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Abstract: We introduce a new class of
grammars called uniquely parsable grammars
(UPG). UPG is a kind of phrase structure
grammar having a restricted type of rewriting
rule set so that parsing can be done without
backtracking. After giving basic properties of
UPG, we show that, in spite of such restrict\’ion
to the rules, UPG is universal in its generating
ability. That is, the class of languages gener-
ated by UPG’s is the same as the class of lan-
guages accepted by Turing machines. We also
define a monotonic UPG (MUPG), a subclass
of UPG, and prove that the class of languages
generated by MUPG’s is the same as the class
of languages accepted by deterministic linear-
bounded automata.

1 Introduction
Parsing is an important problem in formal lan-
guage theory, and there were many investiga-
tions on efficient parsing methods. When re-
ducing a given word by reverse applications
of rewriting rules, there are in general many
choices of reductions and thus it needs back-
tracking to parse it. But, some classes of
languages can be parsed without backtrack-
ing. Deterministic context-free languages [1]
are such ones. For this class (and its vari-
ous subclasses), many practically useful frame-
works, e.g., $LR(k)$ grammars, have been defined
and studied to parse them in a deterministic
manner. However, besides the subclasses of
context-free grammars, there are very few stud-
ies on grammar classes having such property.

As for an array grammar, which gener-
ates two-dimensional symbol arrays, a uniquely

’Presently, Utsunomiya University

parsable array grammar (UPAG) has been in-
troduced by Yamamoto and Morita [5]. UPAG
is a subclass of isometric array grammars
(IAG), and has the property of unique parsabil-
ity. In the case of IAG, it is very difficult to
parse array languages for the grammars with-
out this property [3]. So, this framework is use-
ful to find a subclasses of array grammars which
have efficient parsing $il$gorithms.

In this paper, we introduce a “uniquely
parsable grammar” (UPG), a string grammar
version of UPAG. UPG is a grammar whose
rewriting rules satisfy the following condition:
ifa suffix of the righthand side ofa rule agrees
with a prefix of that of some other rule, then
these portions remain unchanged by the reverse
application of these rules (precise definition will
be given later). By this restriction, UPG lan-
guages can be parsed without backtracking.

In what follows, after showing basic proper-
ties of UPG, we investigate generating ability
of UPG. In spite of the restriction to the rules,
UPG is shown to be universal. That is, any
language accepted by a Turing machine can be
generated by a UPG, and vice versa. We also
define a monotonic UPG (MUPG) as a subclass
of UPG, and prove that the generating ability
of MUPG is exactly characterized by a deter-
ministic linear-bounded automaton.

2 Definitions and Basic Prop-
erties of UPG

We introduce here a uniquely parsable gram-
mar, and show that it is parsed without back-
tracking, especially by a “leftmost reduction”.

We first give some definitions. (As for stan-
dard notations for strings and languages, see
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e.g. [2].)

Definition 2.1 A uniquely parsable gram-
mar (UPG) is a system

$G=$ $(N,T, P, S,$ ,

where $N$ and $T$ are sets of nonterminal and
terminal symbols respectively $(N\cap T=\emptyset),$ $S$ is
a start symbol $(S\in N)$ , and $ is a special end-
marker $( \not\in(N\cup T))$ . $P$ is a set of rewriting
rules of the following form:

$\alphaalpha_{A}arrow\beta_{\beta\}^{arrow_{arrow}}$

’
$\^{\alphaarrow_{arrow}beta_{\beta\}}\_{\alpha}$

,
or

where $\alpha,\beta\in(N\cup T)^{+},$ $\alpha\neq\beta,$ $A\in N$ , and $\alpha$

contains at least one nonterminal (a rule of the
form $A$\rightarrow $$ is called an e-rule). Further-
more, $P$ satisfies the following condition.

UPG-condition:
1. The righthand side of each rule in $P$ is nei-

ther $S$ , $S, S$, nor $S$.
2. For any two rules $r_{1}=\alpha_{1}arrow\beta_{1}$ and $r_{2}=$

$\alpha_{2}arrow\beta_{2}$ in $P$ ( $r_{1}$ and $r_{2}$ may be the same)
the following holds.
(a) If $\beta_{1}=\beta_{1}’\delta$ and $\beta_{2}=\delta\beta_{2}’$ for some

$\delta,$ $\beta_{1}’,\beta_{2}’\in(N\cup T\cup\{})^{+}$ , then $\alpha_{1}=\alpha_{1}’\delta$

and $\alpha_{2}=\delta\alpha_{2}’$ for some $\alpha_{1}’,$ $\alpha_{2}’\in(N\cup T\cup$

$\{})^{*}$ .
(b) If $\beta_{1}=\gamma\beta_{2}\gamma’$ for some $\gamma,$ $\gamma’\in(N\cup T\cup$

$\{})^{*}$ , then $r_{1}=r_{2}$ (therefore
$\gamma=\gamma’=_{\square ^{\mathcal{E}}}$

(empty word)).

