LOGICAL FORMULAS FOR PETRI NET ω -LANGUAGES

Hideki YAMASAKI

(山崎 秀記, 一橋大学)

Department of Mathematics, Hitotsubashi University Kunitachi, Tokyo 186 Japan

Abstract

In this paper, we study Petri net ω -languages and logical formulas defining ω -languages. We consider some accepting conditions for Petri nets, and characterize the classes of Petri net ω -languages with these accepting conditions by logical formulas.

1 Preliminary

The set of integers $\{0, 1, -1, 2, -2, \ldots\}$ is denoted by \mathbb{Z} , and the set of nonnegative integers is denoted by \mathbb{N} . For sets X and Y, Y^X denotes the set $\{f \mid f : X \to Y\}$ of all functions from X to Y. For a finite set $X = \{x_1, x_2, \ldots, x_n\}$, a function $f \in \mathbb{Z}^X$ is identified with the n-dimensional vector $\langle f(x_1), f(x_2), \ldots, f(x_n) \rangle$. Then for functions $f, g \in \mathbb{Z}^X$ and $z \in \mathbb{Z}$, the addition f + g, the scalar product zf, and the partial ordering $f \leq g$ are defined componentwise as usual.

Let Σ be an alphabet. We call a mapping $\alpha \in \Sigma^{\mathbf{N}}$ an ω -word over Σ , and write $\alpha = a_0 a_1 a_2 \cdots$ where $a_n = \alpha(n)$ for each n. The set of all ω -words over Σ is denoted by Σ^{ω} , and that of all finite words over Σ is denoted by Σ^* as usual.

If $u = \alpha(0) \dots \alpha(n)$ for some n, then u is called a prefix of α and we write $u < \alpha$. For $\alpha \in \Sigma^{\omega}$, we define $\downarrow \alpha = \{v \in \Sigma^* | v < \alpha\}$, $\underline{\alpha} = \{a | a = \alpha(n) \text{ for some } n\}$, and $\underline{\alpha} = \{a | a = \alpha(n) \text{ for infinitely many } n\}$. For $L \subseteq \{a | a = \alpha(n) \text{ for infinitely many } n\}$.

 Σ^{ω} , we define $\downarrow L = \bigcup_{\alpha \in L} \downarrow \alpha$.

For $K \subseteq \Sigma^*$ and $L \subseteq \Sigma^{\omega}$, we define $KL = \{u\alpha \mid u \in L \text{ and } \alpha \in K\}$ and $K^{\omega} = \{v_1v_2 \dots \mid v_1, v_2, \dots \in K - \{\epsilon\}\}$, where $u\alpha$ is the ω -word obtained by concatenating u before α , and $v_1v_2 \dots$ is the ω -word obtained by concatenating v_1, v_2, \dots one after another.

We can consider Σ^{ω} a metric space with the distance d defined by:

$$d(\alpha, \beta) = \begin{cases} 0, & \text{if } \alpha = \beta \\ 2^{-k}, & \text{if } \alpha \neq \beta \text{ and } \\ k = Min\{n \mid \alpha(n) \neq \beta(n)\}. \end{cases}$$

Then $L \subseteq \Sigma^{\omega}$ is a closed set if and only if $L = \{\alpha \mid \downarrow \alpha \subseteq \downarrow L\}.$

In this paper, when we mention a net or a *Petri net N*, we mean a marked λ -free labelled Petri net $N = (P, T, A, e, m_0, F)$, where P is a finite set of places, T a finite set of transitions, $A: T \to \mathbf{N}^P \times \mathbf{N}^P$, $e \in \Sigma^T$ a λ -free labelling function, $m_0 \in \mathbf{N}^P$ an initial marking, and $F \subseteq \mathbf{N}^P$ a finite set of accepting markings.

A marking m of a Petri net N is a function in \mathbb{N}^P , i.e., an assignment of tokens to the places. We say that the place p has m(p) tokens at the marking m. For each transition t, $A(t) = \langle {}^{\bullet}A(t), A(t){}^{\bullet} \rangle$ assigns a pair of functions ${}^{\bullet}A(t)$ and $A(t){}^{\bullet}$ called the *input* and *output vector* of t, respectively.

