
37

木状 Haj\’os Calculus の非多項式時間限定性

九州大学工学部 岩間 一雄 (Kazuo Iwama)
iwama@csce.kyushu-u.ac.jp

1 Introduction

Frege systems are a very powerful class of proof systems for the propositional calculus, and (hence) it is
believed that to prove their non-polynomial lower bounds is hard. Recently there was a breakthrough;
Pitassi and Urquhart [PU92] proved that Frege systems can be simulated (efficiently) by a simpler graph
calculus called the Haj\’os calculus, in such a way that the simulation guarantees that if the latter is not
polynomially-bounded then the former is not either. Unfortunately the calculus is still not sufficiently
simple; it has long been an open problem if the Haj\’os calculus is polynomially-bounded. In this paper,
we cannot prove that the Haj\’os calculus is poly-bounded but we prove its important subclass is poly-
bounded. We call the subclass the tree-like Haj\’os calculus.

Suppose that our final goal is to prove that $NP\neq co-NP$. Then a reasonable subgoal is to consider
some proof or generation system, S , for co-NP languages, L , for example, the set of unsatisfiable predicates
or the set of $non-3$-colorable graphs, and to prove that S is not polynomially-bounded. By polynomially-
bounded, we mean that any element in L can be generated in a polynomial number ofsteps. Obviously the
system S should be as powerful as possible; if it were as powerful as nondeterministic Turing machines,
then we would have achieved the final goal. In this sense, Frege systems have drawn a lot of researchers’
interests and several non-polynomial lower bounds have been obtained for bounded cases [Coo75, CR79,
Ajt88, $BIK^{+}92$, for instance]. However, for unbounded cases, their great power did not allow to develop
useful techniques for proving the lower bounds.

It is quite natural then to seek for simpler (seemingly less powerful) generation systems that can
simulate Frege systems with polynomial overhead. [PU92] found out the Haj\’os calculus to be such a
generation system. The Haj\’os calculus [Haj61] (HC for short) is a procedure for generating non-3-
colorable graphs. (In this paper we only consider the 3-color case although HC can treat k-color cases in
general.) It starts with a K_{4} as its set of graphs and get new (more complicated) graphs by applying one
in some set of generation rules repeatedly. A little surprisingly, this relatively simple generation system
is complete, namely, it can generate any $non-3$-colorable graphs.

The tree-like HC (TLHC) is different from the general HC in that copying graphs is not allowed.
Namely, every new graph must be generated from $K_{4}’ s$ using a tree-structured proof. Therefore if we
try to simulate a generation procedure of the original HC by TLHC in the trivial way, then the latter
can blow up to an exponential size even though the former is poly-bounded. However, the current result
still seems to have a certain merit: (i) TLHC is still complete and hence the result seems to be a nice
progress to the final goal. (ii) Although details have not yet been examined, we conjecture that HLHC
is p-equivalent to resolution, which appears to be a nice comparison to that the general Hajos Calculus
is p-equivalent to Extended Frege.

Iwama, Abeta and Miyano proposed another very simple generation system for unsatisfiable CNF
predicates [IAM92], which we shall call USG. Similarly as HC, USG begins with an initial predicate like
$x\overline{x}$ and applies one of the four rules (see Sec. 3) step by step. (Our motivation of introducing USG
was the generation of test problems to evaluate experimentally the performance of SAT algorithms. See
[IAM92, IM93] for that aspect and also [Kuc91, CR92, Sanar] for other projects of related test-case
generation.)

数理解析研究所講究録
第 871巻 1994年 37-44

38

2 Haj\’os Calculus

All graphs in this paper are simple, undirected graphs without self-loops. A graph G is (V, E), where V

is a set of vertices and E a set of unordered pairs of vertices, called edges. A graph G may be a collection
of mutually disconnected (disjoint) components. A (proper) k-colorrng of G is an assignment of one of k

different colors to each of the vertices such that no two adjacent vertices receive the same color. If such
a coloring exists, then G is said to be k-colorable and $non-k$-colorable otherwise. K_{4} is the complete
graph, i.e., every pair of vertices is adjacent, of four vertices.

