{:}.\cdot$

.

$]$

.

When the Lefkovitch matrix is the one-step matrix, the right-hand side of Eq. (4)

can be written as:

(7) ai,i-l $i- 1,t+ai,i+1^{n}i+1,t-(ai- 1,i+ai+1,i)$ ni,t .

The mean growth rate of individuals belonging to the i-th size-class during

the time $\Delta t$ is

(8-1) $h$( a:$+1,i- ai- 1,i$) $\equiv M_{1,i}$ .

Similarly, the second moment of growth rate during the time A $t$ is

(8-2) $h^{2}(ai+1,i+ai- 1,i)\equiv M_{2,i}$
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and so on.
Since the variables $n_{k,t}$ are independent of the elements of the matrix, we

assume that the coefficients of $n_{k,t}(k=1,\ldots,s)$ in Eq. (7) are the linear combination

of the moments of growth of individuals with size-class $k(M_{1,k}$ and $M_{2,k)}$ , \ddagger . $e$ .

(9-1) ai,i-l $=xl,i- 1^{M}$ l,i-l $+x2,i- 1M_{2,i- 1}$

(9-2) -ai-l,i $- ai+1,i=x1,i^{M}1,i+x2,iM_{2,i}$

(9-3) $ai,i+1=x1,i+1^{M}1,i+1+x2,i+1M2,i+1$ ,

where $x_{ij}$ represents the coefficient of $M_{ij}$ . To satisfy Eq.(9) for arbitrary $aij$ .

(10) $\{\begin{array}{l}x_{1,i-1^{X}2,i-1}x_{1.i}x_{2,i}x_{1,i+1^{X}2,i+l}\end{array}\}\{\begin{array}{ll}- h h(-h)^{2} h^{2}\end{array}\}=\{\begin{array}{l}10-1-101\end{array}\}$

$or$

(11)
$\{\begin{array}{l}x_{1,i-1^{X}2.i-1}x_{1,i}x_{2,i}x_{1,i+1^{X}2,i+1}\end{array}\}=\{\begin{array}{ll}\frac{1}{2h} \frac{1}{2h^{2}}0 -\frac{1}{h^{2}}-\frac{1}{2h} \frac{1}{2h^{2}}\end{array}\}$

.

Thus, by substituting Eq.(ll) into Eq.(9), Eq.(4) can be rewritten as:

(12) $\frac{n_{i,t+\Delta t}-n_{i.\iota}}{\Delta t}=-\frac{M_{1,i+1}n_{i+1,t}-M_{1,i- 1}n_{i- 1,t}}{2h}$

$+ \frac{1}{2}\frac{M_{2,i+1}n_{i+1.t}-2M_{2,i}n_{i,t}+M_{2,i- 1}n_{i- 1,t}}{h^{2}}$ $(i=1,\ldots.,s)$ .

Eq. (12) is a discrete form of the diffusion equation, I. $e$ .

(13) $\frac{\partial n(x,t)}{\partial t}=-\frac{\partial(M_{1}(x)n(x,t))}{\partial x}+\frac{1}{2}\frac{\partial^{2}(M_{2}(x)n(x,t))}{\partial x^{2}}$

Letting $\Delta t$ and $harrow 0$, Eq. (12) becomes Eq. (13). This result corresponds to the
derivation of diffusion equation by Goel and Richter-Dyn (1974).
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The relationship between the Lefkovitch matrix model and the

Kramers-Moyal expansion.

We secondly define the two-step Lefkovitch matrix, which describes the

one- and two-step transitions from the starting size-class, $i$ . $e$ .

$aij=0$ for 1 i-j $1>2$

(14)

$- aij>0$ otherwise,

Thus the right-hand side of Eq. (4) can be written as:

(15) $a:,i- 2^{n}i- 2,t+ai,i- 1^{n}i- 1,t+ai,i+1^{n}i+1,t+ai,i+2ni+2^{-}t$

- ($a_{i- 2,i}+$ ai-l,i $+ai+1,i+ai+2,i$) ni,t .

The first to 4-th moment of growth rate of individuals belonging to the i-th

size-class during the time $\Delta t$ is as: .

