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Some Mathematical Considerations
on Parent-Offspring Conflict Phenomenon
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子の独立時期についての親子間衝突に関する数理モデル解析

瀬野裕美・徳田博樹
広島大学理学部

A stochastic dynamic programming model for parent-
offspring confict is analyzed and discussed. It is discussed
how the confiict is resolved and how the ultilllate off-
spring’s independence age is determined between parent
and offspring. Results by the mathematical model in-
dicates such possibility that the observed behaviour of
parental care may ch ange depending on the parent’s age.
This is because the compromise conclusion of the parent-
offspring conflict depends on the parent’s age, that is
essentially, on the parent’s expected future reproductive
value. Moreover, it is shown that the observed parent-
offspring confbct possibly depends on the parent’s age,
too.

INTRODUCTION

In behavioural ecology, many researchers have
been interested in and have discussed the parent-
offspring conflict phenomenon: offspring wants to
become independent of parent and to feed by it-
self after an age $t_{o},$ $w1_{1}ile$ parent of its age $a$ wants
to stop feeding after an offspring’s age $t_{p}(a)$ . The
critical day $t_{p}(a)$ from the parent’s viewpoint is
assumed to depend on the parent’s age $a$ . When
$t_{o}$ and $t_{p}(a)$ do not coincide with each other, a
conflict takes place between parent and offspring.
There are possibly two different types of such con-
flict: $t_{o}^{l}<t_{p}(a);t_{o}>t_{p}^{l}(a)$ . Under the conflict in
the case when $t_{o}<t_{p}(a)$ , offspring wants to be-
come independent of parent, while parent wants
to feed offspring. On the other hand, in the case
when $t_{o}>t_{p}(a)$ , offspring wants to be fed, while

parent wants to stop feeding. Only when $t_{o}=$

$t_{p}(a)$ , any conflict doesn’t take place. However,
since $t_{o}$ does not depend on the parent’s age $a$ ,
whereas $t_{p}(a)$ does, the conflict between parent
and offspring is observable very much.
In this work, we analyze a stochastic dynamic pro-
gramming model which corresponds to the model
constructed by Clark and Ydenberg (1990). In
our model, differently from their model, parent is
assumed to have a finite reproducible age-span,
so that its future reproductive value is explicitly
variable depending on the parent’s age. A spe-
cific growth function and a specific terminal fitness
function are introduced. Analyzing the model, we
discuss the characteristics of the optimal critical
ages $t_{o}$ and $t_{p}(a)$ , and it is shown that possibly ex-
istent conflict is only the type that $t_{o}>t_{p}(a)$ , in-
dependently of the parent’s age and the other pa-
rameters characterizing the relation between par-
ent and offspring. Further, we discuss how the
conflict is resolved and how tbe ultimate indepen-
dence age is determined between parent and off-
spring.

MODEL

Parent’s and Offsprrng’s Ages

Let $a$ denote the parent’s age, for instance, in
year, where $a_{f}\leq a\leq a_{1}$ . $a_{f}$ and $a_{1}$ are respec-
tively the first and the last ages for the parent’s
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Fig. 1. Modelling the parent-offspring relauon.

reproduction. Hence, the reproducible age-span
for every parent is given by $a\iota-a_{f}+1$ . The off-
spring’s age in day during a breeding season is
denoted by $t$ , where $1\leq t\leq T$ . $T$ is the length in
day of breeding season (see Fig. 1).

Offsp7ring $s$ Growth

We use the following specific growth function
for offspring:

$Y(t+1)=\{Y(t)+Y(t)+k_{t=t,t_{S}+1^{s},..,T-1}fort^{1}=1_{s}2,\ldots,t-.1r\circ r^{k_{2}}(I)$

$Y(1)=Y_{1}$ , (2)

that is,

$Y(t)=\{\begin{array}{l}k_{1}(t-1)+Y_{1}k_{2}(t\frac{}{f}t_{S})+k_{s^{1}}(t_{\delta}-1)+Y_{1}r_{ort=1,2_{\prime}}ort=t+1_{\prime}t^{t_{s^{S}}}+2,\ldots,T\end{array}$ (3)

where $Y(t)$ is the offspring’s weight at the begin-
ning of day $t$ , and $Y_{1}$ is the offspring’s weight at its
birth. $t_{s}$ is the offspring’s age when parent stops

. feeding and offspring becomes independent. $k_{1}$ is
a positive constant which means the offspring’s
daily growth rate with the parent’s feeding, while
$k_{2}$ is a positive constant which means the inde-
pendent offspring’s daily growth rate (see Fig. 2).

Now, consider the offspring’s weight $Y(T;t_{s})$ at
the beginning of thelast day $T$ of the breeding sea-
son, under the condition that offspring becomes
independent at day $t_{s}$ . From (3), $Y(T;t_{s})$ is ex-
pressed as follows:

$Y(T, t_{\theta})=k_{2}(T-t_{S})+k_{1}(t_{S}-1)+Y_{1}$ . (4)

Offspring’s Fitness

We define the daily survival probability $\sigma_{n}$ for
offspring fed by parent, the daily survival proba-
bility $\sigma_{o}$ for offspring independent of parent, the
daily survival probability $\sigma_{f}$ for parent feeding off-
spring, and the daily survival probability $\sigma_{p}$ for
parent not feeding offspring (see Fig. 1). As
Ydenberg (1989) showed in general for alcids, it
is naturally assumed that $\sigma_{o}<\sigma_{n}$ and $\sigma_{f}<\sigma_{p}$ .
The following events significant to determine the
offspring’s fitness are assumed on each day: (i)
If parent survives and feeds offspring with prob-
ability $\sigma_{f}$ , offspring grows following to (3) with
its survival probability $\sigma_{n}$ ; (ii) $|If$ parent dies with

probability $1-\sigma_{f}$ , offspring becomes independent
to grow following to (3) with its survival probabil-
ity $\sigma_{o}$ ; (iii) If parent stops feeding offspring with
its survival probability $\sigma_{p}$ , offspring becomes inde-
pendent to grow following to (3) with its survival
probability $\sigma_{o}$ .