TLHC starts with the initial graph K_{4} and changes it by applying one of the following rules
repeatedly. This definition is taken from [PU92] although slightly modified.

(i) (K_{4} introduction) Add a K_{4} as a new component of the current graph $G_{n\cdot w}$.
(ii) (Vertex/edge introduction) Add any number of vertices and edges to G_{now} unless those added

vertices and edges constitute new disjoint components. In other words, newly added vertices must be
connected to some existing component.

(iii) (Join) Let G_{1} and G_{2} be disjoint components of $G_{now},$ a and b adjacent vertices in G_{1} and
c and d adjacent vertices in G_{2} . Then remove edges (a, b) and (c, d) ; then add an edge (b, d) ; finally
contract vertices a and c into a single vertex. See Fig. 1.

(iv) (Contraction) Contract two nonadjacent vertices into a single vertex, and remove any resulting
duplicated edges.

An essential difference between TLHC and HC is in the join rule: In TLHC, both G_{1} and G_{2} must
be existing components but in the general HC, we can copy G_{1} andor G_{2} from the existing components.
It is known [Haj61, MW] that any component of graph G generated by TLHC is $non-3$-colorable and
any $non-3$-colorable graph can be generated by TLHC. If a graph G of size n can be generated in $p(n)$

applications of the rules for some polynomial $p(n)$, then it is said that G is generated in polynomial time.
If every $non-3$-colorable graph is generated in polynomial time, TLHC is said to be polynomially-bounded.

3 Unsatisfiable Predicate Generator

A literal is a logic variable x or its negation \overline{x}. A clause is a sum of (one or more) literals. In this
paper, a single clause cannot contain two or more same literals or both positive and negative literals of
the same variable. A (CNF) predicate is a product of clauses. A specific assignment of true and false
to all variables is called a cell. lt is said that a clause A covers a cell T if the assignment denoted by
T makes A false. A predicate F is said to be satisfiable (unsatisfiable) if there is at least one (no) cell
which is not covered by any clause in F . A clause A is said to cover a clause B if all the cells covered by
B are covered by A . It is straightforward to see that A covers B iff B includes all the literals of A and
possibly more.

USG. has the same structure as TLHC, which begins with the initial predicat$ex_{1}\overline{x_{1}}$ and has the
following rules.

(i) (Clause introduction) Add any clause to the current predicate F_{now} .
(ii) (Split) Replace a clause A by $(A+x_{i})(A+\overline{x:})$ for some variable x ; not appearing in A .
(iii) (Literal deletion) Delete any (single) literal in a clause which includes two or more literals.
(iv) (Clause deletion) Delete a clause A if A is covered by some other clause.

Lemma 1. If a predicate F is generated by USG then F is unsatisfiable.

Lemma 2. Any unsatisfiable predicate can be generated by USG.

Expressions such as (generated in polynomial time“ and (polynomially-bounded” are also used
for USG and have exactly the same meaning as before.

39

4 Simulation of TLHC by USG

4.1 Outline

We first define two transformations, P. from graphs into predicates and G_{f} from predicates into graphs,
as in [PU92]. For a graph G of n vertices $\{v_{1}, --, v_{n}\}$ and m edges, $P_{r}(G)$ is the following predicate F

consisting of $5n+3m$ clauses.

(i) F uses $3n$ variables $R_{v_{1}},$ $\cdots,$ $R_{v_{n}}$, B.1 B.., $G_{v_{1}},$ $\cdots,$ $G_{v_{n}}$. ($R,$ B and G stands for red, blue
and green, respectively.)

(ii) For each vertex v , we introduce five clauses $(\overline{R_{v}}+\overline{B_{v}}+\overline{G_{v}})(R_{v}+B_{v}+\backslash G_{v})(\overline{R_{v}}+\overline{B_{v}}+G_{v})$

$(\overline{R_{v}}+B_{v}+\overline{G_{v}})$ (R_{v} 十 $\overline{B_{v}}+\overline{G_{v}}$).
(iii) For each edge (u, v) , we introduce three clauses $(\overline{R_{u}}+\overline{R_{v}})(\overline{B_{u}}+\overline{B_{v}})(\overline{G_{u}}+\overline{G_{v}})$.

