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ABSTRACT

Sufftcient conditions for a Lotka-Volterra competitive delay system to be

permanent and its positive equilibrium point to be a global attractor are

given.
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1 INTRODUCTION

Stability of the Lotka-Volterra delay systems has been studied by a lot of

authors. And most of the papers consider the situation at which unde-
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layed intraspecffic competitions $present[1- 3,6,8- 10,12]$. In these cases, either

a Liapunov-Razumikhin functional is used[7,8,10,12] or comparison theorems

can be applied$[2,9]$ to obtain global attractivity of a positive equilibrium

point. Essentially, the point is a global attractor if the undelayed intraspe-

cffic competition dominates over the delayed intra-(and inter-) specific com-

petition.

If the system has no undelayed intraspecific competitions, in general case,

the global attractivity of a positive equilibrium or even the weaker concept

of stability–permanence or uniform persistence of the system (defined in

Section 2) is not easy to investigate. For a discrete delay logistic equation

modeling a single species growth, Wright[15] proved global attractivity of

a positive equilibrium. Recently, by adopting a similar proof method to

Wright[15], Kuang[6] gave some sufficient conditions for a positive equilib-

rium point of a nonautonomous delay equation to be a global attractor. And

in[4], Gopalsamy proposed a method for constucting sign-definite functionals

to obtain sufficient conditions for the trivial solution of a non-autonomous

vector-matrix delay system to be asymptotically stable and applied the re-

sult to derive sufficient conditions for the global attractivity of the positive

equilibrium point of a Lotka-Volterra delayed competition system.

In another aspect, permanence or uniforn persistence which is a more im-

portant concept from the viewpoint of mathematical ecology concerning the

survival of population and easier to aJlow a detailed analysis, has also been
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investgated[5,13,14] for Lotka-Volterra delay systems. By using continuous

functional method, Wang and Ma[14] proved that a two-species prey-predator

system with a finite number of discrete delay is permanent provided the unde-

layed system has a globally stable positive equilibrium point. By developing

persistence theory for infinite-dimesional systems, Hale and Waltman$[5,13]$

obtained a uniform persistence result for a two-species competition delayed

system.

In this paper, by considering a similar continuous functional to one used in

[14] and by adopting a modified approach of Wright[15], we extend Hale and

Waltman’s result $[5,13]$ in the following sense: their conditions for permanence

of a two-species competition delayed system are actually sufficient for its

positive equlibrium point to be a global attractor. We also give a sufficent

condition for permanence of the system which is weaker than one obtained

in $[5,13]$ . Our global attractivity condition (which is identical with Hale and

Waltman’s permanence condition) is also much weaker than Gopalsamys’[4]

and is optimal in the sense that if there is no delay in the system, our

condition is sufficient and necessary for the system to have a globally stable

equlibrium point.
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2 MAIN RESULTS

In this paper, we consider permanence and global attractivity of a positive

equilibrium for the following two-species Lotka-Volterra competition delayed

system

あ 1 $(t)=r_{1}x_{1}(t)[1-x_{1}(t-\tau_{11})-\mu_{1}x_{2}(t-\tau_{12})]$ ,

$\dot{x}_{2}(t)=r_{2}x_{2}(t)[1-x_{2}(t-\tau_{22})-\mu_{2}x_{1}(t-\tau_{21})]$ , (1)

with initial conditions

$x_{i}(t)=\phi_{i}(t)\geq 0,t\in[-\tau_{0},0];\phi_{i}(0)>0,$ $i=1,2$, (2)

where $x_{i}$ represents the density of species $i$ , and $r;>0$ the reproduction rate,

$\mu_{i}>0$ the competition coefficient, $\tau_{*j}\geq 0(i,j=1,2)$ the constant time lag,

and $\tau_{0}=\max\{\tau_{1j}\}_{;}\phi_{i}(t)$ is continuous on $[-\tau_{0},0]$ .

It is known that system (1) satisfying $\tau_{1j}=0$ for $i,j=1,2$ (i.e. undelayed

system) has a globally stable positive equilibrium point $x^{*}$ if and only if the

following condition $(C)$ holds.

CONDITION (C). $\mu_{1}<1$ and $\mu_{2}<1$ .

Definition. System (1) is permanent (uniform persistent) if there is a

compact region $K$ in the interior of $R_{+}^{2}=\{x|x_{i}\geq 0;i=1,2\}$ such that

all solutions $x(t)=(x_{1}(t), x_{2}(t))$ of system (1) with initial conditions (2)

ultimately enter $K$ .
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Our first main result is as follows.

THEOREM 1. If condition $(C)$ holds, then system (1) is permanent.

REMARK 1. In[5], it is proved for system (1) with $\tau_{*i}=1,$ $\tau_{1j}=0(i,j=^{e}$

$1,2,$ $i\neq j$ ) that if $(C)$ holds and both $r_{1}$ and $r_{2}$ are sufficiently small, then

the system is permanent. From Theorem 1, we know that the smallness for

$r_{1}$ and $r_{2}$ is not necessary to ensure permanence of (1).

REMARK 2. Although condition $(C)$ implies permanence of system (1),

in general, it cannot ensure global attractivity of the positive equilibrium

point of the system, if $\tau_{1^{2}1}+\tau_{2^{2}2}\neq 0[11]$ .

By denoting $\tau=\max\{\tau_{11}, \tau_{22}\},$ $r= \max\{r_{1}, r_{2}\}$ and $\eta=r\tau$ , we have

THEOREM 2. If condition $(C)$ holds, then for sufficiently small $\eta=r\tau$ ,

the positive equilibrium point $x^{*}$ of (1) is a global attractor.