Consider such probability $\phi(1^{\prime’}(T;t_{\dot{\theta}}))$ that off-
spring $wit1_{1}$ weight $Y(T;t_{s})$ at the end of the
breeding season will survive after the breeding sea-
son and reach the reproducible age to reproduce
the next generation. The probability $\phi(Y(T;t_{s}))$

is called the terminal fitness function for offspring,
and given as follows:

$\phi(1’(T;t_{s}))=\{$ $\gamma(YT\cdot t)0oth’erwise^{y}!t_{S})>y_{C};(5)$

where $\gamma$ is a positive constant translating the ad-
vantage of weight gain $Y(T;t_{s})-y_{C}$ to the prob-
ability $\phi(Y(T;t_{S}))$ . $y_{C}$ is the offspring’s minimum
body weight at the end of the breeding season,
sufficient to survive after the breeding season and
reach its reproducible age to reproduce the next
generation (see Fig. 3).

Conventionally, we define the critical day $t_{c}$

such that $Y(T;t_{c})=y_{c}$ , which is given by

$t_{c} \equiv\frac{y_{C}-Y_{1}+k_{1}-k_{2}T}{k_{1}-k_{2}}$ . (6)

Used the notation $t_{c}$ , the probability $\phi(Y(T;t_{s}))$

can be expressed in the following way:
When $k_{1}>k_{2}$ ,

$\phi(Y(T;t_{s}))=\{\begin{array}{l}\gamma(k_{1}-k_{2})(t_{s}ift_{S}>^{-}t^{t_{c^{c}}.,)}0otherwise\end{array}$ (7)

When $k_{1}<k_{2}$ ,

(8)$\phi(Y(\mathcal{T};t_{\delta}))=\{\begin{array}{l}\gamma(k_{2}-k_{1})(t_{c}if\ell_{S}<^{-}\ell^{\iota_{c^{s}}.)}0otherwise\end{array}$

Eventually, it is assumed that $1<t_{c}<T$ . In the
case when $k_{1}>k_{2}$ , if the offspring’s independence
day $t_{s}$ is earlier than the critical day $[t_{c}]+1$ given
by (6), the offspring’s weight $Y(T;t,)$ at the end
of the breeding season is below $y_{c}$ so that the ter-
minal fitness function $\phi(Y(T;t_{s})$ is zero (Fig. 3).
In contrast, in the case when $k_{1}<k_{2}$ , if the off-
spring’s independence day $t_{s}$ is later than $[t_{c}]$ , the
terminal fitness function $\phi(Y(T;t_{s})$ is zero.

Now, we consider the offspring’s fitness $F_{o}(t_{s})$

defined as such probability that offspring can sur-
vive through and after the breeding season and
reach its reproducible age to reproduce the next
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Fig. 2. Offspring’s growth function $Y(t)$ for two cases: when $k_{1}>k?\sim$ and the
growth rate is larger under the parent’s feeding than after the offspring’s
independence; when $k_{1}<k_{2}$ and the growth rate has the inverse nature.
Offspring has the weight $Y_{1}$ at its birth. lf offspnng becomes independent
of parent on the day $t_{S}$. it reaches the weight $Y(T;t_{s})$ at the end of the
breeding season.

$k_{1}>k_{2}$ $k_{1}<k_{2}$

Fig. 3. Terrmnal fitness function $\phi(Y(T;t))$ given by (5). There exists such a
cnuca! day for the offspnng’s independence that the terminal fitness
function $\phi(Y(T;t))$ is zero tor any independence day $t$ before or after the
cntical day.
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generation, under the condition that it becomes
independent on day $t_{S}$ of the breeding season. If
offspring becomes independent on the first day,
that is, $t_{s}=1$ , it survives through the breeding
season with probability $\sigma_{o}^{T}$ . Growing up with (3),
the offspring’s weight reaches $Y(T;1)$ at the last
day $T$ of the breeding season, which means that,
after the breeding season, offspring gets the prob-
ability $\phi(Y(T;1))$ to survive and reach its repro-
ducible age. Hence, the offspring’s fitness $F_{o}(1)$ is
given by

$F_{o}(1)=\sigma_{o}^{T}\phi(Y(T;1))$. (9)

In the case when $t_{s}=2$ , two cases arise to be
considered. The first case is that, if parent dies on
the first day with probability $1-\sigma_{f}$ , offspring is

i糖鍛鰯響鞭\not\in n漉難窺難$pt$嚇 hernepet撫
ability $\sigma_{o}^{T}$ . Therefore, the fitness in this case is
given by $F_{o}(1)$ with probability $1-\sigma_{f}$ . The second
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and survives for one day with probability $\sigma_{n}$ . For
$o^{s}n\overline{\overline{d}}d^{\sim}t_{therest\circ fthebreedingseason^{ri_{W1}survives}}^{0ffs}Tl9throug^{a}f_{en,theindependentoffspng_{thproba-}}^{ri\iota\iota gbecomesindependentonthe\sec-}$

bilty $\sigma_{O}^{T-1}$ . The offspring‘s weight reaches $Y(T;2)$
on day $T$ , which means that, after the breeding
season, offspring gets the probability $\phi(Y(T;2))$

to survive and reach its reproducible age. Lastly,
the offsping’s fitness $F_{o}(2)$ is given by

$F_{O}(2)=$ ( $1$ –a$f$ ) $\sigma_{O}^{T}\phi(Y(T;1))$

(10)

$+\sigma_{f}\sigma_{n}\sigma_{o}^{T-1}\phi(Y(’\Gamma;^{o}\sim))$ .

In the case when $t_{s}=3$ , three cases arise. The
first case is that parent dies on the first day with
probability $1-\sigma_{f}$ . The second case is that parent
survives on the first day with probability $\sigma_{f}$ and
dies on the second day with probability $1-\sigma_{f}$ . In
this case from the second day, offspring becomes
$independ_{en}t$ and survives through the rest of the

$Caseisb\circ thofbreedin_{t}fi_{th^{a}e}^{se_{t}asonwithprobabi1ity_{feedsoffs}}\not\in arentsurvivesandf_{proba-}^{ringon}$

$T-1$ . The third

bility $\sigma_{f}^{2}$ . In this case, offspring survives for two
days with probability $\sigma_{n}^{2}$ . For $t_{s}=3$ , offspring
becomes independent on the third day. The mde-
pendent offspring survives through the rest of the
breeding season with probability $\sigma_{o}^{T-2}$ . Lastly, the
offspring’s fitness $F_{o}(3)$ is given by

$F_{o}(3)=(1-\sigma_{f})\sigma_{o}^{T}\phi(Y(T;1))$

$+\sigma_{f}(1-\sigma_{f})\sigma_{n}\sigma_{o}^{T-1}\phi(Y(T;2))$
(11)

$+\sigma_{f}^{2}\sigma_{n}^{2}a_{o}^{T-2}\phi(Y(T;3))$ .