Conversely, for a predicate F of n variables $\{x_{1}, \cdots, x_{n}\}$ and t clauses, $G_{f}(F)$ is the graph G as
illustrated in Fig. 2. Namely G consists of a single triangle of $v_{1},$ v_{2} and $v_{3},$ n triangles of $v_{3},$ x_{i} and
$\overline{x_{i}}$ for $i=1,$ $\cdots,$ n , and t subgraphs each of which is associated with each clause. In the figure, only one
such subgraph associated with a clause $(l_{1}+l_{2}+\cdots+l_{q})$ (each l_{i} is x_{j} or $\overline{x_{j}}$) is drawn. Note that F is
unsatisfiable iff $G_{f}(F)$ is $non-3$-colorable [GJS76].

Recall that we wish to prove the following: If any $non-3$-colorable graph can be generated in
polynomial time by TLHC then any unsatisfiable predicate can also be generated by USG in polynomial
time. Let F be an unsatisfiable predicate we wish to generate. The outline of our generation procedure is
as follows: (1) Obtain $G_{f}(F)$. (2) Since $G_{f}(F)$ is $non-3-colorable$, there is a polynomially long sequence
$G_{0},$ $G_{1},$

$\cdots,$ $G_{p}=G_{f}(F)$ of generation by TLHC. (3) Simulate this by USG, namely, construct the
following sequence of generation by USG:

$F_{0}=x_{1}\overline{x_{1}},$ $S_{1nit},$ $P_{f}(G_{0}),$ $S_{0,1},$ $P_{f}(G_{1}),$ $S_{1,2},$ \cdots ,
$P_{f}(G_{i}),$ $S_{1,i+1},$ $P_{f}(G_{i+1}),$ $\cdots,$ $S_{p-1,p},$ $P_{f}(G_{p})=P_{f}(G_{f}(F)),$ $S_{fin},$ F

where S_{init} is not a single predicate but a sequence of predicates gradually changing from F_{0} to $P_{f}(G_{0})$.
Since $P.(G_{0})$ is a fixed predicate (determined by the initial graph of TLHC) and USG is complete, this
sequence must be finite. $S_{i,i+1}$ is also a sequence of predicates from $P.(G_{i})$ to $P_{r}(G_{i+1})$. $B\epsilon$call that
G_{i+1} is obtained from G_{i} by applying one of the four TLHC)s rules. What we have to prove is that the
length of this sequence $S_{i,i+1}$ is not too long, namely, that a single application of the TLHC’s rules can be
simulated by a polynomially long sequence of applications of USG’s rules in the transformed predicates.
Finally we also have to show that S_{fin} , which is needed to change $P_{f}(G_{f}(F))$ to F for any unsatisfiable
F in general, is polynomially long.

However, we shall not try to change, say, $F_{1}=P_{f}(G_{i})$ to $F_{1+1}=P_{r}(G_{i+1})$, in a straightforward
manner (that means applying some USG rule to F_{1} , getting $F_{1,1}$, then applying a rule again to $F_{1,1}$,
getting $F_{1,2}$ and so on). Instead, we shall try to get F_{i+1} directly from the initial predicate $x_{1}\overline{x_{1}}$ by
making full use of the fact that F_{i} is generated from $x_{1}\overline{x_{1}}$ in polynomial time. The next subsection gives
us several convenient lemmas for this strategy.

4.2 Useful Properties of USG

Let F be a predicate. Then $F[x_{i}=1]$ is a predicate obtained by the following substitution operation (that
is independent from USG). (1) Delete any clause that includes literal x_{i} . (2) Delete all the occurrence
of literal $\overline{x_{i}}$. If some clause becomes empty as a result, then $F[x_{i}=1]$ is undefined. (It turns out that
such undefined cases never occur in this paper, so that we can assume that $F[x_{i}=1]$ is always defined.)
$F[x_{i}=0]$ is defined similarly. Moreover $F[x;=x_{j}]$ is a predicate defined by the following: (1) Replace
all x_{i} by x_{j} and all $\overline{x_{i}}$ by $\overline{x_{j}}$. (2) Delete any clause that includes both x_{j} and $\overline{x_{j}}$. (3) If a clause includes

40

two $x_{j}’ s$ (or $\overline{x_{j}}’ s$) then delete one of them. $F[x;=\overline{x_{j}}]$ is similar. In these substitutions, x_{j} may or may
not appear in F .