REMARK 3. Under the same conditions of Theorem 2, Hale and Walt-

man[5] proved permanence of system (1). Clearly, our result is much stronger

than theirs.

REMARK 4. If $\tau_{11}=\tau_{22}=0$ and condition (C) holds, then $x^{*}$ is always

a global attractor for any $\tau_{12}$ and $\tau_{21}$ . This was proved by Gopalsamy[2] and

extended to more than two species cases by Martin and Smith[9]. In fact,

they considered systems with distributed delays.
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REMARK 5. By using a Liapunov functional method, Gopalsamy[4]

obtained some sufficient conditions for $x^{*}$ to be a global attractor of the

system. But in [4], (i) all the $\tau_{ij}(i=1,2)$ must be small; (ii) if $\tau_{ij}=0$

$(i,j=1,2)$ , then the sufficient conditions of Theorem 2 given in [4] is much

stronger than our condition $(C)$ . And condition $(C)$ is optimal in the sense

that if it does not hold and $\tau_{ii}=0$ for $i=1,2,$ $x^{*}$ will not be a global

attractor[9].

3 DISCUSSION

In this paper, we have shown that a two-species Lotka-Volterra competition

delayed system is always permanent under any delay effect, if the corre-

sponding undelayed one has a globally stable positive equlibrium (which is

equivalent to permanence), i.e., if the system satisfies condition $(C)$ . This

means that delays cannot destroy permanence, although the global attrac-

tivity of the system may be lost for large $\tau_{1};,$ $i=1,2[11]$ . In this case, the

delays are caUed harmless $ones[1,3]$ .

We have also discussed global attractivity of the positive equilibrium and

given a sufficient condition to guarantee it. Our condition is much weaker

than that in [4] and is optimal in the sense that if our condition does not

hold and $\tau_{ii}=0,$ $i=1,2$, then $x$
“ will not be a global attractor[9].

In [11], a numerical example was given to show that if, for system (1),
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$\eta$ is less than 1.8, then $x^{*}$ is locally stable. In the proof of Theorem 2, we

can obtain an upper estimate for $\eta$ ensuring for $x^{*}$ to be a global attractor.

But Theorem 2 of [4] cannot be applied to this example, since in condition

(iv) of the theorem, the quadratic form $Q(y_{1}, y_{2})=y_{1}^{2}+4y_{1}y_{2}+y_{2}^{2}$ is not

non-negative on the set $\{(y_{1}, y_{2})\in RxR|1+y_{1}>0,1+y_{2}>0\}$ .

For general n-dimensional Lotka-Volterra undelayed cooperative systems

and a two-dimensional undelayed prey-predator system, we know sufficient

and necessary conditions to have a globally stable positive equilibrium point.

We remain, as future problems, the questions whether these conditions (or

somewhat stronger ones) can ensure permanence and global attractivity re-

sults for the former systems with delay, and global attractivity for the latter

system with delay.

REFERENCES

[l]Freedman H.I. &Rao V.S.H., Stability criteria for a system involving two
time delays, SIAM J. Appl. Math. $46,552- 560(1986)$ .
[2]Gopalsamy K., Time lags and global stability in two-species competition,
Bull. Math. Biol. $42,729- 737(1980)$ .
[3]Gopalsamy K., Harmless delays in model systems, Bull. Math. Biol.
$45,295- 309(1983)$ .
[4]Gopalsamy K., Stability criteria for the linear system $\dot{X}(t)+A(t)X(t-\tau)=$

$0$ and an application to a non-linear system, INT. J. Systems Sci.,21,1841-
1853(1990).
$[5]Hale$ J.K. &Waltman P., Persistence in infinite-dimensional systems, SIAM
J. Math. Anal. $20,388- 395(1989)$ .



140

$[6]Kuang$ Y., Global stability for a class of nonlinear nonautonomous delay
equations, Nonl. Anal. $17,627- 634(1991)$ .
$[7]Kuang$ Y., Smith H.L., &Martin R.H., Global stability for infinite-delay,
dispersive Lotka-Volterra system: weakly interacting populations in nearly
identical patches, J. Dynamics and Differential Equations, $3,339- 360(1991)$ .
$[8]Leung$ A., Conditions for global stability concerning a prey-predator model
with delay effects, SIAM J. Appl. Math. $36,281- 286(1979)$ .
$[9]Martin$ R.H. &Smith H.L., Reaction-diffusion systems with time delays:
monotonicity, invariance, comparison and convergence, J. reine angew. Math.
413, $1- 35(1991)$ .
[10]Serifert G., On a delay-differential equation for single species populations,
Nonl. Anal. $11,1051- 1059(1987)$ .
[ll]Shibata A. &Saito N., Time delays and chaos in two competing species,
Math. Biosci. $51,199- 211(1980)$ .
[12]Shukla V.P., Conditions for global stability of two-species population
models with discrete time delay, Bull. Math. Biol.$45,793- 805(1983)$ .
[13]Waltman P., A brief survey of persistence in dynamical systems, in De
lay Differential Equations and Dynamical Systems, S. Busenberg and M.
Martelli, eds., Springer-Verlag, Berlin, New York, 1991, 31-40.
[14]Wang W.D. &Ma Z.E., Harmless delays for uniform persistence, J. Math.
Anal. Appl. $158,256- 268(1991)$ .
[15]Wright E.M., A non-linear difference-differential equation, J. reine angew.
Math. $194,66- 87(1955)$ .