Example 1

Let
$$N = (\{p\}, \{s, t\}, A, e, \langle 0 \rangle, \{\langle 2 \rangle\}), where$$

 $A(s) = \langle \langle 0 \rangle, \langle 1 \rangle \rangle, A(t) = \langle \langle 1 \rangle, \langle 0 \rangle \rangle, e(s) = a$

and e(t) = b. Then the Petri net N is illustrated as follows.

A transition t is *fireable* in a marking m if $m \ge {}^{\bullet}A(t)$, and if so, t may be fired at m resulting in the marking

$$m' = m - {}^{\bullet}A(t) + A(t)^{\bullet}.$$

In this case, we write m[t] or m[t]m'. Intuitively, t removes $^{\bullet}A(t)(p)$ tokens from the place p, and distributes $A(t)^{\bullet}(p)$ tokens to p, when t fires.

The definitions and notations are extended to finite or infinite sequences of transitions. That is, $m[t_1t_2...t_n\rangle$ or $m[t_1t_2...t_n\rangle m'$ if $m[t_1\rangle m_1[t_2\rangle m_2...m_{n-1}$ $[t_n\rangle m'$, and $m[\alpha\rangle$ if $m[\alpha(0)\rangle m_1[\alpha(1)\rangle m_2...$

We define infinite behaviour of a Petri net N as the homomorphic image of infinite firing sequences by the λ -free labelling function e. For a Petri net $N = (P, T, A, e, m_0, F)$ and $\alpha \in T^{\omega}$, we define $N(\alpha) = m_0 m_1 m_2 \dots$ if $m[\alpha(0))m_1[\alpha(1))m_2 \dots$ Let

$$\uparrow F = \{ m' \mid m' \ge m \text{ for some } m \in F \}.$$

Then we consider the following five types of ω -languages accepted by N:

$$L_0(N) = \{e(\alpha) \mid m_0[\alpha\}\},$$

$$L_1(N) = \{e(\alpha) \mid \underline{N(\alpha)} \cap \uparrow F \neq \emptyset\},$$

$$L_2(N) = \{e(\alpha) \mid \underline{N(\alpha)} \subseteq \uparrow F\},$$

$$L_3(N) = \{e(\alpha) \mid \underline{N(\alpha)} \cap \uparrow F \neq \emptyset\},$$

$$L_4(N) = \{e(\alpha) \mid N(\alpha) \subseteq \uparrow F\}.$$

We define $\mathbf{P}_i = \{L_i(N) \mid N \text{ is a Petri net over } \Sigma\}$ (i = 0, ..., 4). The accepting conditions considered in [2, 3] are defined by F instead of $\uparrow F$.

Example 2 For the Petri net N in the previous example, $L_0(N) = \{\alpha \mid \#_a(u) \geq \#_b(u) \text{ for any } u < \alpha\}, L_1(N) = L_0(N) - (ab)^{\omega}, L_2(N) = \phi, L_3(N) = L_0(N) - D(ab)^{\omega},$ and $L_4(N) = \{u \mid \#_a(u) = \#b(u) + 2\}L_0(N) \cap L_0(N), \text{ where } \#_a(u) \text{ is the number of occurrence of the letter a in the string } u, and <math>D$ is the Dyck set over $\{a, b\}$.

Let $M = (Q, \Sigma, \delta, s, F)$ be a nondeterministic finite automaton with the finite set Q of states, the input alphabet Σ , the transition relation $\delta \subseteq Q \times \Sigma \times Q$, the initial state α , and the set α of accepting states. Any $\alpha = \langle q_0, a_0, p_0 \rangle \langle q_1, a_1, p_1 \rangle \langle q_2, a_2, p_2 \rangle \dots \in \delta^{\omega}$ is called a run of α , if α if α is a run α of α , we define α in α in α in α of α , we define α in α

Then we can also define the following five types of ω -languages accepted by M:

$$L_0(M) = \{ \Sigma(\alpha) \mid \alpha \text{ is a run of } M \},$$

$$L_1(M) = \{ \Sigma(\alpha) \mid \underline{M(\alpha)} \cap F \neq \emptyset \},$$

$$L_2(M) = \{ \Sigma(\alpha) \mid \underline{M(\alpha)} \subseteq F \},$$

$$L_3(M) = \{ \Sigma(\alpha) \mid \underline{M(\alpha)} \cap F \neq \emptyset \},$$

$$L_4(M) = \{ \Sigma(\alpha) \mid \underline{M(\alpha)} \subseteq F \}.$$

We define $\mathbf{E}_i = \{L_i(M) \mid M \text{ is a nondeterministic finite automaton over } \Sigma\}$ $(i = 0, \ldots, 4)$.