UPG-condition 2(a) requires that if some suf-
fix of the righthand side of $r_{1}$ agrees with some
prefix of that of $r_{2}$ , then the lefthand sides of
$r_{1}$ and $r_{2}$ also contain them as a suffix and a
prefix, respectively. For example, the following
pair of rules

$Aarrow bA$ , $ACarrow Ad$

satisfies UPG-condition, while

$Aarrow bA$ , $ECarrow Ad$

does not. The condition 2(b) says that there
are no pair of distinct rules $r_{1}$ and $r_{2}$ such that
the righthand side of $r_{2}$ is a substring of that
of $r_{1}$ . Note that there is at most one $\epsilon$-rule
because of 2(b).

Definition 2.2 Let $G=$ $(N,T, P, S,$ be a
UPG, and $\eta$ be a word in $(N\cup T\cup\{})^{+}$ . A
rule $\alphaarrow\beta$ in $P$ is said to be applicable to $\eta$ if
$\eta=\gamma\alpha\delta$ for some $\gamma,$ $\delta\in(N\cup T\cup\{})^{*}$ . Ap-
plying $\alphaarrow\beta$ to $\eta$ we obtain $\zeta=\gamma\beta\delta$ , and
say $\zeta$ is directly derived from $\eta$ in $G$ . This is
written as $\eta\Rightarrow G$

(. The reflexive and transitive
closure of the relation $\Rightarrow G$

defines the relation

of derivation and is denoted by $\Rightarrow^{*}G$ For any

$\eta,$ $\zeta\in(N\cup T\cup\{})^{+}$ if there are $\xi_{1},$ $\xi_{2},$ $\cdots,\xi_{n-1}$

such that $\eta\Rightarrow G\xi_{1}\Rightarrow G\xi_{2}\Rightarrow G$ $\Rightarrow G\xi_{n-1}\Rightarrow G\zeta$ , we

write it as $\eta 4G\zeta$ . We $use\Rightarrow,$
$\Rightarrow^{*},$ $4$ instead of

$\Rightarrow G\Rightarrow^{*}*GG$ if it is clear which grammar $G$ $i_{q}$ used.
$\square$

Definition 2.3 Let $G=$ $(N, T, P, S,$ be a
UPG, and $\alpha$ be a word in $(N\cup T)^{+}$ . If
$SRightarrow^{*}G$ $\alpha $, we call $\alpha$ a sentential form in
$G$ . The language $L(G)$ generated by $G$ is the
set of all sentential forms over $T$ , i.e., $L(G)=$

{ $w\in T^{*}|$ $S$ $\Rightarrow^{*}G$ $w$}. The class of lan-
guages generated by the grammar class UPG is
denoted by $\mathcal{L}[UPG]$ (similar notations are used
for other classes of grammars or machines). $\square$

Example 2.1 (1) The grammar

$G_{paren}=(\{S\}, \{(, )\},P_{paren}, S,$

is a UPG that generates all well-formed paren-
theses strings over $\{(, )\}$ , where $P_{paren}$ consists
of the following rules.

$S$ $arrow$ $SS$ $S$ $arrow$ $()$

$S$ $arrow$ $(S)$

(2) The grammar

$G_{a\dot{n}th}=(\{E,T, F\}, \{a, +, *, (, )\}, P_{arifh},E,$

is a UPG that generates all arithmetic expres-
sions over $\{a, +, *, (, )\}$ , where $P_{arith}$ consists of
the following rules.

E$ $arrow$ E+T$ $T$ $arrow$ $T*F$
$E+$ $arrow$ $E+T$十 $T $arrow$ $F
$E)$ $arrow$ $E+T$) $(T$ $arrow$ $(F$

$E$ $arrow$ $T$ $+T$ $arrow$ $+F$

$E+ $arrow$ $T+ $F$ $arrow$ $(E)$

$(E+$ $arrow$ $(T+$ $F$ $arrow$ $a$

$(E)$ $arrow$ $(T)$

口
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$\iota\alpha_{1}’\deltaarrow\beta_{1}^{\eta}\delta^{:\gamma\beta_{1}\delta\beta_{2}’\zeta}\alpha_{2}’\frac{\ovalbox{\tt\small REJECT}}{i_{1}J\Uparrow\Uparrow l\delta i_{1}i_{2}}arrow\delta\beta_{2}’,$

$i_{2}l$

$\overline{\ovalbox{\tt\small REJECT}_{\delta\beta_{2}^{2,},i_{2}J’\Uparrow}’l\delta\alpha_{2}arrow\gamma\alpha_{1}\delta\beta_{2}\zeta i_{1}i}\overline{\ovalbox{\tt\small REJECT}’\gamma\beta_{1}\alpha_{2}’\zeta_{i_{1}J}\Uparrow^{1}l\alpha_{1}’\delta^{\delta}arrow\beta_{1}’\delta ii_{2}}$

Figure 1: Reductions in UPG. (Any direct re-
duction does not affect reverse applicability of
other rules.)