(16-1) $h$( $2ai+2,i+ai+1,i$ -ai-l,i $-2ai- 2,i$ ) $\equiv M1,i$

(16-2) $h^{2}$ ( $4ai+2,i+a_{i+1,i}+$ ai-l,i $+4ai- 2,i$) $\equiv M_{2,i}$

(16-3) $h^{3}(8ai+2,i+a_{i+1,i}$ -ai-l,i $-8a_{i- 2,i)}\equiv M_{3,i}$

(16-4) $h^{4}$ ( $16ai+2_{;}i+aI+1,i+$ aI-l,i $+16al- 2,i$ ) $\equiv M4,i$ .

We assume that the coefficients of $nk,t(k=1,\ldots,s)$ in Eq. (15) are the linear

combination of the moments of growth of individuals with size-class $k(M_{1,k},$ $M_{2,k}$ ,

$M_{3,k}$ and $M_{4,k)}$ similarly as in the previous section. The coefficients $xij$ can be

solved as
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Thus, using Eq.(17), Eq.(4) can be rewritten as:

(18) $\frac{n_{i,t+\Delta t}-n_{i,t}}{\Delta t}=-\{\frac{4}{3}\frac{M_{1,i+1}n_{i+1,t}-M_{1,i- 1}n_{i- 1,t}}{2h}-\frac{1}{3}\frac{M_{1,i+2}n_{i+2,t}-M_{1,i- 2}n_{i- 2,t}}{4h}1$

$+ \frac{1}{2!}\{\frac{4}{3}\frac{M_{2,i+1}n_{i+1,t}-2M_{2,i}n_{i,t}+M_{2,i- 1}n_{i- 1,t}}{h^{2}}-\frac{1}{3}\frac{M_{2,i+2}n_{i+2,t}-2M_{2,i}n_{i,t}+M_{2,i- 2}n_{i- 2,t}}{(2h)^{2}}I$

$- \frac{1}{3!}\{_{\frac{\frac 2_{1}1}{}}\frac{M_{3,i+2}n_{i+2,t}-3M_{3,i+1}n_{i+1,t}+3,M_{3i}n_{it}-M_{3,i- 1}n_{i- 1,t}}{21\frac{M_{3,i+1}n_{i+1,t}-3M_{3i}n_{it}+^{3}3M_{3i- l}n_{i- 1,t}-M_{3.i- 2}n_{i- 2,t}h}{h^{3}}}\}$

$+.4^{1} \dashv!\frac{M_{4,i+2}n_{i+2,t}-4M_{4,i+1}n_{i+1,t}+6M_{4,i}n_{i,t}-4M_{4,i- 1}n_{i- 1,t}+M_{4,i- 2}n_{i- 2,t}}{h^{4}}\}$

.

Eq. (18) is a discrete form of 4-th order Kramers-Moyal expansion of the diffusion

equation (Kramers 1940, Moyal 1949, Gardiner 1990), $i$ . $e$ .

(19) $\frac{\partial n(x,t)}{\partial t}=-\frac{\partial(M_{1}(x)n(x,t))}{\partial x}+\frac{1}{2!}\frac{\partial^{2}(M_{2}(x)n(x,t))}{\partial x^{2}}-\frac{1}{3!}\frac{\partial^{3}(M_{3}(x)n(x,t))}{\partial x^{3}}+\frac{1}{4!}\frac{\partial^{4}(M_{4}(x)n(x,t))}{\partial x^{4}}$

Letting $\Delta t$ and $harrow 0$ , Eq. (18) becomes Eq. (19). Thus the dynamics of the two-step

Lefkovitch matrix model can be rewritten to the discrete form 4-th order Kramers-

Moyal expansion in terms of the linear combination of the 1st to the 4-th moment.

Similarly, we can define the three-step Lefkovitch matrix, obtain the
coefficient matrix of linear combination, X $=\{x_{ij} \}$ , and then derive a discrete

form of the 6-th order Kramers-Moyal expansion (See Appendix). Thus, generally
speaking, the dynamics of the n-step Lefkovitch matrix model is expected to

correspond to the discrete form of $2n$-th order expansion.
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$Discussion$

(I) The Lefkovitch matrix obtained from field data and the diffusion equation

model.

To obtain a Lefkovitch matrix from field data, we first determine the

intervals between successive censuses $(\Delta t)$ and size classes (h) (Caswell 1989).