2 Inclusion relations

In the case of ω -languages accepted by nondeterministic finite automata, it is known that $\mathbf{E}_0 = \mathbf{E}_2 \subset \mathbf{E}_1 = \mathbf{E}_4 \subset \mathbf{E}_3$ [4, 5, 7]. We show the similar results for the classes \mathbf{P}_i of Petri net ω -languages.

As a tool of the proofs in this section, we define a new accepting condition for a Petri net, which is described by a language over

transitions. Let $N = (P, T, A, e, m_0, \phi)$ and $R \subseteq T^{\omega}$. We define

$$L(N,R) = \{e(\alpha) \mid m_0[\alpha) \text{ and } \alpha \in R\}.$$

In the proof of the following theorems, we use the following notations to simplify the description. For $f \in \mathbf{Z}^X$ and $g \in \mathbf{Z}^Y$ $f \oplus g$ denotes the function in $\mathbf{Z}^{X \cup Y}$, defined by

$$f \oplus g(x) = \begin{cases} f(x) + g(x), & \text{if } x \in X \cap Y \\ f(x), & \text{if } x \in X \\ g(x), & \text{if } x \in Y. \end{cases}$$

For $n \in \mathbb{N}$ and a set X, n^X denote the constant function in \mathbb{N}^X such that $n^X(x) = n$ for any $x \in X$. If X is a singleton $\{x\}$, then we write n^x instead of $n^{\{x\}}$. Thus, for example, for $p_0 \in P$,

$$0^{P} \oplus 1^{p_0}(p) = \begin{cases} 1, & \text{if } p = p_0 \\ 0, & \text{if } p \neq p_0. \end{cases}$$

Theorem 1 For any i = 0, ..., 4, $P_i = \{L(N,R) | N \text{ is a Petri net and } R \in \mathbf{E}_i\}.$

Proof. Let $N = (P, T, A, e, m_0, \phi)$ and $M = (Q, \Sigma, \delta, s, F)$ be a finite automaton such that $L_i(M) = R$. We define the Petri net $N' = (P \cup Q, \delta, A', e', m_0 \oplus 1^s \oplus 0^Q, \{0^P \oplus 1^q \oplus 0^Q \mid q \in F\})$, where $A'(\langle q, t, q' \rangle) = \langle {}^{\bullet}A(t) \oplus 1^q \oplus 0^Q \mid q \in F\}$, and $e'(\langle q, t, q' \rangle) = e(t)$ for any $\langle q, t, q' \rangle$. Intuitively, N' is a product of N and M, and simulates N and M, simultaneously. Thus it is clear that $L(N, R) = L(N, L_i(M)) = L_i(N')$.

Let $N = (P, T, A, e, m_0, F)$ and $L = L_i(N)$. For each $t \in T$ and $m \in F$, we add new transition t_m to N, such that $m_1[t_m)m_2$ if and only if $m_1 \geq m$ and $m_1[t_m)m_2$. Since $m_1 \geq m \in F$ means $m_1 \in \uparrow F$, t_m works same as t, and can check whether the current marking is in $\uparrow F$ or not.

We construct $N' = (P, T \cup T_F, A', e', m_0, \phi)$, where $T_F = \{t_m \mid t \in T \text{ and } m \in F\}$, A'(t) = A(t) and $e'(t) = e'(t_m) = e(t)$, for each

 $t \in T$ and $m \in F$. Moreover, $A'(t_m) = \langle {}^{\bullet}A'(t_m), A'(t_m){}^{\bullet} \rangle$ with

$$^{\bullet}A(t_m)(p) = Max(^{\bullet}A(t)(p), m(p)),$$

$$A(t_m)^{\bullet}(p) = {}^{\bullet}A(t_m)(p) + A(t)^{\bullet}(p) - {}^{\bullet}A(t)(p),$$
 for any $p \in P$.

