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ABSTRACT

Sufficient conditions for a Lotka-Volterra competitive delay system to be

permanent and its positive equilibrium point to be a global attractor are

given.
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1 INTRODUCTION

Stability of the Lotka-Volterra delay systems has been studied by a lot of

authors. And most of the papers consider the situation at which unde-
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layed intraspecific competitions present[1-3,6,8-10,12]. In these cases, either
a Liapunov-Razumikhin functional is used[7,8,10,12] or comparison theorems
can be applied[2,9] to obtain global attractivity of a positive equilibrium
point. Essentially, the point is a global attractor if t‘he‘ undelayed intraspe-
cific competition dominates over the delayed intra- (and inter-) specific com-
petition.

If the system has no undelayed intraspecific competitions, in general case,
the global attractivity of a positive equilibrium or even the weaker concept
of stability—permanence or uniform persiétence of the system (defined in
Section 2) is not easy to investigate. For a discrete delay logistic equation
modeling a single species growth, Wright[15] proved global attractivity of
a positive equilibrium. Recently, by adopting a similar proof method to
Wri‘ght[15], Kuang[6] gave some sufficient conditions for a positive equilib-
rium point of a nonautonomous delay equation to be a global attractor. And
in[4], Gopalsamy proposed a method for constucting sign—deﬁnite functionals
to obtain sufficient conditions for the trivial solution of a non-autonomous
vector-matrix delay system to be asymptotically stable and applied the re-
sult to derive sufficient cohditions for the global attractivity of the positive
equilibrium point of a Lotka-Volterra delayed competition system.

In another aspect, permanence or uniform persistence which is a more im-
portant concept from the viewpoint of mathematical ecology concerning the

survival of population and easier to allow a detailed analysis, has also been



investgated[5,13,14] for Lotka-Volterra delay systems. By using continuous
functional method, Wang and Ma[14] proved thé,t a two-species prey-predator
system with a finite number of discrete delay is permanent provided the unde-
layed system has a globally stable positive equilibrium point.. By developing
persistence theory for infinite-dimesional systems, Hale and Waltman[5,13]
obtained a uniform peisistence result for a two—spécies competition delayed
system. |
In this paper, by considering a similar continuous functional to one used in
[14] and by adopting a modified approach of Wright[15], we extend Hale and
Waltman’s result[5,13] in the following sense: their conditions for permanence
of a two-species competition delayed system are a,ctua;lly sufficient for its
positive equlibrium point to be a global attractor. We also give a sufficent
condition for pefmanence of the system which is weaker than one obtained
in [5,13]. Our global attractivity condition (which is identical with Hale and
Waltman’s permanence condition) is also much weaker than Gopalsamys’[4]
and is optimal in the sense that if there is no delay in the system, our
condition is sufficient and necessary for the system to have a globally stable

equlibrium point.
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2 MAIN RESULTS

In this paper, we consider permanence and global attractivity of a positive
equilibrium for the following two-species Lotka-Volterra competition delayed

system

#1(t) = riz1(E)[1 — z1(t — 1) — pz2(t — 2)),

22(t) = r222(t)[1 — 22(t — T22) — p2z1(t — Ta1)), (1)
with initial conditions
:L‘,‘(t) = ¢i(t) > O)t € [—TO) O])¢c(0) > 0,2 = 1) 2: (2)

where z; represents the density of species %, and r; > 0 the reproduction rate,
ti > 0 the competition coefficient, 7;; > 0 (4, = 1, 2) the constant time lag,
and 7o = max{7;}. ¢:i(t) is continuous on [—7p, 0].

It is known that system (1) satisfying 7;; = 0 for ¢, j = 1,2 (i.e. undelayed
system) has a globally stable positive equilibrium point z* if and only if the
following condition (C) holds.

CONDITION (C). pg <1 and py < 1.

Definition. System (1) is permanent (uniform persistent) if there is a
compact region K in the interior of R = {z|z; > 0;i = 1,2} such that
all solutions z(t) = (z1(t), 22(t)) of system (1) with initial conditions (2)

ultimately enter K.



Our first main result is as follows.
THEOREM 1. If condition (C) holds, then system (1) is permanent.

REMARK 1. In[5], it is proved for system (1) with 7; = 1,7;; = 0(4,j =
1,2, # j) that if (C) holds and both r; and r; are sufficiently small, then
the system is permanent. From Theorem 1, we know that the smallness for

r1 and 7, is not necessary to ensure permanence of (1).

REMARK 2. Although condition (C) implies permanence of system (1),
in general, it cannot ensure global attractivity of the positive equilibrium

point of the system, if 77, + 73, # 0[11].
By denoting 7 = max{m1, 72}, 7 = max{ry, 2} and n = rr, we have

THEOREM 2. If condition (C) holds, then for sufficiently small n = rr,

the positive equilibrium point z* of (1) is a global attractor. |

REMARK 3. Under the same conditions of Theorem 2, Hale and Walt-
man[5] proved permanence of system (1). Clearly, our result is much stronger
than theirs.

REMARK 4. If 71; = 732 = 0 and condition (C) holds, then z* is always
a global attractor for any 715 and 721. This was proved by Gopalsamy[2] and
extended to more than two species cases by Martin and Smith[9]. In fact,

they considered systems with distributed delays.
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REMARK 5. By using a Liapunov functional method, Gopalsamy[4]
obtained some sufficient conditions for z* to be a global attractor of the
system. But in [4], (i) all the 7;; (¢ = 1,2) must be small; (ii) if ,; = 0
(1,7 = 1,2), then the sufficient conditions of Theorem 2 given in [4] is much
stronger than our condition (C). And condition (C) is optimal in the sense
that if it does not hold and 7;; = 0 for « = 1,2, z* will not be a global

attractor[9].

3 DISCUSSION

In this paper, we have shown that a two-species Lotka-Volterra competition
delayed system is always permanent under any delay effect, if the corre-
sponding undelayed one has a globally stable positive equlibrium (which is
equivalent to i)ermanence), ie., if the system satisfies condition (C). This
means that delays cannot destroy permanence, although the global attrac-
tivity of the system may be lost for large 7,7 = 1,2[11]. In this case, the
delays are called harmless ones[1,3].

We have also discussed global attractivity of the positive equilibrium and
given a sufficient condition to guarantee it. Our condition is much weaker
than that in [4] and is optimal in the sense that if our condition does not
hold and 7;; = 0,7 = 1,2, then 2* will not be a global attractor[9].

In [11], a numerical example was given to show that if, for system (1),



n is less than 1.8, then z* is locally stable. In the proof of Theorem 2, we
can obtain an upper estimate for 7 ensuring for z* to be a global attractor.
But Theorem 2 of [4] cannot be applied to this example, since in condition
(iv) of the theorem, the quadratic form Q(y1,y2) = y7 + 4y192 + %3 is not
non-negative on the set {(y1,%2) € R x R|1+ 41 > 0,1+ y; > 0}.

For general n-dimensional Lotka-Volterra undelayed cooperative systems
and a two-dimensional undelayed prey-predator system, we know sufficient
and necessary conditions to have a globally stable positive equilibriﬁm point.
We remain, as future problems, the questions whether these conditions (or
somewhat stronger ones) can ensure permanence and global attractivity re-
sults for the former systems with delay, and global attractivity for the latter

system with delay.
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