For the case when $t_{s}=4,5,$ $\ldots,$
$T,$ $F_{o}(t_{s})$ is given

in the same way.
Consequently, except for the case when $t_{s}=$

$1,$ $F_{o}(t_{s})$ is expressed in general as follows:

$F_{O} \langle l,)=\sum_{j=1}^{t_{*}-1}\sigma_{f}^{j-1}\langle 1-\sigma_{j})\sigma_{\mathfrak{n}}^{j-1}\sigma_{O}^{T-j+1}\phi(Y^{-}(T:j))$

$+\sigma_{j}^{1-1}\sigma_{n^{l}}^{l-1}\sigma_{o}^{T-t_{9}+1}\phi(Y(T;\ell_{i}))$ .

(12)

Parent’s Survival Probability

In this section, We consider the parent’s sur-
vival probability $F_{p}(t_{s})$ , which is defined as
such probability that parent survives through the
breeding season under the condition that it stops
feeding on day $t_{s}$ in the breeding season. Now, $\sigma_{w}$

is defined as such probability that parent survives
through the interval period between two sequent
breeding seasons and reaches the next breeding
season.

If parent never feeds offspring on any day
through the breeding season, that is, if $t_{S}=1$ ,
parent survives through the breeding season with
probability $\sigma_{p}^{T}$ . Then, parent can reach the next
breeding season with probability $\sigma_{w}$ . Hence, the
parent’s survival probability $F_{p}(1)$ is given by

$F_{P}(1)=\sigma_{p}^{T}\sigma_{w}$ . (13)

If parent feeds offspring on the first day and
stops feeding on the second day, that is, if $t_{s}=2$ ,
parent survives on the first day with probability
$\sigma_{f}$ and through the rest of the breeding season
with probability $\sigma_{p}^{T-1}$ . Hence, the parent’s sur-
vival probability $F_{p}(2)$ is given by

$F_{p}(2)=a_{f}a_{p}^{T-1}\sigma_{w}$ . (14)

In the case when $t_{s}=3$ , two cases arise to be
considered. The first case is that parent feeds off-
spring on the first day with its survival probability
$\sigma_{f}$ , while offspring dies on the first day with prob-
ability $1-\sigma_{n}$ . Then, parent survives through the
rest of the breeding season with probability $\sigma_{p}^{T-1}$ .
The second case is that parent feeds offspring on
the first day with its survival probability $\sigma_{f}$ , while
offspring survives on the second day with its sur-
vival probability $\sigma_{n}$ . Parent feeds offspring also
on the second day with its survival probability
$\sigma_{f}$ . For $t_{s}=3$ , parent stops feeding on the third
day. Then, parent survives through the rest of the
breeding season with probability $\sigma_{p}^{T-2}$ . Lastly, the
parent’s survival probability $F_{p}(3)$ is given by
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$F_{p}(3)=\{(1-\sigma_{n})a_{f}\sigma_{p}^{T-}+a_{n}a_{f}^{2}\sigma_{p}^{T-2}\}\sigma_{w}.(15)$

For the case when $t_{S}=4,5,$
$\ldots,$

$T,$ $F_{p}(t_{s})$ is given
in the same $wav$.

Consequently, except for the case when $t_{s}=1$

or $t_{s}=2,$ $F_{p}(t_{s})$ is expressed in general as follows:

$F_{p}(t_{s})$ $=a_{w} \sum_{j=1}^{t,-2}\sigma_{n}^{j-1}(1-a_{n})\sigma_{f}^{j}a_{p}^{T-j}$

(16)

$+a_{w}\sigma_{n}^{t.-2}\sigma_{f}^{t.-1}\sigma_{p}^{T-\iota.+1}$ .

reproductive value $R(a_{1}-1)$ for the age $a\iota-1$ is
determined by

$R(a_{l}-I)$ $=$ $\sigma_{w}J(t_{p}(a_{\iota});R(a_{\iota}))$

$=$ $a_{w}F_{O}(i_{p}(a_{\iota}))$ , (19)

and, further, in general, the value $R(a_{l}-i)(i=$
$1,2,$

$\ldots,$
$a\iota$ –a$’$ ) for the age $a\iota-i$ is given by the

following backward recurrence equation:

$R(a_{\iota}-i)=\sigma_{w}J(t_{p}(a_{\iota}-i+1);R(a_{l}-i+1)).(20)$

MODEL

Parent’s Fitness

Consider the parent’s fitness at its age $a$ , under
the condition that it stops feeding on day $t_{s}$ of the
breeding season. The parent’s fitness $J(t_{s}; R(a))$

is defined by the parent’s survival probability
$F_{p}(t_{s})$ , its offspring’s fitness $F_{o}(t_{s})$ , and the par-
ent’s expected future reproductive value $R(a)$ at
the last day of the breeding season at the parent’s
age $a$ , which satisfies the following:

$R(a)=a_{w}J(t_{S}; R(a+1))$
(17)

$(a=a_{f}, a_{f}+1, \ldots, a_{\iota}-1)^{-}$

$J(t_{s} ; R(a+1))$ means the parent’s fitness at its
age $a+1$ . Since $\sigma_{w}$ means the probability that
parent survives between the end of the breeding
season at its age $a$ and the beginning of the next
breeding season at its age $a+1$ , the righthand side
of (17) means the expected future reproductive
value. Remark that $R(a)$ should be monotonically
decreasing in terms of the age $a$ , and $R(a\iota)=0$

because $a_{l}$ is the last age for the parent’s repro-
duction.