Then it is clear that $L_0(N) = L(N', T^{\omega})$, $L_1(N) = L(N', T^*T_FT^{\omega})$, $L_2(N) = L(N', T_F^{\omega})$, $L_3(N) = L(N', (T^*T_F)^{\omega})$, $L_4(N) = L(N', T^*T_F^{\omega})$. \square

Corollary 2 $P_0 = P_2 \subseteq P_1 = P_4 \subseteq P_3$.

Proof. It is clear from the Theorem 1 and the results for \mathbf{E}_{i} 's. \square

In the sequel, we only consider the case i = 0, 1, 3. To prove the strict inclusions between these classes, we prove the following topological properties of the classes \mathbf{P}_0 and \mathbf{P}_1 .

Lemma 3 For any Petri net N, $L_0(N)$ is a closed set, and $L_1(N)$ is a denumerable union of closed sets.

Proof. Let $N = (P, T, A, e, m_0, F)$, and $\downarrow \alpha \subseteq \downarrow L_0(N)$. We will show that $\alpha \in L_0(N)$. Consider the set $C = \{w \mid e(w) < \alpha, \text{ and } m_0[w)\}$ of all the fireable finite sequences generating the prefixes of α . Then C is infinite. By König's Lemma, there exists $\beta \in T^{\omega}$ such that $\downarrow \beta \subseteq C$. It means that $m_0[\beta)$ and $e(\beta) = \alpha$. Hence $\alpha \in L$.

Let $N_m = (P, T, A, e, m, F)$ for $m \in \mathbb{N}^P$. Then, $L_1(N) = \bigcup \{e(w)L_0(N_m) \mid m_0[w\rangle m \in \uparrow F\}$, which is a denumerable union of closed sets. \square

Then the next theorem follows from the topological characterizations of ω -regular languages [4, 5].

Theorem 4 $P_0 = P_2 \subset P_1 = P_4 \subset P_3$.

Theorem 5 The classes P_i (i = 0, 1, 3) of Petri net ω -languages are closed under union, intersection, and projection.

Proof. Let $N_j = (P_j, T_j, A_j, e_j, m_j, \phi)$ for j = 1, 2. We define a Petri net N which can simulate N_1 and N_2 simultaneously, as follows. $N = (P_1 \cup P_2, T, A, e, m_1 \oplus m_2, \phi)$, where $T = \{\langle t_1, t_2 \rangle \in T_1 \times T_2 | e_1(t_1) = e_2(t_2) \}$, $A'(\langle t_1, t_2 \rangle) = \langle {}^{\bullet}A_1(t_1) \oplus {}^{\bullet}A_2(t_2), A_1(t_1) {}^{\bullet} \oplus A_2(t_2) {}^{\bullet} \rangle$, $e(\langle t_1, t_2 \rangle) = e_1(t_1)$, for any $\langle t_1, t_2 \rangle \in T$. For any $R_j \subseteq T_j^{\omega}$ (j = 1, 2), let $R_{\cup} = \{\alpha \in T^{\omega} | \alpha_1 \in R_1 \text{ or } \alpha_2 \in R_2 \}$, where α_j is the ω -word over T_j obtained by concatenating j-th elements of $\alpha(i)$ for $i = 0, 1, \ldots$. Then it is clear that $L(N_1, R_1) \cup L(N_2, R_2) = L(N, R_{\cup})$, $L(N_1, R_1) \cap L(N_2, R_2) = L(N, R_{\cap})$.

The closure under projection is clear from the definition. \square

3 Normal form of Petri nets

We define a normal form of Petri nets and show that any Petri net can be transformed into a normal form Petri net.

We say that a Petri net $N = (P,T,A,e,m_0, F)$ is in normal form if

- 1) there exists a place $p_0 \in P$ such that $m_0 = 1^{p_0} \oplus 0^P$,
- 2) there exists a place p_f such that $F = \{1^{p_f} \oplus 0^p\},$
- 3) for any transition t fireable at markings in $\uparrow F$, $^{\bullet}A(t)(p_t) = 1$,
- 4) for any $p \in P$, and $t \in T$, ${}^{\bullet}A(t)(p) \leq 1$ and $A(t)^{\bullet}(p) \leq 1$, that is, each place p gets or lose at most one token at once.