Lemma 3. Suppose that a predicate F can be generated in polynomial time. Then (1) $F[x_{k}=$

$1],$ (2) $F[x_{k}=0]$, (3) $F[x_{k}=x_{j}]$ and (4) $F[x_{k}=\overline{x_{j}}]$ can also be generated in polynomial time.
(More formally: If F can be generated in m steps, then $F[x_{k}=1]$ and so on can be generated in
$m+$ [$poly$ in the length of $F[x_{k}=1]$] steps. Similarly for the following lemmas and theorems.)

Proof. We shall only give a proof for (1). Without loss of generality, we can assume that $x_{k}\neq x_{1}$.
Suppose that F is generated by the sequence σ_{0} of $F_{0}=x_{1}\overline{x_{1}},$ $F_{1},$

$\cdots,$
$F_{1},$ $F_{1+1},$ $\cdots,$ $F_{q}=F$. Below we

shall get a new generation sequence σ_{1} of $H_{0}=x_{1}\overline{x_{1}},$ $H_{1},$
$\cdots,$ $H;,$ $H_{i+1},$ $\cdots,$ $H_{q}=F[x_{k}=1]$.

For a clause A , define a mapping μ as $\mu(A)=A$ if A does not include x_{k} or $\overline{x_{k}},$ $\mu(A+x_{k})=\phi$

and $\mu(A+\overline{x_{k}})=A$. Also we introduce the following assertion Q_{i} : H_{i} includes clauses $\mu(A)$ such that A

is included in F_{1} and $\mu(A)\neq\phi$. When $i=0,$ Q_{0} is certainly true since both F_{0} and H_{0} are $x_{1}\overline{x_{1}}$.

Now suppose that Q; is true and some rule is applied to F_{1} to get F_{1+1} . There are several cases:

Case 1. The rule is $Aarrow(A+x_{j})(A+\overline{x_{j}})$ where A includes neither x_{k} nor $\overline{x_{k}}$ and $x_{j}\neq x_{k}$. Then
by the assumption (Q_{i} is true), A also appears in H_{1} and exactly the same rule can be applied to get
H_{i+1} . Now Q_{i+1} is obviously true.

Case 2. The rule is $Aarrow(A+x_{k})(A+\overline{x_{k}})$. Again A is also included in H_{i} (A must not include x_{k}

or $\overline{x_{k}}$). In this case we set $H_{1+1}=H_{i}$, namely, the application of the rule in σ_{0} is completely skipped in
σ_{1} . Note that the assertion Q_{i+1} is again true.

Case 3. The rule is the same as Case 1 but A includes $\overline{x_{k}}$. Let $A’$ be the clause obtained by
deleting $\overline{x_{k}}$ in A . By the assumption, $\mu(A)=A’$ exists in H_{i} . So, we can apply the same rule to $A’$ (i.e.,
$A’arrow(A’+x_{j})(A’+\overline{x_{j}}))$ to get. H_{i+1} .

Case 4. The same as Case 1 but A includes x_{k} . $\mu(A)$ does not exist in H_{i} . Set $H_{i+1}=H_{:}$.

Case 5. Literal $\overline{x_{k}}$ is deleted from $(A+\overline{x_{k}})$. $\mu(A+\overline{x_{k}})=A$ exists in H_{1} . Set $H_{:+1}=H_{i}$.

Case 6. Literal x_{k} is deleted from $(A+x_{k})$. Recall that $\mu(A+x_{k})=\phi$ and thus neither $(A+x_{k})$

nor A exists in H_{i} . Add clause A to H_{i} to get H_{i+1} .

Case 7. Clause A , such that neither x_{k} nor $\overline{x_{k}}$ exists in it, is deleted since it is covered by some
other B . Note that B must not include x_{k} or $\overline{x_{k}}$. So both $\mu(A)=A$ and $\mu(B)=B$ exist in $H_{:}$. Apply
the same rule to H; (delete A) to get H_{1+1} .