As in Clark and Ydenberg (1990), $J(t_{s}; R(a))$

is given in this paper as follows:

$J(t_{S} ; R(a))=F_{O}(t_{S})+R(a)F_{p}(t_{S})$ . (18)

From (17) and (18), we can obtain the backward
recurrence equation to determine the expected fu-
ture reproductive value $R(a)$ for every age $a$ . It
is assumed that, since the expected future repro-
ductive value $R(a)$ is considered only for parent to
determine its behaviour $t_{p}(a)$ from its viewpoint,
it has no relation with $t_{o}$ from the offspring’s view-
point. Thus, since $R(a_{\iota})=0$ , the expected future

ANALYSIS

The Optimal Offspring $s$ Independence Age
From The Offspring’s Viewpoint

The $opt_{!}md$ offspring’s independence age $t_{o}$

from offspring’s $viewp_{01}nt$ is defined as the day
to maximize the offspring’s fitness $F_{o}(t_{s})$ in the
breeding season. Therefore, by analyzing $F_{o}(t_{s})$

given by (9) and (12) (as for the way of analysis,
see Appendix A), $t_{o}$ can be obtained as follows
(Fig. 4):

When $k_{1}>k_{2}$ ,

$\ell_{O}=T$ . (21)

When $k_{1}<k_{2}$ ,

$t_{o}=\{\begin{array}{l}n1ift<\nu+if\nu^{c}+n<t_{c\leq}^{2}\nu+n+1(n=2,3,\ldots\prime T-1)\end{array}$ (22)

where

$\nu\equiv\frac{1}{\sigma_{n}/\sigma_{O}-1}$ . (23)

Since $\sigma_{n}>\sigma_{o}$ from the assumption, $0<\nu<\infty$ .
For convenience, we will hereafter use the notation
$\nu$ .

As seen in Fig. 4, those conditions for $t_{o}$ in the
case when $k_{1}<k_{2}$ , given by (22), are complemen-
tary each $otl\iota er$ , and the possibly maximal $F_{o}(t_{s})$

is $T-1$ in the case.

The Optimal Offspring’s Independence Age
From Parent’s Viewpoint

The optimal offspring’s independence age $t_{p}^{l}(a)$

from the parent’s viewpoint is defined as the off-
spring’s age $t_{s}|$ to maximize the parent’s fitness
$J(t_{s};R(a))$ . By analyzing $J(t_{s}; R(a))$ given by ,
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Fig. 4. In the case when $k_{1}<k_{2}$ , the optimal offspnng’s independence age $t_{o^{*}}$

from the offspnng’s viewpoint on the parameter space $(V, t_{c})$ . For $1<t_{c}<$

$T,$ $t_{o}^{*}<T$.

Fig. 5. In the case when $k_{1}>k_{2}$ , the parameter space $(p. K(n))$ is categorized
into $I_{1}-I_{7}$ , depending on the type ot the division of the parameter space
$(v, t_{c})$ in terms of the value $0\dot{f}t_{p}^{*}(\iota)$ .

$I_{1}$ $I_{2}$

$I_{3}$ $L$

Fig. 6. $\ln$ the case when $k_{1}>k_{2}$ , the optimal oftspring $s$ independence ,Igc
$t_{p}^{*}(a)$ from the parent’s viewpoint on the $pu\phi met_{C^{\backslash }}r$ space $(v, t\cdot)$ for the
parameter sets $I_{1}-I_{4}$ of the parameter space $(p, K(\iota))$ .

Fig. 7. In the case when $k_{1}>k_{2}$, the optimal offspring’s independence age
$t_{p^{*}}(a)$ from the parent’s viewpoint on the parameter space $(v, t_{c})$ tor the
parameter sets $I_{5}-I_{7}$ of the parameter space $(p. K(l))$ .
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Fig. 8. In the case when $k_{1}<k_{2}$ , the parameter space $(p, \mathfrak{l}K(a)1)$ is categonzed
into $C0$. $C_{dt}$ , and $C_{2}\sim Cr-2$, depending on the type of the division of
the parameter space $(v, t_{c})$ in terms of the value of $t_{p^{*}}(a)$.

Fig. 9. In the case when $k_{l}<k_{2}$ , the optimal offspnng’s independence age
$t_{P^{*}}(a)$ from the parent’s viewpoint on the parameter space $(v, t_{c})$ for the
parameter sets, $C_{0},$ $C_{all}$ , and $C_{n}(n=2,3, \ldots, T-2)$ of the parameter space
( $p$ , I$K(a)I$ ).
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(18), $t_{p}(a)$ can be obtained for the parent’s age
$a$ , when $R(a)>0$ , that is, when a $f\leq a\leq a_{\iota}-1$ ,
as follows:

When $k_{1}>k_{2}$ ,

$t_{p}(a)=\{Tlni^{i\leq_{+_{\ell}^{t<}}^{(\nu_{C}\cdot a\rangle_{(\nu\cdot.\alpha_{\circ)}}}}i_{ T\leq_{T\frac{9}{h}}}i^{ft>_{(n_{l}=}}orilt<^{2}orii\ell<_{\mathfrak{n}+_{2^{l_{\prime}}}^{n^{l_{\frac{\{}{ct_{3}}}}}}^{n}n_{an_{d^{c^{l}}h_{C}\nu.a.)\leq t_{C}<h_{n}\langle\nu.\alpha)}}^{c}an_{-}^{d_{C}h^{g}\nu\cdot...a_{\nu}).\leq.l_{C}<.g_{\mathfrak{n}}\{\nu\cdot..a\rangle}and\ell c<r^{<_{l}\tau^{T_{)}-l)}}an^{-}d\ell<\tau^{l}t^{n}’$ (24)

When $k_{1}<k_{2}$ ,

$t_{p}(a)=\{n1i^{ft<h(\nu.\cdot a)}i_{fh^{c_{n}}(\nu\cdot.a)<t_{c}..\leq h_{n+}(n=^{1}2,3,.,T-1^{1})^{(\nu\cdot.a)}}$ (25)

where

$g_{n}( \nu;a)\equiv n+\frac{\rho^{T-n+2}\nu}{K(a)\nu+1}$ (26)

$h_{\hslash}( \nu;a)\equiv n+(1-\frac{\rho^{T-n+2}}{K(a)})\nu$ (27)

$\rho\equiv\frac{\sigma_{p}}{\sigma_{O}}$ (28)

$K(a) \equiv\frac{\gamma(k_{1}-k_{2})\sigma_{P}/\sigma_{w}}{R(a)\sigma_{p}/\sigma_{f}-1}$ . (29)

Note that those conditions for $t_{p}(a)$ are not
complementary each other. For example, in the
case when $k_{1}>k_{2},$ there exist such parameters
that $g_{2}(\nu;a)<t_{c}<h_{T}(\nu;a)<T-1$ . This means
that, with such parameters, $t_{p}^{l}(a)$ should be 1 or
$T$ . In this case, $t_{p}(a)$ can be ultimately deter-
mined by comparing $J(1;R(a))$ with $J(T;R(a))$ .
In this paper, avoiding a mess of calculations, we
no longer discuss the ultimately determined $t_{p}(a)$

in such case, because our presented analyses give
sufficiently significant qualitative results valuable
for the discussion on the parent-offspring conflict
phenomenon.