Definition 2.4 Let $G=$ $(N,T, P, S,$ be a
UPG, and $\eta=x_{1}x_{2}\cdots x_{m}$ be a word over
$(N\cup T\cup\{})$ of length $m$ . If there is a rule
$\alphaarrow\beta\in P$ such that $\beta=x_{i}x_{i+1}\cdots x_{i+|\beta|-1}$

for some $i$ , then $\alphaarrow\beta$ is said to be re-
versely applicable to $\eta$ at position $i$ . Any such
pair $[\alphaarrow\beta, i]$ is called a reversely applicable
item to $\eta$ . If $\xi$ is obtained by doing so (i.e.,
$\xi_{ectlyreducedto\xi,an^{1\beta}}=x_{1}\cdot x_{i-1}\alpha x_{4_{writeitas\eta\Leftarrow}}i+\cdots x_{m})wesay\eta i_{\xi^{S}}rdi- or$

$\eta[\alphaarrow\beta,i]\Leftarrow\xi$. Apparently, $\eta\Leftarrow\xi$ iff $\xi\Rightarrow\eta$ . The
reflexive and transitive closure of direct reduc-
$tion\Leftarrow defines$ the relation of reduction and is
denoted $by\Leftarrow^{*}$ . The $relation\Leftarrow n$ is also defined
similarly as 4. $\square$

Parsing is considered to be a reducing process
of a given word by reverse applications of rules
in $P$ . Intuitively speaking, the name “UPG”
comes from the following fact. Assume there
are two rules $\alpha_{1}arrow\beta_{1}’\delta$ and $\alpha_{2}arrow\delta\beta_{2}’$ in $P$ , and
consider a word $\eta=\gamma\beta_{1}’\delta\beta_{2}’\zeta$ . Both these rules
can be reversely applied to $\eta$ . If these rules do
not satisfy UPG-condition 2(a), the reduction
by $\alpha_{1}arrow\beta_{1}’\delta$ may prevent the further reduction
by $\alpha_{2}arrow\delta\beta_{2}’$ . However, in UPG, since $\alpha_{1}=\alpha_{1}’\delta$

and $\alpha_{2}=\delta\alpha_{2}’$ hold, $\alpha_{2}arrow\delta\beta_{2}’$ can be reversely
applied even after the former reduction. There-
fore, any reduction does not affect the reverse
applicability of other rules (Figure 1). By this
property, if $\eta\Leftarrow n$ $S$, then any reduction start-
ing from $\eta$ eventually reaches $S$ in $n$ steps.
Therefore, parsing can be done without back-
tracking. This is stated in the following theo-
rem.

Theorem 2.1 (Unique Parsability Theo-
rem) Let $G=(N, T, P, S,$ be a UPG, and let
$\eta$ be a word in $(N\cup T\cup\{})^{+}$ . If $\eta\Leftarrow n$ $S$, then
for any reversely applicable item $[\alphaarrow\beta, i]$ to $\eta$

$[\alphaarrow\beta,i]$

and a word $\xi$ such that $\eta$
$\Leftarrow$ $\xi$ the following

holds.
$\eta[\Leftarrow\xi\epsilon^{-}=^{1}$ $S$

In order to prove this theorem, we define a
mapping $\varphi:(N\cup T\cup\{})^{*}\cross z_{+}arrow P\cross Z_{+}\cup\{-\}$

( $Z_{+}$ denotes the set of all positive integers).

$\varphi(\eta, i)=\{\begin{array}{l}[\alphaarrow\beta,i]if\alphaarrow\beta\in P,and\gamma,\delta\in(N\cup T^{o_{\bigcup_{=}\{})^{*}}}suchthat|\gamma|i\eta=\gamma\beta\delta frso_{-}m_{1}e-elsewhere\end{array}$

It is easily seen that $\varphi(\eta, i)$ has unique value (if
otherwise, $G$ violates UPG-condition $2(b))$ .

Example 2.2 The value of $\varphi$ for the grammar
$G_{arith}$ in Example 2.1 and the word $(T+F)*
a$ is as follows.

\varphi ($(T+F)*a$, $2$ ) $=[(E+arrow(T+, 2]$
\varphi ($(T+F)*a$, $4$ ) $=[+Tarrow+F, 4]$
\varphi ($(T+F)*a$, $8$ ) $=[Farrow a, 8]$
\varphi ($(T+F)*a$, $i$ ) $=-$ (for $i\neq 2,4,8$ )

口

Lemma 2.1 Let $G$ $=$ $(N, T, P, S,$ be a
UPG, and $\eta$ be a word in $(N\cup T\cup\{})^{+}$ . For
any $i_{1},$ $i_{2}(l\leq i_{1}<i_{2}\leq|\eta|)$ , if $\varphi(\eta, i_{1})=$

$[\alpha_{1}arrow\beta_{1}, i_{1}],$ $\varphi(\eta, i_{2})=[\alpha_{2}arrow\beta_{2}, i_{2}]$ and
$\eta\varphi\epsilon_{=^{1}}^{\eta,i)}\xi_{1},$ $\eta\varphi\zeta_{=^{i_{2})}}^{\eta}\xi_{2}$ , then there exists a
unique word $\sigma$ such that the followings hold.