Therefore, values of the elements of the Lefkovitch matrix depend on both

intervals. Moreover, the type of the Lefkovitch matrix (one-step or multi-step)

depends on both the ratio of $h$ to $\Delta t$ and the distribution function of growth rate of

plants ($g(v)$ , where $v$ represents growth rate). For example (Fig. l-a), if we choose

a larger $\frac{h}{\Delta t}$ than the maximum of the absolute value of growth rate, the Lefkovitch

matrix becomes a one-step type. Therefore, even if $\Delta t$ Is large, it also becomes a
one-step type for sufficiently large $h$ since tbe size increment during $\Delta t$ does not

exceed $h$ . According to our analysis, the dynamics of the one-step matrix model
can be perfectly described by the first $(M_{1}(x))$ and the second moments $(M2(x))$ of

growth rate, and corresponds to a discrete form of the diffusion equation. Even if

the third moment of growth rate (M3 $(x)$) is non-zero, it does not affect the

dynamics of the Lefkovitch matrix model.

If $\frac{h}{\Delta t}$ is relatively small compared to the maximum of the absolute value of

growth rate (Fig. l-b, c), the Lefkovitch matrix becomes a multi-step type.

Therefore, the ratio of $\max$ lvl to $\frac{h}{\Delta t}$ determines the number of steps of the

Lefkovitch matrix. Then the matrix model includes the higher-order moments
(M3 (x), M4(x), ... ) and is a discrete form of the higher-order Kramers-Moyal

expansion. Therefore, the indeterminacy in plant growth is likely to lead to a
multi-step matrix. However, the indeterminacy does not always lead to a $multi- step\backslash$

one. If $\frac{h}{\Delta t}$ is relatively large, the Lefkovitch matrix is a one-step matrix (Fig. l-a).

In most of growth analyses of annual plants, $\Delta t$ is small because

measurements of plants’ size are usually conducted several times during a growing
season, and $h$ is alse relatively small compared to the fast growth of annual plants.

Therefore, $\frac{h}{\Delta t}$ is not so small and their Lefkovitch matrix is usually a one- or two-

step type. In woody plants, censuses are usually conducted every several years,
and hence $\Delta t$ is comparatively large. However, their sizes are also large and are
usually divided into several size classes with wide intervals. Therefore, their

Lefkovitch matrix is likely to be a one- or two-step types (Hartshorn 1975;

Harcombe 1986, 1987; Nakashizuka 1991). That is the reason why the diffusion

equation model has often been employed for the analysis of growth in annual
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plants and trees, and why the model has fitted field data of them well $(e$ . $g$ .
$Haral984a,$ $b$ , 1985, $1986b$ ; Petersen 1988; Kohyama 1987, 1989; Kohyama and Hara

1989; West et al. 1989; Petersen et al. 1990; Hara et al. 1991).

On the contrary, perennial herbs differ from these two types of plants.

While the interval between censuses is usually one year in perennial herbs, the

change in their size is unexpectedly large, compared to their small size (Kawano et

al. 1987), because in many cases the above-ground organs wither every winter

and new above-ground organs emerge every spring. For example, a drastic

decrease in size may be found next year after they have produced many seeds

(’storage/reproduction trade-off’). Therefore, their Lefkovitch matrix is often a
multi-step type and the higher-order moments of growth rate are needed to

describe the growth and size-structure dynamics of perennial herbs when we
employ the diffusion equation model.

(II) Mortality rate, recruitment rate and time-dependent moments of growth rate

For simplicity, we have dealt with the populations without mortality and

assumed that the elements of the Lefkovitch matrix are constant irrespective of

time. However, the mortality rate at each size-class is usually not zero and

changes temporally, and elements of the Lefkovitch matrix also change during a
growing season or year by year. Even if the mortality rate at each size-class is not

equal to zero and the matrix elements depend on time $t$ , the same conclusion can be

obtained as before. Assuming the mortality rate per unit time at size-class $i$ at time
$t$ and the time-dependent matrix elements, $D_{i,t}$ and $a_{ij,t}$ , respectively, we obtain

(20) $D_{i,t}\Delta t=1-\sum_{k=1}^{s}a_{ki,t}\Delta t$ $(i=1,\ldots., s)$

instead of Eq. (3). Thus, Eq. (4) can be rewritten as

(21) $\frac{n_{i,t+\Delta t}-n_{i,t}}{\Delta t}=\sum_{j\neq i}^{s}a_{ij,t}n_{j,t}-$ ($\sum_{k\neq i}^{s}$ aki,t )$n_{i,t}-D_{i,t}n_{i,t}$ $(i=1,\ldots.,s)$ .