As indicated by those conditions for $t_{p}(a)$ , given
by (24) and (25), the ultimately determined $t_{p}(a)$

strongly depends on parameters (Fig. 6, Fig. 7,
Fig. 9). The parameter space $(\nu, t_{c})$ can be de-
vided into some subregions depending on what
value is possible for $t_{p}(a)$ . The way of the devi-
sion depends on the other parameters $\rho$ and $K(a)$

(Fig. 5, Fig. 8).
In the case when $k_{1}>k_{2}$ , depending on the

$Wtecateg\circ rizetheparemeterreg\circ 7_{\iota\circ f(\rho,K(a^{c})^{)})}^{rspace(\nu,t}$

into those regions $I_{1}\sim I_{7}$ as shown iu Fig. 5 (as
for the analyzing way, see Appendix B). According
to those parameter subregions of $(\rho, I(a))$ , the ul-
timately determined $t_{p}(a)$ is shown in the param-
eter space $(\nu, t_{c})$ as in Fig. 6 and Fig. 7. In cases
of $I_{1},$ $I_{2}$ , and $I_{4}$ , the possible value of $t_{p}(a\rangle$ is $T$

or less than an $N$ , while, in case of $I_{3}$ , it is any
value from 1 to $T$. In cases of $I_{5}\sim I_{7}$ , only 1 or
$T$ is possible for $t_{p}(a)$ .

In contrast, in the case when $k_{1}<k_{2}$ , we cat-
egorize the paremeter region of $(\rho, |K(a)|)$ into
those regions $C_{0},$ $C_{n}(n=2,3, \ldots, T-2)$ , and $C_{a1l}$

as shown in Fig. 8 (Appendix B). For those re-
gions, the ultimately determined $t_{p}(a)$ is shown in
the parameter space $(\nu, t_{c})$ as in Fig. 9. Indepen-
dently of which case is considered, any value from
1 to $T-1$ is possible for $t_{p}(a)$ .

When $a=a_{1}$ , since $R(a_{1})=0$ from the defini-
tion, it is followed that $J(t_{s}; R(a_{t}))=J(t_{s} ; 0)=$

$F_{o}(t_{s})$ . Therefore, $t_{p}(a_{1})=t_{o}$ given by (21) and
(22), and there does not occur any conflict be-
tween parent and offspring.

The offspring’s independence age $t_{p}\sim$ to maxi-
mize the parent’s survival probability $F_{p}(t_{s})$ is al-
ways 1 independently of the values of parameters,
because $F_{o}(t_{s})$ is monotonically decreasing. In-
deed, since $a_{p}>\sigma_{f}$ , for any $\downarrow s$

’

$F_{P}(t_{S}+1)-F_{P}(t_{s})$

$=\sigma_{n}^{t.-1}\sigma_{f}^{t.-1}\sigma_{p}^{T-t}(a_{f}-a_{P})\sigma_{w}<0$ . (30)

From the definition (18), when parent is suf-
ficiently young and $R(a)$ is so large, it is ex-
pected that $t_{p}(a)$ is near $t_{p}\sim$ , because $J(t_{s} ; R(a))\approx$

$R(a)F_{p}(t_{s})$ . Indeed, as seen in Fig. 6, Fig. 7, and
Fig. 9, the parameter region for $t_{p}(a)=t_{p}\sim=1$

is relatively larger for the smaller $|K(a)|$ than for
the larger.

Existence of Parent-Offsp$7^{\vee}ing$ Conflict
Compared Fig. 4 to Fig. 6, Fig. 7, and Fig.

9, the parent-offspring confict presents for a wide
range of parameters.

In the case when $k_{1}>k_{2}$ , as shown in Fig. 6
and Fig. 7, especially for relatively large value of
$t_{c}$ , the parent-offspring conflict can exist, because
$t_{o}=T$ . The type of conflict is eventually for $t_{o}>$

$t_{p}(a)$ , that is, under conflict, parent tends to stop
feeding its offspring, while offspring wants to be
fed. Only for sufficiently small values of $t_{c}$ and $\nu$ ,
$t_{o}=t_{p}(a)=T$ , and, all over the breeding season,
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parent keeps feeding its offspring who wants to be
fed.

As well, in the case when $k_{1}<k_{2}$ , as shown
in Fig. 9, only one type of conflict, $t_{o}>t_{p}^{l}(a)$ ,
is possible to exist and occur. This result can
be easily proved that any slope of boundaries of
parameter regions in $(\nu, t_{c})$ , given by (27), is more
than 1.

Parent’s Age Dependence of Confiict
The optimal offspring’s independence age $t_{p}(a)$

from the parent’s viewpoint for a breeding season
is determined depending on the value of $K(a)$ ,
that is, of $R(a)$ as shown by the above analy-
sis. Following the definition, $|K(a)|$ is monoton-
ically increasing to infinite as the parent’s age $a$

increases, since $R(a)$ monotonically decreases as $a$

increases, and reaches zero at the age $a_{\iota}$ . There-
fore, as the parent’s age increases, the parameter
point moves up in the $par\dot{a}meter$ space $(\rho, |K(a)|)$ .

In the case when $k_{1}>k_{2}$ and $0<K(a)$ , if
$\rho\geq 1$ , as the parent’s age increases, the parame-
ter point $(\rho, It’(a))$ moves as $I_{5}arrow I_{6}arrow I_{7}$ in Fig.
5. Therefore, since $t_{o}=T$ in this case, whenever
the conflict occurs, $t_{p}(a)=1$ , and parent tends to
stop feeding its offspring on everyday of the breed-
ing season, while offspring wants to be fed all over
the breeding season. Otherwise, when the con-
flict does not occur, then parent keeps feeding its
offspring all over the breeding season. Moreover,
for some parameters of $(\nu, t_{c})$ , as seen in Fig. 7,
the conflict does not occur for parent older than
a critical age determined by the parameter $(\nu,$ $t_{c}$ ,
while the conflict occurs for the younger parent.