Case 8. Clause $(A+\overline{x_{k}})$ is deleted since it is covered by B . Since B must not include $x_{k},$ $\mu(B)\neq\phi$.
One can then see that $\mu(A+\overline{x_{k}})$ is covered by $\mu(B)$ whether or not B includes $\overline{x_{k}}$. Delete $\mu(A+\overline{x_{k}})$ to
get H_{i+1} .

Case 9. $(A+x_{k})$ is deleted. Set $H_{i+1}=H_{i}$.

There remain some other cases, but they are easy and are omitted. Although the sequence σ_{1}

contains unchanged portions as mentioned above, one can just remove those portions to get a proper
sequence of generation. Also one can assure that Q_{i+1} is true in any case, which claims the lemma. \square

Lemma 4. Suppose that two predicates $AA_{1}\cdots A_{k}$ and $B_{1}B_{2}\cdots B_{t}$ can be both generated in
polynomial time. Then so can be done $(A+B_{1})(A+B_{2})\cdots(A+B_{1})A_{1}\cdots A_{k}$, where $(A+B_{i})$ is deleted
if it includes both positive and negative forms of the same variable. Repeated literals are also removed.

Proof. We first generate $AA_{1}\cdots A_{k}$ from $x_{1}\overline{x_{1}}$. Then change it to $(A+x_{I})(A+\overline{x_{1}})A_{1}\cdots A_{k}$

by splitting. Now consider the other generation from $x_{1}\overline{x_{1}}$ to $B_{1}B_{2}\cdots B_{l}$. Note that if we add A to
all the clauses appearing in this generation sequence, then it can be regarded as a generation from
$(A+x_{1})(A+\overline{x_{1}})$ to $(A+B_{1})(A+B_{2})\cdots(A+B_{l})$. Now one can continue the first generation from
$(A+x_{1})(A+\overline{x_{1}})A_{1}\cdots A_{k}$ to get $(A+B_{1})(A+B_{2})\cdots(A+B_{l})A_{1}\cdots A_{k}$. Apply the same technique as

41

Lemma 3 to delete the improper clauses and repeated literals. 0

Lemma 5. Suppose that two predicates $AA_{1}\cdots A_{k}$ and $BA_{1}\cdots A_{k}$ can be both generated in
polynomial time. Then so can be done $(A+B)A_{1}\cdots A_{k}$ under the same condition as the previous
lemma.

Proof. Apply Lemma 4. Then $(A+B)(A+A_{1})\cdots(A+A_{k})A_{1}\cdots A_{k}$ can be generated. All
$(A+A;)$ can be deleted since it is covered by A_{i} . \square

4.3 Efficiency of the Simulation

We shall now prove that there is an efficient simulation of TLHC by USG.

Lemma 6. Suppose that a graph G consists of some number of components $G;$, each of which is
non-3-co1orab1e, and also that we get $G’$, consisting of components $G_{1}’$, by applying one of the four rules
of TLHC. Then if each $P_{f}(G_{i})$, for all i , can be generated in polynomial time then so can be done $P_{f}(G_{1}’\cdot)$

for all i .

Proof. There are four cases.

Case 1. The rule is the addition of K_{4} . Then the lemma is trivial since $G’$ consists of exactly the
same components as G plus the new K_{4} . $P_{f}(K_{4})$ can be generated in constant time.

Case 2. The rule is addition of vertices and/or edges. Recall that new vertices must be connected
to some component. Suppose, for example, components G_{I} and G_{2} of G become connected (the resulting
graph to be $G_{1}’$) by means of the newly introduced vertices and edges. Then $P_{f}(G_{1}’)$ can be obtained
by simply adding polynomially many clauses to $P_{f}(G_{1})P_{f}(G_{2})$. (If $P_{f}(G_{1})$ and $P_{f}(G_{2})$ share the same
variable then regenerate $P_{r}(G_{2})$ in advance using completely different variables.).