If we assume that the first two terms of the right-hand side of Eq. (21) can be
given as the linear combination of the moments of growth rate, we can obtain the
same result. Therefore, Eq. (21) can be rewritten to a discrete form of
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(22) $\frac{\partial f(t,x)}{\partial t}=\sum_{k}\frac{(- 1)^{k}}{k!}\frac{\partial^{k}(M_{k}(t,x)f(t,x))}{\partial x^{k}}$ -D(t,x).

with the time-dependent mortality rate $(D(t,x))$ and the time-dependent moments

of growth rate $(M_{k}(t,x);k=1,2$ , ....).
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\Delta U1瓜 $ix$

We define the three-step Lefkovitch matrix as

$aij=0$ for 1 i-j $1>3$

(A1)

$a_{ij}>0$ otherwise.

Similarly as in Appendix A and $B$ , the coefficients of linear combination of the
first to 6th moments ( $x_{ij)}$ satisfy the following equation:

$or$

Thus, using Eq.(A3), Eq.(4) can be rewritten as:

(A4) $\frac{n_{i,t+\Delta t}-n_{i,t}}{\Delta t}=-\mathfrak{l}^{2}2\frac{M_{1,i+1}n_{i+1,t}-M_{1,i- 1}n_{i- 1,t}}{2h}-\frac{3}{5}\frac{M_{i.i+2}n_{i+2,t}-M_{1.i- 2}n_{i- 2.t}}{4h}+\frac{1}{10}\frac{M_{1,i+3}n_{i+3.t}-M_{1,i- 3}n_{i- 3,t}}{6h}\}$

$+ \frac{1}{2!}\{\frac{3}{2}\frac{M_{2.i+1}n_{i+Lt}-2M_{2,i}n_{i,t}+M_{li- 1}n_{i- 1,t}}{h^{2}}-\frac{3}{5}\frac{M_{2,i+Xti+2,\downarrow-2M_{2,i}n_{i,t}+M_{2,i- \mathfrak{R}i- lt}}}{(2h)^{2}}+\frac{1}{10}\frac{M_{2,i+Pi+3,t}-2M_{2.i}n_{i.t}+M_{2,i- Xti- 3,t}}{(3h)^{2}}\}$
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$- \frac{1}{3!}\{\begin{array}{l}\frac{M_{li+X\iota_{i+2,t}-3M_{3,i+1}ni+1\iota+3M_{\lambda i}n_{i},rM_{3,i-\iotan_{i- L\iota}}}}{h^{3}}+\frac{M_{3,i+\iota ni+L\downarrow-3M_{3,i}n_{i,t}+3M_{3,i}-\iota ni- L\downarrow-M_{3,i- X1_{i- 2,t}}}}{h^{3}}-\frac{M_{3,i+Pi+3,\iota-3M_{3,i+\iota n_{i+\iota t}}+3M_{3i- 1}ni- 1M_{3,i- Xli-3t}}}{(2h)^{3}}\end{array}\}$

Eq. (A4) is a discrete form of 6-th order Kramers-Moyal expansion of the diffusion

equation, $i$ . $e$ .

(A5) $\frac{\partial n(x,t)}{\partial t}=\sum_{k=1}^{6}\frac{(- 1)^{k}\partial^{k}(M_{k}(x)n(x,t))}{k!\partial x^{k}}$ .

Thus the dynamics of the three-step Lefkovitch matrix model can be rewritten to

the discrete form 6-th order Kramers-Moyal expansion in terms of the linear

combination of the 1st to the 6-th moment.
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Fig. 1

Fig. 1 The relationship between the Lefkovitch matrix and the

intervals of time $(\Delta t)$ and size (h). $v,$ $g(v)$ and $n$ represent the growth

rate, the distribution function of $v$ and the number of steps during $\Delta t$ ,

respectively. (a) for one-step Lefkovitch matrix; (b) for two-step matrix;

(c) for three-step matrix See text for detailed discussion.