If $\rho<1$ when $k_{1}>k_{2}$ , as the parent’s age
increases, the parameter point $(\rho, K(a))$ moves up
in Fig. 5 through the following order of parameter
regions in it: $I_{5}arrow I_{1}arrow I_{2}arrow I_{3}arrow I_{4}arrow I_{7}$ .
The parameter point $(\rho, K(a))$ does not pass any
region with any order inverse to this order. The
argument similar to that for $\rho\geq 1$ is applicable
for this case. As the parent’s age increases, $t_{p}(a)$

tends to be tlte same or to increase, therefore, it is
likely that, after a critical parent’s age, the conflict
does not occur and parent keeps feeding all over
the breeding season.

As mentioned before, at the parent’s age $a\iota$ last
in the reproducible age span, in the case when
$k_{1}>k_{2}$ , the conflict does not occur and $t_{p}(a)=$

$t_{o}=T$ , so that parent keeps feeding all over the
breeding season.

It is concluded for $tl\iota e$ case when $k_{1}>k_{2}$ that
the optimal offspring’s independence age $t_{p}(a)$

from the parent’s viewpoint stays the same or
tends to become the larger toward $T$ as the par-
ent’s age $a$ increases, and the conflict of the type
for $t_{o}>t_{p}(a)$ disappears after a parent’s age,
then. parent keeps feeding all over the breeding
season.

On the other hand, in the case when $k_{1}<k_{2}$

and $K(a)<0$ , as the parent’s age $a$ increases, the
parameter point $(\rho, |K(a)|)$ moves up in Fig. 8
through the following order of parameter regions
in it: $C_{a\downarrow\iota}arrow c_{\tau-2}arrow C_{T-3}arrow\cdotsarrow C_{3}arrow C_{2}arrow$

$C_{0}$ . The parameter point $(\rho, |K(a)|)$ does not pass
any region with any order inverse to this order.
Therefore, as seen in Fig. 9, since the conflict is
only of the type that $t_{o}^{l}>t_{p}(a)$ , the conflict can
disappear after a critical age of parent for some
parameters of $(\nu, t_{c})$ . For the other parameters of
$(\nu, \ell_{c})$ , the conflict of type that $t_{o}>t_{p}(a)$ occurs
through the parent’s reproducible age-span except
for the last age $a\iota$ . In both cases, the optimal off-
spring’s independence age $t_{p}(a)$ from the parent’s
viewpoint stays the same or tends to become the
larger as the parent’s age $a$ increases, as well as in
the case when $k_{1}>k_{2}$ .

Resolution of Parent-Offspring Conflict
By the above anaiysis, it is shown that the

parent-offspring conflict possibly occurs depend-
ing on those parameters including the parent’s
age. The conflict is resolved once parent or off-
spring yields to another. In this section, we discuss
how the conflict is resolved, and how the compro-
mised day $t^{\star}(a)$ when offspring becomes indepen-
dent is determined.

For the resolution of parent-offspring conflict,
the cost for conflict is taken into account. Now,
the cost for conflict is assumed to be introduced
as the decrease of fitness (Higashi and Yamamura,
1993). That is, under the conflict, it is assumed
that offspring must pay a cost $c$ to counter par-
ent, while parent must pay a cost $\alpha c$ to counter
offspring, where $c$ is monotonically increasing as
the duration of the behaviour to counter another
side per conflict, and $\alpha$ is a positive constant. At
the beginning of any day under the conflict sit-
uation, $c=0$ because the behaviour to counter
another side is not yet started. Those costs are
subtracted from fitnesses of parent and offspring.

In the following, we consider the resolution of
parent-offspring conflict, making use of the cost
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mentioned above, for two distinct cases: $t_{o}^{r}>$

$t_{p}^{r}(a);t_{o}^{l}<t_{p}(a)$ .

CASE $A:t_{o}>t_{p}(a)$

The compromised day $t^{\star}(a)$ naturally satisfies
that $t_{p}(a)\leq t^{\star}(a)\leq t_{o}$ . The fitness gain $D_{p}(t;a)$

for parent on a day $t$ under the conflict (expected
for the case in which parent wins the conflict and
succeeds in making offspring independent), rela-
tive to such fitness that parent yielded to offspring
in the first place and let offspring depending on the
parent’s feeding, is now given by

$D_{p}(t;a)=J(t;R(a))-J(i+1;R(a))-\alpha c$ . (31)

On the other hand, the fitness gain $D_{o}(t;a)$ for
offspring on a day $t$ under the conflict (expected
for the case in which offspring wins the conflict
and succeeds in making parent feeding), relative
to such fitness that offspring yielded to parent in
the first place and became independent, is now
given by

$D_{o}(t_{1}\cdot a)=F_{O}(t+1;a)-F_{O}(l;a)-c$ . (32)

When $t_{p}(a)\leq t<t^{*}(a)$ , the fitness gains
$D_{p}(t;a)$ and $D_{o}(t;a)$ must eventually decline from
positive toward zero on the day $t$ , because the
cost $c$ is temporally increasing as the behaviour
of conflict continues. Therefore, when $D_{p}(t;a)$

becomes zero while $D_{o}(t;a)$ is still positive, par-
ent yields to offspring and feeds it. Thus, when
$t_{p}(a)\leq t<t^{\star}(a)$ , there exists such a value of $c$

that $D_{p}(t;a)=0$ and $D_{o}(t_{;}a)>0$ . On the other
hand, on the day when $t=t^{\star}(a)$ , parent does not
yield to offspring before offspring yields to par-
ent, from the definition of $t^{\star}(a)$ . This means that
there exists such a value of $c$ tbat $D_{o}(t;a)=0$

and $D_{p}(t;a)\geq 0$ . It is assured that $t^{\star}(a)\leq t_{o}$ ,
because $D_{o}(t_{o} ; a)\leq-c$ from the definition of $t_{o}$

so that the compromised independence day does
not be beyond the day $t_{o}$ . This argument can be
simplified with the following function $\theta(t;\alpha, a)$ :

$\theta(t;\alpha, a)\equiv\alpha\{F_{o}(t+1;a)-F_{o}(t;a)\}$

$+\{J(t+1;R(a))-J(t;R(a))\}$

$=(\alpha+1)\{F_{O}(t+1 ; a)-F_{O}(t;a)\}$

$+R(a)\{F_{p}(t+1;a)-F_{P}(t;a)\}$

$=(\alpha+1)\{J(t+1;\alpha\#^{a}t)-J(t_{\urcorner T}^{R(a)};_{\alpha})\}$ .
(33)