Case 3. Components G_{1} and G_{2} are joined into $G_{1}’$. See Fig. 1 again. Let

$P_{r}(G_{1})=A_{1}\cdots A_{n}(\overline{R_{a}}+\overline{R_{b}})(\overline{B_{a}}+\overline{B_{b}})(\overline{G_{a}}+\overline{G_{b}})$,

$P_{f}(G_{2})=B_{1}\cdots B_{m}(\overline{R_{c}}+\overline{R_{d}})(\overline{B_{c}}+\overline{B_{d}})(\overline{G_{c}}+\overline{G_{d}})$.

(i) We first rename (by substitution) variables R., B. and G_{c} of $P_{r}(G_{2})$ into $R_{a},$ B_{a} and G_{a} ,
respectively, and get

$B_{1}\cdots B_{m}(\overline{R_{a}}+\overline{R_{d}})(\overline{B_{a}}+\overline{B_{d}})(\overline{G_{a}}+\overline{G_{d}})$,

which can be generated in polynomial time by Lemma 3.

(ii) Apply Lemma 4 to $P_{f}(G_{1})$ and the predicate in (i) above to get

$A_{1}\cdots A_{n}(\overline{B_{a}}+\overline{B_{b}})(\overline{G_{a}}+\overline{G_{b}})(\overline{R_{a}}+\overline{R_{b}}+B_{1})\cdots(\overline{R_{a}}+\overline{R_{b}}+B_{m})$

$(\overline{R_{a}}+\overline{R_{b}}+\overline{R_{d}})(\overline{R_{a}}+\overline{R_{b}}+\overline{B_{a}}+\overline{B_{d}})(\overline{R_{a}}+\overline{R_{b}}+\overline{G_{a}}+\overline{G_{d}})$.

(iii) Change $(\overline{R_{a}}+\overline{R_{b}}+\overline{B_{a}}+\overline{B_{d}})$ into $(R_{a}+\overline{B_{a}})$ by the literal deletion rule and split it into
$(\overline{R_{a}}+\overline{B_{a}}+\overline{G_{a}})(\overline{R_{a}}+\overline{B_{a}}+G_{a})$. Then both clauses can be deleted since they are the same as some of
the clauses introduced for vertex a . $(R_{a}+\overline{R_{b}}+\overline{G_{a}}+\overline{G_{d}})$ is also deleted similarly. Furthermore delete
literals $\overline{R_{a}}$ and $\overline{R_{b}}$ from $(\overline{R_{a}}+\overline{R_{b}}+B_{1})\cdots(\overline{R_{a}}+\overline{R_{b}}+B_{m})$. Then add clauses associated with the new
edge between vertices b and d . Now we get

$A_{1}\cdots A_{n}B_{1}\cdots B_{m}(\overline{R_{a}}+\overline{R_{b}}+\overline{R_{d}})(\overline{B_{a}}+\overline{B_{b}})(\overline{G_{a}}+\overline{G_{b}})(\overline{R_{b}}+\overline{R_{d}})(\overline{B_{b}}+\overline{B_{d}})(\overline{G_{b}}+\overline{G_{d}})$,

where we can delete $(\overline{R_{a}}+\overline{R_{b}}+\overline{R_{d}})$ because of $(\overline{R_{b}}+\overline{R_{d}})$.

42

(iv) Note that steps (ii) and (iii) can be regarded as playing the role of deleting $(R_{a}+\overline{R_{b}})$. Hence
we can repeat similar steps to delete $(\overline{B_{a}}+\overline{B_{b}})$ and then to delete $(\overline{G_{a}}+\overline{G_{b}})$. Now we get

$A_{1}\cdots A_{n}B_{1}\cdots B_{m}(\overline{R_{b}}+\overline{R_{d}})(\overline{B_{b}}+\overline{B_{d}})(\overline{G_{b}}+\overline{G_{d}})$,

which is what we wanted for $P_{f}(G_{1}’)$.

Case 4. Contraction rule. $P_{r}(G_{1}’)$ can be obtained by a simple renaming of variables (omitted).
口

Lemma 7. If $P_{r}(G_{f}(F))$ can be generated in polynomial time then so can be done F .