$\varphi(\xi_{1}, i_{2}’)=[\alpha_{2}arrow\beta_{2}, i_{2}’]$ $(i_{2}’=i_{2}+|\alpha_{1}|-|\beta_{1}|)$

$\varphi(\xi_{2}, i_{1})=[\alpha_{1}arrow\beta_{1}, i_{1}]$

$\eta^{\varphi\cong\eta,i_{1})\varphi(\xi_{1},i_{2})}\xi_{1}\Leftarrow’\sigma$

$\eta^{\varphi E_{\xi_{2}^{\varphi\langle}}^{i_{2})}4^{2}=^{i_{1})}\sigma}\eta,$
,

Proof. First, consider the case $i_{2}-i_{1}\geq|\beta_{1}|$ .
Then $\eta$ is written as

$\eta=\gamma\beta_{1}\delta\beta_{2}\zeta$,

where $|\gamma|=i_{1}-1,$ $|\gamma\beta_{1}\delta|=i_{2}-1$ . Therefore,

$\xi_{1}=\gamma\alpha_{1}\delta\beta_{2}($ ,
$\xi_{2}=\gamma\beta_{1}\delta\alpha_{2}\zeta$ .

Now consider $\xi_{1}$ . The rule $\alpha_{2}arrow\beta_{2}$ , that is
reversely applicable to $\eta$ at position $i_{2}$ , is also
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applicable to $\xi_{1}$ at position $i_{2}+|\alpha_{1}|-|\beta_{1}|(=i_{2}’)$ .
Thus $\varphi(\xi_{1}, i_{2}’)=[\alpha_{2}arrow\beta_{2}, i_{2}’]$ . Therefore,

$\xi_{1}^{\varphi(\xi,i’)}\div^{1}=^{2}\gamma\alpha_{1}\delta\alpha_{2}\zeta$ .

Consider $\xi_{2}$ . The rule $\alpha_{1}arrow\beta_{1}$ , that is reversely
applicable to $\eta$ at position $i_{1}$ , is also applicable
to $\xi_{2}$ at the same position $i_{1}$ . So, $\varphi(\xi_{2}, i_{1})=$

$[\alpha_{1}arrow\beta_{1}, i_{1}]$ , and

$\xi_{2}^{\varphi(4^{2}=^{i_{1})}\gamma\alpha_{1}\delta\alpha_{2}\zeta}$.

Thus the lemma holds for $\sigma$ $=$ $\gamma\alpha_{1}\delta\alpha_{2}($

(uniqueness of $\sigma$ is clear).
Next, consider the case $i_{2}-i_{1}<|\beta_{1}|$ . Then,

from UPG-condition 2(a), $\eta,$
$\alpha_{1}arrow\beta_{1}$ , and

$\alpha_{2}arrow\beta_{2}$ must be written as

case $i_{0}>i$ is analogous). From Lemma 2.1,
the following holds for some $\sigma$ .

$\eta^{\varphi\zeta_{=^{0}\xi_{0}\Leftarrow^{0}=^{i’)}\sigma}^{\eta,i)\varphi(\xi}}$

$(i’=i+|\alpha_{0}|-|\beta_{0}|))$

$\eta^{\varphi(}\Leftarrow^{\eta,i)}\xi\varphi\cong^{\xi,i_{0}})\sigma$

On the other hand, from the induction hypoth-
esis,

$\xi_{0}^{\varphi}\Leftarrow^{0}\sigma(\xi,i’)\Leftarrow^{n-1}$ $S$

holds. Therefore,

$\eta^{\varphi(}\Leftarrow^{\eta,i)}\epsilon^{\varphi}\zeta^{\xi,i)}=^{0}\sigma k^{-}=^{1}$ $S$.

Thus
$\eta^{\varphi(}\Leftarrow^{\eta,i)}\xi\Leftarrow^{n}$ $S$,

and the theorem iS proved. 口

$\eta=\gamma\beta_{1}’\delta\beta_{2}’\zeta$ ,
$\alpha_{1}arrow\beta_{1}=\alpha_{1}’\deltaarrow\beta_{1}’\delta$ ,
$\alpha_{2}arrow\beta_{2}=\delta\alpha_{2}’arrow\delta\beta_{2}’$ ,

where $|\gamma|=i_{1}-1,$ $|\gamma\beta_{1}’|=i_{2}-1$ . Thus,

$\xi_{1}=\gamma\alpha_{1}’\delta\beta_{2}’\zeta$ ,
$\xi_{2}=\gamma\beta_{1}’\delta\alpha_{2}’\zeta$ .

Again in this case, $\alpha_{2}arrow\beta_{2}$ can be reversely
applied to $\xi_{1}$ at $i_{2}’=i_{2}+|\alpha_{1}|-|\beta_{1}|$ , and $\alpha_{1}arrow\beta_{1}$

can be reversely applied to $\xi_{2}$ at $i_{1}$ . Thus

$\varphi(\xi_{1}, i_{2}’)=[\alpha_{2}arrow\beta_{2}, i_{2}’]$ , $(i_{2}’=i_{2}+|\alpha_{1}|-|\beta_{1}|)$

$\varphi(\xi_{2}, i_{1})=[\alpha_{1}arrow\beta_{1}, i_{1}]$ ,
$\xi_{1}^{\varphi(\xi_{1},i_{2})}\Leftarrow’\gamma\alpha_{1}’\delta\alpha_{2}’\zeta$ ,
$\xi_{2}^{\varphi(\not\leq_{---}}--2=^{i_{1})}\gamma\alpha_{1}’\delta\alpha_{2}’\zeta$ .