Remark that $\theta(t;\alpha, a)>0$ when $t_{p}(a)\leq t<t^{\star}(a)$ ,
while $\theta(t;\alpha, a)\leq 0$ when $t=t^{\star}(a)$ . Therefore, the
compromised day $t^{\star}(a)$ is given by

$t^{\star}(a)= \min_{t}\{t|\theta(t;\alpha, a)\leq 0, t_{p}(a)\leq t\leq t_{\circ}\}$ (34)

CASE $B:t_{\circ}<t_{p}(a_{1})$

As before, the compromised day $t^{\star}(a)$ naturally‘
satisfies that $t_{o}\leq t^{\star}(a\rangle$ $\leq t_{p}^{t}(a)$ . Contrarily to
CASE $A$ , the fitness gain $D_{p}(t;a)$ for parent on
a day $t$ under the conflict (expected for the case
in which parent wins the conflict and succeeds in
keeping offspring under the parent’s feeding), rela-
tive to such fitness that parent yielded to offspring
$ln$ the first place and let $0ffsprlIlg$ independent, is
now given by

$D_{P}(t;a)=J(t+1;R(a))-J(t;R(a))-\alpha c$ . (35)

The fitness gain $D_{o}(t;a)$ for offspring on a day $t$

under the conflict (expected for the case in which
offspring wins the conflict and succeeds in becom-
ing independent), relative to such fitness that off-
$sriyie1dedt\circ Cept$

ac-

$D_{o}(t, a)=F_{o}(t, a)-F_{o}(\ell+1;a)-c$ . (36)

By the same argument as in CASE $A$ , when
$t_{o}\leq t<t^{\star}(a)$ , there exists such a value of $c$

that $D_{p}(t;a)>0$ and $D_{o}(t;a)=0$ . On the
day when $t=t^{\star}(a)$ , there exists such a value of
$c$ that $D_{o}(t;a)\geq 0$ and $D_{p}(t;a)=0$ . Also in
this case, it is assured tbat $t^{\star}(a)\leq t_{p}\{a$ ), because
$D_{p}(t_{p}(a);a)\leq-\alpha c$ from the definition of $t_{p}(a)$ .
This argument can be simplified with the same
function (33), $\theta(t;\alpha, a)$ . Moreover, the compro$\cdot$

mised day $t^{\star}(a)$ is given by the following equation
similar to (34):

$\ell^{\star}(a)=\min_{t}\{\ell|\theta(t|\alpha, a)\leq 0, \ell_{\circ}\leq t\leq t_{p}(a)\}$ . (37)

We note that, since the considered signiture
of $\theta(\ell;\alpha, a)$ is determined by the difference of
$J(t;R(a)/(\alpha+1)),$ $t^{\star}(a)$ is regarded as the smallest
value that gives the maximal of $J(t;R(a)/(\alpha+1))$

when $mi_{I}\iota\{t_{o}, t_{p}(a)\}\leq t\leq\max\{t_{o}^{*}, t_{p}(a)\}$ . Exis-
tence of such $t^{\star}(a)$ is assured by the above argu-
ment.

By the result for our model, it is shown that
the conflict is only of the type that $t_{o}>t_{p}(a)$ ,
that is, of CASE $A$ , and as the parent’s age $a$

increases and the expected future reproductive
value $R(a)$ decreases, $t_{p}(a)$ stays the same or be-
comes the larger and approacbes $t_{o}$ from below.
Therefore, the above result indicates that the com-
promise between parent with the expected future
reproductive value $R(a)$ and its offspring shifts
the offspring’s independence day to that corre-
sponding to the favorable (not necessarily opti-
mal!) independence age from the viewpoint of par-
ent $\iota vith$ the expected future reproductive value
$R(a)/(\alpha+1)$ . Eventually, the compromised inde-
pendence day $t^{\star}(a)$ is the nearer to $t_{o}$ as $\alpha$ is the
larger.
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In the case when $k_{1}>k_{2}$ and $\rho\geq 1,$ $t_{o}=T$ and
$t_{p}(a)$ is 1 or $T$ , as resulted in the previous section
(Fig. 7). Thus, the compromise can cause only
two alternative conclusion of the parent-offspring
conflict: offspring becomes independent on the
first day of breeding season, or parent keeps feed-
ing offspring all over the breeding season. Since
$t_{p}^{r}(a)$ is 1 or $T$ by our analysis, if parent yields to
offspring on the first day of breeding season, the
offspring’s independence does not occur until the
last day of breeding season.

On the other hand, in the case when $k_{1}>k_{2}$

and $\rho<1$ , the compromise can cause the off-
spring’s independence on the day $t^{\star}(a)$ such that
$1<t^{\star}(a)<T$ (see Fig. 6). Depending on the pa-
rameters, the compromise conclusion same as in
the case when $k_{1}>k_{2}$ and $\rho\geq 1$ still possibly
occurs.

In the case when $k_{1}<k_{2}$ , both of $i_{o}$ and $t_{p}(a)$

can take any value less than $T$ , depending on
the parameters, whereas it is always satisfied that
$t_{o}>t_{p}(a)$ , as resulted in the previous section (Fig.
9). Therefore, the compromise can cause the off-
spring’s independence on the day $t^{\star}(a)$ as defined
as $t_{p}(a)\leq t^{\star}(a)\leq t_{o}$ .

CONCLUSION

Results by our mathematical model indicates
such possibility that the observed behaviour of
parental care may change depending on the par-
ent’s age. This is because the compromise con-
clusion of the parent-offspring conflict depends on
the parent’s age, that is essentially, on the par-
ent’s expected future reproductive value. More-
over, the observed parent-offspring conflict possi-
bly depends on the parent’s age, too.