Proof. Fig. 3 shows a portion of $G_{f}(F)$ where the subgraph of the lower part is associated with a
clause $(x_{k}+\overline{x_{j}}+x;)$. (The following discussion does not differ much if the clause contains four or more
literals.) We prepare variables $R_{a},$ $B_{a},$ G_{a} for $v_{a},$ $R_{0},$ $B_{0},$ G_{0} for $v_{0},$ $R_{i},$ $B_{i},$ G_{i} for $x;$, and $R_{i}’,$ $B_{1}’,$ $G_{1}’$

for $\overline{x_{1}}$. Similarly for $v_{b},$ v_{c} and $v_{1},$ \cdots , v_{5} .

Let $H=P_{f}(G_{f}(F))$. H can be obtained by preparing the clauses as described in Sec. 4.1. As
described below, we shall modify (simplify) this H mainly using the substitution operation mentioned in
Sec. 4.2, in such a way that if H can be generated in polynomial time then so can be done the simplified
predicate.

(i) We first fix the value of the variables associated with $v_{a},$ $v_{b},$ v_{c} and v_{0} as follows: $G_{a}=1$,
$R_{a}=B_{a}=0,$ $R_{b}=1,$ $B_{b}=G_{b}=0,$ $B_{c}=1,$ $R_{c}=G_{c}=0$, and $G_{0}=1,$ $R_{0}=B_{0}=0$. This substitution
means that we fixed the color of $v_{a},$ $v_{b},$ v_{c} and v_{0} to green, red, blue and green, respectively. H is
simplified to H_{1} by this substitution. By Lemma 3, if H can be generated in polynomial time then so
can be done H_{1} .

(ii) Further simplify H_{1} by substitution $G_{1}=G_{2}=0,$ $B;=B_{i}’=B_{j}=B_{j}’=B_{k}=B_{k}’=0$.
Moreover carry out the following substitution: $B_{2}=\overline{R_{2}},$ $R_{1}=\overline{R_{2}}$, and $B_{I}=R_{2}$. For vertices x_{k} and $\overline{x_{k}}$,
$R_{k}=G_{k}’=\overline{G_{k}}$ and $R_{k}’=G_{k}$, and similarly for $x;,$ $\overline{x_{1}},$

x_{j} and $\overline{x_{j}}$. Then the resulting predicate, say, H_{2} ,
becomes much simpler than the original one; we have already no clauses for such vertices as $v_{a},$ $v_{b},$ v_{c} ,
$v_{0},$ $v_{1},$ $v_{2},$ $x_{i},$ $\overline{x_{1)}}x_{j},$ $\overline{x_{j}},$ x_{k} and $\overline{x_{k}}$. All of the original clauses for $v_{3},$ v_{4} and v_{5} remain as they were. As
for the clauses associated with edges, there remain

$(G_{k}+\overline{R_{2}})$ for (x_{k}, v_{2}) ,

$(\overline{G_{j}}+\overline{R_{5}})$ for $(\overline{x_{j}}, v_{5})$,
$(G;+\overline{R_{4}})$ for $(x:, v_{4})$,

$(R_{2}+\overline{R_{3}})(\overline{R_{2}}+\overline{B_{3}})$ for (v_{3}, v_{1}) ,

and all of the original clauses for $(v_{3}, v_{4}),$ (v_{4}, v_{5}) and (v_{5}, v_{3}) .

(iii) We execute a very similar procedure for other subgraphs associated with other $clau,ses$ of F .
Let $H_{2}=H_{20}H_{21}$ where H_{21} is the remaining clauses described in (ii) above and H_{20} is all the other
clauses for the other subgraphs.

(vi) Now carry out further substitution: $R_{2}=1,$ $R_{3}=1,$ $B_{4}=1,$ $G_{5}=1$ and all other variables
except $G_{i},$ G_{j} and $G_{k’}are$ set to 0 . Then one can see that H_{2} becomes $H_{20}(G_{k})((G_{k})$ is a clause of
a single literal). It should be noted that variables $R_{1}\cdots R_{5},$ $B_{1}\cdots B_{5}$ and $G_{1}\cdots G_{5}$ appearing in H_{21}

never appear in H_{20} . Hence the above substitution does not change H_{20} at all.