Therefore the lemma holds for $\sigma=\gamma\alpha_{1}’\delta\alpha_{2}’($ . $\square$

Proof of Theorem 2.1. We prove this by an
induction on the number $n$ of steps of reduc-
tion.

The case $n=1$ : If $\eta 4$ $S$ there is only one
reversely applicable item to $\eta$ , because $G$ satis-
fies UPG-condition 1 and 2. Thus the theorem
holds for $n=1$ .

The case $n>1$ : Assume the theorem holds
for $n$ . If $\eta^{n+1}\Leftarrow$ $S$, there exists some $\varphi(\eta, i_{0})=$

$[\alpha_{0}arrow\beta_{0}, i_{0}]$ such that $\eta^{\varphi\zeta_{=^{0)}\xi_{0}}^{\eta,i}}\Leftarrow n$ $S$. Let
$\varphi(\eta, i)=[\alphaarrow\beta, i]$ be any reversely applicable

$\varphi(\eta,i)$

item to $\eta$ , and let $\xi$ be a word such that $\eta\Leftarrow$

$\xi$ . We assume $i\neq i_{0}$ , because if $i=i_{0}$ it is
done. We consider only the case $i_{0}<i$ (the

Deflnition 2.5 Let $G=$ $(N,T, P, S,$ be a
UPG. A direct reduction $\eta\Leftarrow$ (in $G$ is called
a direct leftmost reduction iff $\eta^{\varphi\zeta_{=^{0)}\zeta}^{\eta,i}}$ for $i_{0}=$

$\min\{i|\varphi(\eta, i)\neq-\}$ . This is also written as
$\eta\Leftarrow\zeta 1mr$ A reduction

$\eta_{0}\Leftarrow\eta_{1}\Leftarrow\cdots\Leftarrow\eta_{n}$

is called a leftmost reduction iff

$\eta_{0}hm\Leftarrow\eta_{1}h^{\Leftarrow}$

. . .
$h^{\Leftarrow}\eta_{n}$ .

If there is a leftmost reduction (of length n)
from $\eta_{0}$ to $\eta_{n}$ , we write it as $\eta_{0}$ $*\mathbb{I}\eta_{n}$ (or

$\eta 0_{1mr}^{n}\Leftarrow\eta_{n})$ . $\square$

Corollary 2.1 Let $G=$ $(N, T, P, S,$ be a
UPG, and let $\eta$ be a word in $(N\cup T\cup\{})^{+}$ .
If $\eta\Leftarrow n$ $S$ , then $\eta_{1mr}^{n}\Leftarrow$ $S$.

Proof. This is proved by an induction on $n$ .
The case $n=1$ : It is obvious, since if $\eta\pm$

$S$ there is only one reversely applicable item
to $\eta$ .

The case $n>1$ : Assume the corollary holds
for $n$ . Let $\eta$ be a word such that $\eta n+1\Leftarrow$ $S$,
and $i_{0}= \min\{i|\varphi(\eta, i)\neq-\}$ . Then, from
Theorem 2.1,

$\eta^{\varphi\zeta_{=^{0}\xi}^{\eta,i)}}\Leftarrow n$ $S$.

By the induction hypothesis, $\xi 1mr\Leftarrow n$ $S$ holds.

Therefore $\eta n_{\Leftarrow}1mr+1$ $S$. 口
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3 Universality of UPG

In this section we show that UPG is universal
in its generating power, i.e., $\mathcal{L}[UPG]$ is equal
to the class $\mathcal{L}[DTM]$ of languages accepted by
Turing machines (or the class of Type-O lan-
guages). Although UPG is a restricted type of
phrase structure grammar, any computing pro-
cess of a Turing machine can be simulated by
a reduction process of it.

Definition 3.1 A deterministic Turing ma-
chine (DTM) is a system defined by

$M=(Q, \Sigma,\Gamma,\delta, a_{0}, q_{0}, q_{f})$ ,

where $Q$ is a set of states, $\Sigma$ is a set of input
symbols, $\Gamma$ is a set of tape symbols $(\Gamma\supseteq\Sigma)$ ,
$\delta$ : $Q\cross\Gammaarrow Q\cross\Gamma\cross\{L, R\}\cup\{-\}$ is a move
function (“-,, means that the machine halts),
$a_{0}\in\Gamma$ is a blank symbol, $q_{0}\in Q$ is an initial
state, and $q_{f}\in Q$ is a final state (halting state).
Assume that the tape is one-way infinite to the
right, and $M$ never writes the blank symbol $a_{0}$ .