As long as in the framework of our mathemat-
ical model, the possibly observed parent-offspring
conflict is of the type that $t_{o}>t_{p}(a)$ , that is,
parent intends to stop feeding its offspring, while
offspring wants to be fed. Hence, if another type
that $t_{o}^{*}<t_{p}(a)$ , that is, parent intends to feed,
while offspring wants to become independent, is
observed, some improved mathematical model will
be required for the mathematical theoretic expla-
nation on it.
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APPENDIX A

In this appendix, we show the way to determine
analytically $t_{o}$ and $t_{p}(a)$ . The optimal offspring’s
$diefinedasthe(f_{ayt^{\circ}o\max imizetheoffspring’ sfit-}^{etfr\circ m\circ ffspring’ sviewpointis}$

ness $F_{o}(t_{s})$ in the breeding season. Thus, $t_{o}$ should
be one of maximals of $F_{o}(t_{s})$ for $t_{s}=1,2,$ $\ldots,$

$T$ .
The necessary condition for $t_{o}=1$ is

$F_{O}(2)-F_{O}(1)<0$ .

In the same way, the necessary condition for $t_{o}=$

$T$ is

$F_{O}(T)-F_{o}(T-1)>0$ ,

where it is assumed that, if $F_{o}(T)=F_{o}(T-1)$ ,
then, $t_{o}\leq T-1$ . In contrast, the necessary con-
dition for $t_{o}^{l}=n(n=2,3, \ldots, T-1)$ is as follows:

$\{F_{o}(n)-F_{O}(n-1)>0F^{o}(n+1)-F_{O}(\mathfrak{n})\leq 0$

Some cumbersome analyses of those necessary
conditions can lead to possible values of $t_{o}$ given
as (21) and (22).

Also as for $t_{p}^{*}(a)$ , the same argument is adapt-
able for $J(t_{s} ; R(a))$ given by (18). In this case,
as long as is considered parent-offspring relation
within a breeding season, the expected future
reproductive value can be regarded as a non-
negative constant independent of $t_{s}$ . Therefore,
the same way of analysis can be carried out for
$J(t_{s}; R(a))$ and give those possible values of $t_{p}(a)$

as (24) and (25).

APPENDIX $B$

In this appendix, some outlines of analyzing
way on the parameter dependence of the optimal
offspring’s independence age from parent’s view-
point, given by Fig. 5 and Fig. 8.

In the case when $k_{1}>k_{2},$ $t_{p}^{l}$ is given by (24).
Function $g_{n}(\nu;a)$ has the following asymptote:

$t_{c}=n- \frac{\rho_{\mathfrak{l}}^{T-n+2}}{K\uparrow a)}$
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Therefore, depending on the position of the
above asymptote, the valid condition of (24)
switches, because the positional relation among
those functions $g_{n}(\nu;a)$ and $h_{n}(\nu;a)$ changes (see
Fig. A). Further, the positional relation depends
also on $n$ . Thus, as seen in cases of $I_{1},$ $I_{2}$ , and $I_{4}$

of Fig. 6, there is such case that $t_{p}$ cannot be less
than $\exists_{N}>1$ . For $n<\exists_{N}$ in such case, the posi-
tional relation corresponds to (a) or (b) in Fig. A..

$ti\circ na1e1ati\circ namongt^{zed^{e_{@}}}be^{S}ana_{r^{yyeg^{A}’ yana1yzingthe_{I_{n}^{o_{+}si-}}}}1tica11catori_{h\circ sepointsP_{n}and}^{thositiona1re1ationca_{1}n}AindicatedinFig$

.

given by

$P_{n}$ : $(n-1,$ $\frac{1}{\rho^{T-n+2}/I\backslash ’(a)-1})$

$P_{n+1}$ : $(n-1,$ $\frac{2}{\rho^{T-n+1}/K(a)-1})$ .

If $P_{n+1}$ is located left to $P_{n}$ , there exists some
region for $t_{p}=n$ , seen in the case (d) of Fig. A.
Even if $P_{n+1}$ is located right to $P_{n}$ , when $\rho<1$ ,
there can exist a region for $t_{p}=n$ , seen as the
case (e) in Fig. $A$ , under the following condition:

$\frac{n}{\rho^{T-n+1}/K(a)-1}<\frac{n-1}{\rho^{T-n+2}/K(a)-1}$

This condition means that the cross section of
$h_{n+1}(\nu;a)$ on $\nu$ axis is located left to that of
$h_{n}(\nu;a)$ . In Fig. 5, no distinction is indicated
between two cases (d) and (e) of Fig. A. Includ-
ing these cases, the parameter region of $(\rho, K(a))$

further shows a detail structure, when $k_{1}>k_{2}$ ,
as shown in Fig. $B$ :those regions $I_{3}$ and $I_{4}$ are
respectively $di_{V1}ded$ into distinct two regions. For
parameters of $I_{3U}$ , as increasing $n$ for $t_{p}=n$ , both
cases of (d) and (e) occur in the order from (d) to
(e) of Fig. $A$ , while, for those of $I_{3L}$ , only the
case (d) occurs. Similarly, for parameters of $I_{4U}$ ,
as increasing $n$ , if $n<\exists_{N}$ the case (a) occurs,
and when $n=\exists_{N}(c)$ occurs. Then, for $n>\exists_{N}$

both cases of (d) and (e) occurs from (d) to (e).
However, for those of $I_{4L}$ , the case (e) does not
occurs, taken the place by (d). As another case,
if the following condition is satisfied for $\exists_{N}$ when
$\rho<1$ ,

$\frac{\rho^{T-N+2}}{K(a)}\leq 1<\frac{\rho^{T-N+1}}{K(a)}$

there exist some regioll for $t_{p}=N$ as given by (c)
in Fig. A. This case is included in the region $I_{4}$ of
Fig. 5, as seen in Fig. 6.

In the case when $k_{1}<k_{2}$ , the same way can
be carried out for $h_{n}(\nu;a)$ and $h_{n+1}(\nu;a)$ . For
$C_{n}$ , the region of $(\nu, t_{c})$-space for $t_{p}=j$ less than
$n+1$ and more than 1 appears as triangle because
$h_{n}(\nu;a)$ and $h_{n+1}(\nu;a)$ cross, as in Fig. 9.

Fig. A. Schematic descnption of the configuration pattem for $g_{n}(v;a)$ and $h_{n}(v$ :
$a)$ . For detail explanation, see text.

Fig. B. In the case when $k_{1}>k_{2}$ and $p\leq 1$ . the parameter space $(p, K(a))$

consists of a detail stmcture depending on the type of the division of the
parameter space ($v,$ $t_{c}\rangle$ in terms of the value of $t_{p^{*}}(a)$ . Compare with Fig.
5.