(v) If we make a different substitution for $H_{2}=H_{20}H_{21}$: $B_{3}=1,$ $G_{4}=1,$ $R_{5}=1$ and all
other variables except $G;,$ G_{j} and G_{k} are set to 0 , then H_{2} becomes $H_{20}(\overline{G_{j}})$. Therefore, by Lemma 4,
$H_{20}(G_{k}+\overline{G_{j}})$ can be generated in polynomial time.

(vi) If we execute one more different substitution for $H_{2}=H_{20}H_{21}$ (details are omitted), then H_{2}

becomes $H_{20}(G_{i})$ and again by Lemma 4, $H_{20}(G_{k}+\overline{G_{j}}+G_{i})$ can be generated in polynomial time.

43

(vii) Now we simplify $H_{20}(G_{k}+\overline{G_{j}}+G_{i})$ further by applying the same procedure to other subgraphs.
Finally one can get the predicate $F’$ in polynomial time where $F’$ is such a predicate that each $x_{i}(\overline{x_{i}})$ of
the original predicate F is changed to $G;(\overline{G_{i}})$. To modify $F’$ to F is easy. \square

Theorem 1. If TLHC is polynomially-bounded then so is USG.

Proof. Outline of the simulation was given in Sec. 4.1 and we can get rid of the unsettled matters
there by Lemmas 6 and 7. \square

Corollary 1. TLHC is not polynomially-bounded.

USG.
Proof. It is known {Hak85] that there are predicates which cannot be generated in poly-time

$by\square$

References

[Ajt88] M. Ajtai. The complexity ofthe pigeonhole principle. In Proc. 29th IEEE Symp. on Foundations
of Computer Science, pages 346-355, 1988.

$[BIK^{+}92]$ P. Beame, R. Impagliazzo, J. Krajicek, T. Pitassi, P. Pudl\’ak, and W. Woods. Exponential lower
bounds for the pigeonhole principle. In Proc. 24th A CM Symposium on Theory of Computing,
pages 200-220, 1992.

[Coo75] S. Cook. Feasibly constructive proofs and the propositional calculus. In Proc. 16th IEEE
Symp. on Foundations of Computer Science, pages 83-97, 1975.

[CR79] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. J. Symbolic
Logic, 44, 1979.

[CR92] V. Chv\’atal and B. Reed. Mick gets some (the odds are on his side). In Proc. $33rd$ IEEE Symp.
on Foundations of Computer Science, pages 620-627, 1992.

[GJS76] M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems.
Theor. Comput . Sci., 1;237-267, 1976.

[Haj61] G. Haj\’os. \"Uber eine Konstruktion nicht n-farbbarer Graphen. Wiss. Zeitschr. Martin Luther
Univ. Halle-Wittenberg, A 10, 1961.

[Hak85] A. Haken. The intractability of resolution. Theor. Compout. Sci., pages 297-308, 1985.

[IAM92] K. Iwama, H. Abeta, and E. Miyano. Random generation of satisfiable and unsatisfiable CNF
predicates. In Proc. 12th IFIP World Computer Congress, pages 322-328, 1992.

[IM93] K. Iwama and E. Miyano. Security of test-case generation with known answers. In Proc. AAAI
Sprrng Symposium Semes, 1993.

[Kuc91] L. Kuc\’era. A generalized encription scheme based on random graphs. In Proc. 17th Ann.
Workshop on Graph-Theoretic Concepts in Computer Science (Lecture Notes in Computer
Science 570), pages 180-186, 1991.

[MW] A. Mansfield and D. Welsh. Some coloring problems and their complexity. Annals of Discrete
Math., 13:159-170.

[PU92] T. Pitassi and A. Urquhart. The complexity of Haj\’os calculus. In Proc. $33rd$ IEEE Symp. on

Foundations of Computer Science, pages 187-196, 1992.

[Sanar] L. Sanchis. Generating hard and diverse test sets for hp-hard graph problems. Discrete Applied
Math., to appear.

偶

$Fi_{\uparrow}\cdot 1$

$R-t$

$\ulcorner_{1}J,$
3