An instantaneous description (ID) of a DTM
$M$ is a word $\alpha q\beta$ , where $\alpha,\beta\in(\Gamma-\{a_{0}\})^{*}$

and $q\in Q$ . It represents a computational
configuration of $M$ , where non-blank portion
of the tape is $\alpha\beta$ and $M$ is reading the left-
most symbol of $\beta$ (if $\beta=\epsilon$ (empty word) then
$a_{0})$ in state $q$ . Starting from an initial ID
$q_{0}w(w\in\Sigma^{*})$ , if $M$ halts with a final ID $q_{f}\alpha$

for some $\alpha\in(\Gamma-\{a_{0}\})^{+}$ , then $w$ is said to be
accepted by $M$ . The set of all accepted words is
called the language accepted by $M$ and denoted
by $L(M)$ . 口

Lemma 3.1 $\mathcal{L}[UPG]\supseteq \mathcal{L}[DTM]$ .

Proof. Let $M$ $=$ $(Q, \Sigma, \Gamma, \delta, a_{0}, q_{0}, q_{f})$

be an arbitrary DTM, where $\Gamma$ $=$

$\{a_{0}, a_{1}, \cdots, a_{n}\},$ $\Sigma=\{a_{1}, a_{2}, \cdots, a_{m}\}(m\leq n)$ .
We now construct a UPG $G_{M}=(N, T, P, S,$

that simulates $M$ . It is defined as follows.

$N$ $=$ $\{S\}\cup\{A_{1}, \cdots, A_{n}\}\cup\{B_{1}, \cdots, B_{n}\}$

$\cup\{C_{1}, \cdots, C_{m}\}\cup(Q\cross\{a_{0}, \cdots, a_{n}\})$

$T$ $=$ $\Sigma$

The set $P$ of rules is as follows:
(1) For each $a_{i}\in\Gamma-\{a_{0}\}$ include the following

rules in $P$ .

$Sarrow SB_{i}$ , $Sarrow(q_{f}, a_{i})$

(2) For each $q_{h},$ $q_{j}\in Q$ , $a_{i}\in\Gamma$ , and $a_{k},$ $a_{l}\in$

$\Gamma-\{a_{0}\}$ , if $\delta(q_{h}, a_{i})=(q_{j}, a_{k}, L)$ then in-
clude the following rule in $P$ .

$(q_{j}, a_{l})B_{k}arrow A_{l}(q_{h}, a_{i})$

(3) For each $q_{h},$ $q_{j}\in Q,$ $a_{i}\in\Gamma$ , and $a_{k},$ $a_{l}\in\Gamma-$

$\{a_{0}\}$ , if $\delta(q_{h}, a_{i})=(q_{j}, a_{k}, R)$ then include
the following rules in $P$ .

$A_{k}(q_{j}, a_{l})arrow(q_{h}, a_{i})B_{l}$ ,
$A_{k}(q_{j}, a_{0})\arrow$ ( $q_{h}$ , ai)$

(4) For each $a_{i},$ $a_{j}\in\Sigma$ , include the following
rules in $P$ .

$( $q_{0}$ , ai)\rightarrow $Ci, $C_{i}B_{j}arrow a_{i}C_{j}$ , Ci$\rightarrow ai$

(5) Include the following rule in $P$ .

$(qo, ao)$\rightarrow $$

It is easy to verify that $G_{M}$ satisfies UPG-
condition, because $M$ is deterministic.

An ID of $M$

$a_{i_{1}}\cdots a_{i_{h-1}}qa_{i_{h}}a_{i_{h+1}}\cdots a_{i_{k}}$

is represented by the following word in $G_{M}$ .

$A_{i_{1}}\cdots A_{i_{h-1}}(q, a_{i_{h}})B_{i_{h+1}}\cdots B_{i_{k}}$ $

Such a word is generated and updated by the
rules of $G_{M}$ . A computing process of $M$ is sim-
ulated by a reduction process in $G_{M}$ .

We first show that if a terminal word $w\in\tau*$

is generated by $G_{M}$ , then $M$ accepts $w$ . Since
$w\in L(G_{M})$ , there is a reduction $w$\Leftarrow $S\.$

Consider this reduction process. First, $w$ is
reduced by the rules in (4) (or the rule in (5)
if $w=e$ ). Note that the other rules cannot
be used until a symbol $(q_{0}, a_{i})$ appears. When
$w$ is reduced to a word containing $(q_{0}, a_{i})$ , it
represents the initial ID of $M$ with the input
$w$ . After that, the rules in (2) and (3) are used
to reduce it. It is easy to see that each step
of $M’ s$ movement is simulated by reducing the
word using the rules in (2) and (3). Finally, a
symbol of the form $(q_{f}, a_{i})$ must appear at the
left end (except $) of the word, which represents
a final ID of $M$ . Otherwise, rules in (1) cannot
be used for reduction, and the word $w$ is not
reduced to $S$. Thus, there is a sequence of
ID’s that leads $M$ to a final state, and $w$ is
accepted by $M$ .
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Conversely, suppose a word $w=a_{i_{1}}\cdots a_{i_{j}}\in$

$\Sigma^{*}$ is accepted by $M$ , i.e., there is a sequence
of ID’s starting from the initial ID

$q_{0}a_{i_{1}}a_{i_{2}}\cdots a_{i_{j}}$

to a final ID

$q_{f}a_{i_{1}’}a_{i_{2}’}\cdots a_{i_{k}’}$ .
Then, as we shall see, there is a reduction from
$w$ to $S$. First, reducing $w$ by the rules
in (4) (or (5) if $w=\epsilon$ ), a word representing
the initial ID is obtained. Then, by the rules in
(2) and (3), the movement of $M$ is simulated.
Since $M$ accepts $w$ , $w$ must be reduced to
a word representing the final ID of $M$ . After
that, by the rules in (1) it is reduced to $S$.

Thus, $wLeftarrow^{*}$ $S$. Therefore $w\in L(G_{M})$ .
By above, we can see that $L(G_{M})=L(M)$ .

口

Since DTM is universal and thus can eas-
ily simulate a derivation process of a UPG,
$\mathcal{L}[UPG]\subseteq \mathcal{L}[DTM]$ holds. Therefore, the fol-
lowing theorem is obtained.

Theorem 3.1 $\mathcal{L}[UPG]=\mathcal{L}[DTM]$ .

4 Monotonic UPG

We now introduce a subclass of UPG called
a monotonic UPG (MUPG), and show that
the class of languages generated by MUPG’s is
the same as the class accepted by deterministic
linear-bounded automata (DLBA).

Definition 4.1 Let $G=$ $(N,T, P, S,$ be a
UPG. $G$ is called a monotonic $UPG$ (MUPG),
iff each rule $\alphaarrow\beta$ , except an e-rule,

$satisfie_{\square ^{S}}$

$|\alpha|\leq|\beta|$ .
MUPG is considered to be a restricted

type of context-sensitive grammar that satisfies
UPG-condition.

Definition 4.2 A deterministic linear-bound-
ed automaton (DLBA) is a system defined by

$M=$ $(Q, \Sigma, \Gamma, \delta, \sqrt{}:, \, q_{0},q_{j})$ ,

where $Q,$ $\Sigma,$ $\Gamma,\delta,$
$q_{0}$ , and $q_{f}$ are the same as

in DTM. Symbols $\phi$ and $ are left and right
end-markers of an input word (t$ $\in\Gamma-\Sigma$ ),
and $M$ cannot go beyond them. Therefore
$M$ satisfies the following condition: For every
$q_{h},$ $q_{j}\in Q,$ $a_{i},$ $a_{k}\in\Gamma$ such that $\delta(q_{h}, a_{i})=$

$(q_{j}, a_{k}, d)$ ,

1. If $a_{i}\not\in\{\phi$, $ $\}$ then $a_{k}\not\in$ {\Leftarrow $}.
2. If $a_{i}=\phi$ then $a_{k}=\phi$ and $d=R$ .
3. If $a_{i}$ =$ then $a_{k}=$ and $d=L$ .

An ID for DLBA is defined similarly as in
DTM. Starting from an initial ID $\phi q_{0}ww\in$

$\Sigma^{*})$ , if $M$ halts with a final ID $\phi q_{f}\alpha$ for some
$\alpha\in(\Gamma-\{t})^{*}$ , then $w$ is said to be accepted
by $M$ . The set of all accepted words is the
language accepted by $M$ and denoted by $L(M)$ .

口

Lemma 4.1 $\mathcal{L}[MUPG]\supseteq \mathcal{L}[DLBA]$ .

Proof. Let $M$ $=$ $(Q, \Sigma, \Gamma, \delta, t\, q_{0}, q_{f})$

be an arbitrarily given DLBA, where $\Gamma=$

$\{\#, \, a_{1}, \cdots, a_{n}\},$ $\Sigma=\{a_{1}, a_{2}, \cdots, a_{m}\}(m\leq$

$n)$ . An MUPG $G_{M}=(N,T, P, S,$ such that
$L(G_{M})=L(M)$ is defined as follows.

$N$ $=$ $\{S\}\cup\{A_{1}, \cdots, A_{n}\}\cup\{B_{1}, \cdots, B_{n}\}$ .
$\cup\{C_{1}, \cdots, C_{m}\}\cup(Q\cross\{a_{1}, \cdots,a_{n}\})$

$T$ $=$ $\Sigma$

Let $\Gamma’=\Gamma-\{t}$ . The set $P$ of rules is as
follows:
(1) For each $a_{i}\in\Gamma’$ include the following rules

in $P$ .
$Sarrow SB_{i}$ , $Sarrow(q_{f}, a_{i})$

(2) For each $q_{h},$ $q_{j}\in Q$ , and $a_{i},$ $a_{k},$ $a_{l}\in\Gamma’$ , if
$\delta(q_{h}, a_{i})=(qj, a_{k}, L)$ then include the fol-
lowing rule in $P$ .

$(q_{j}, a_{l})B_{k}arrow A_{l}(q_{h}, a_{i})$

$X$

(3) For each $q_{h},$ $q_{j},$ $q_{l}\in Q$ , and $a_{i},$ $a_{k}\in\Gamma’$ , if
$\delta(q_{h},a_{i})=(q_{j}, a_{k}, L)$ and $\delta(q_{j}, \phi)=(q_{l}, \phi R)$

then include the following rule in $P$ .
$q_{l}, a_{k})arrowq_{h}, a_{i})$

(4) For each $q_{h},$ $q_{j}\in Q$ , and $a_{i},$ $a_{k},$ $a_{l}$. $\in\Gamma’$ , if
$\delta(q_{h}, a_{i})=(q_{j}, a_{k}, R)$ then include the fol-
lowing rule in $P$ .

$A_{k}(q_{j},a_{l})arrow(q_{h},a_{i})B_{l}$

(5) For each $q_{h},q_{j},$ $q_{l}\in Q$ , and $a_{i},a_{k}\in$ ”,
if $\delta(q_{h},a_{i})$ $=$ $(q_{j}, a_{k}, R)$ and \delta (qj, $) $=$

$(q\iota, \, L)$ then include the following rule in
$P$ .

$(q_{l}, a_{k})\arrow$ ( $q_{h}$ , ai)$

(6) For each $a_{i},$ $a_{j}\in\Sigma$ , include the following
rules in $P$ .

$(qo, ai)\rightarrow $Ci, $C_{i}B_{j}arrow a_{i}C_{j}$ , Ci$\rightarrow ai$
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(7) If $e\in L(M)$ , then include the following
rule in P. (It is easily decided whether
$e\in L(M)$ , since $M$ is a DLBA.)

$S$\rightarrow $$

It is easy to verify that $G_{M}$ satisfies UPG-
condition, since $M$ is deterministic. Further,
since there is no length-decreasing rule except
(7), it also satisfies the condition of MUPG.

An ID of $M$

$\phi a_{i_{1}}\cdots a_{i_{h-1}}qa_{i_{h}}a_{i_{h+1}}\cdots a_{i_{k}}$$

is represented by the following word in $G_{M}$ .
$A_{i_{1}}\cdots A_{i_{h-1}}(q, a_{i_{h}})B_{i_{h+1}}\cdots B_{i_{k}}$ $

$G_{M}$ simulates $M$ in the almost same way as
in Lemma 3.1, except that at the left or the
right end of the word, two steps of $M’ s$ move-
ment are simulated in one reduction step in $G_{M}$

by the rules in (3) and (5).
By the same argument as in Lemma 3.1,

$we\square$

can see $L(G_{M})=L(M)$ .
Lemma 4.2 $\mathcal{L}[DLBA]\supseteq \mathcal{L}[MUPG]$ .
Proof. Let $G=$ $(N, T, P, S,$ be a given
MUPG. A DLBA $M_{G}$ such that $L(M_{G})=L(G)$

is constructed in the following manner. Given
an input $w\in\tau*,$ $M$ performs leftmost reduc-
tion of $w$ on the tape (left end-marker $\phi$ on
the tape is identified with $ in $G$). In the case
of $w=\epsilon$ , the reduction process can be simu-
lated in the finite-state control of $M_{G}$ , since $G$

is an MUPG. So, in what follows, we consider
the case $w\neq e$ . Scanning the tape from left
to right, $M_{G}$ searches for a reversely applicable
rule. If such a rule $\alphaarrow\beta$ is found, $M_{G}$ does the
reverse rewriting to the word. This rewriting is
always possible on the tape, because $\alphaarrow\beta$

satisfies $|\alpha|\leq|\beta|$ (note that e-rule cannot be
used since $w\neq\epsilon$ ). If $M_{G}$ gets the word $S$ on
the tape, $M_{G}$ halts in the accepting state. If
there is no reversely applicable rule, $M_{G}$ halts
in a non-accepting state. Otherwise, $M_{G}$ re-
peats the above process of reduction.

From Corollary 2.1 if $w\in L(G)$ then $w$ rk
$S$, thus $M_{G}$ accepts $w$ . Therefore, $w\in L(G)$

implies $w$ $\in$ $L(M_{G})$ . Conversely, if $w$ $\in$

$L(M_{G})$ , then, from the above construction of
$M_{G}$ , $w$ $1mr\Leftarrow^{*}$ $S$ holds. Thus $w\in L(G)$ . $\square$

From Lemmas 4.1 and 4.2, the equivalence of
MUPG and DLBA is established.
Theorem 4.1 $\mathcal{L}[MUPG]=\mathcal{L}[DLBA]$ .

5 Concluding Remarks

We introduced UPG and its subclass MUPG,
and studied their language generating ability.
Roughly speaking, UPG and MUPG are re-
garded to be “uniquely parsable” counterparts
of Type-O grammar and context-sensitive gram-
mar. The result $\mathcal{L}[UPG]=\mathcal{L}[DTM]$ means
that the addition of UPG-condition does not
affect generating ability of Type-O grammar at
all. On the other hand, $\mathcal{L}[MUPG]=\mathcal{L}[DLBA]$

shows that the difference between context-
sensitive grammar and MUPG is just the differ-
ence between nondeterministic and determinis-
tic LBA’s.

It is left for the future study to investigate
other useful subclasses of UPG’s.
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