Theorem 6 For any Petri net N, we can construct a Petri net N' in normal form such that $L_i(N) = L_i(N')$ for any i = 0, 1, 3.

Proof. First we show that any Petri net $N = (P, T, A, e, m_0, F)$ can be transformed into a Petri net $N' = (P', T', A', m'_0, e', F')$ which satisfies the conditions 1), 2) and 3). Let $P' = P \cup \{p_0, p_c, p_f\}$ and $T' = T \cup \{t' \mid m_0[t)\} \cup \{t'' \mid t \in T\} \cup \{t_m \mid t \in T \text{ and } m \in N\}$. We define

$$A'(t) = \langle {}^{\bullet}A(t) \oplus 0^{p_0} \oplus 1^{p_c} \oplus 0^{p_f},$$

$$A(t)^{\bullet} \oplus 0^{p_0} \oplus 1^{p_c} \oplus 0^{p_f} \rangle$$

$$A'(t') = \langle 0^P \oplus 1^{p_0} \oplus 0^{p_c} \oplus 0^{p_f},$$

$$(m_0 - {}^{\bullet}A(t) + A(t)^{\bullet}) \oplus 0^{p_0} \oplus 1^{p_c} \oplus 0^{p_f} \rangle,$$

$$A'(t'') = \langle {}^{\bullet}A(t) \oplus 0^{p_0} \oplus 0^{p_c} \oplus 1^{p_f},$$

$$A(t)^{\bullet} \oplus 0^{p_0} \oplus 1^{p_c} \oplus 0^{p_f} \rangle,$$

$$A'(t_m) = \langle {}^{\bullet}A(t_m) \oplus 0^{p_0} \oplus 1^{p_c} \oplus 0^{p_f} \rangle,$$

$$A(t_m)^{\bullet} \oplus 0^{p_0} \oplus 0^{p_c} \oplus 1^{p_f} \rangle,$$

$$e'(t) = e'(t) = e'(t'') = e'(t_m) = e(t),$$

$$m'_0 = 1^{p_0} \oplus 0^P, \text{ and } F = \{1^{p_f} \oplus 0^P\}.$$

Then the Petri net N' satisfies 1),2) and 3), and it is clear from the construction that $L_i(N) = L_i(N')$ for i = 0, 1, 3.

Next we show that we can decrease the number of places $q \in P'$ such that $Max\{{}^{\bullet}A'(t)(q), A'(t){}^{\bullet}(q) | t \in T\} = n > 1$. Repeating the process, we can transform N' into a Petri net in normal form.

To construct $N''=(P'',T'',A'',e'',m''_0,F'')$, we replace q by n new places q_1,q_2,\cdots,q_n . For each transition t, let D_i $(1 \leq i \leq k_t)$ and E_j $(1 \leq j \leq l_t)$ be the enumerations of the subsets of $\{q_1,q_2,\cdots,q_n\}$ with ${}^{\bullet}A'(t)(q)$ and $A'(t){}^{\bullet}(q)$ elements, respectively. Then we also replace the transition t by $n_t \times m_t$ transitions $t_{i,j}$ $(1 \leq i \leq k_t, 1 \leq j \leq l_t)$ such that,

$${}^{\bullet}A''(t_{i,j})(p) = \begin{cases} {}^{\bullet}A'(t)(p), & \text{if } p \neq q \\ 1, & \text{if } p \in D_i \\ 0, & \text{if } p \notin D_i \end{cases}$$
$$A''(t_{i,j})^{\bullet}(p) = \begin{cases} A'(t)^{\bullet}(p), & \text{if } p \neq q \\ 1, & \text{if } p \in E_j \\ 0, & \text{if } p \notin E_j \end{cases}$$
and $e''(t_{i,j}) = e(t)$.

Note that on the Petri net N'', the tokens in q on N' are distributed to the places q_1, q_2, \dots, q_n , and the arcs from or to q in N'are also distributed to these places.

It is easy to see that the $L_i(N') = L_i(N'')$ for i = 0, 1, 3. \square

4 Characterizations by logical formulas

We define the monadic second-order theory K over an alphabet Σ for natural numbers, which is introduced by Parigot and Pelz [2, 3]. K has two sorts of variables, number variables x, y, \ldots ranging over N, and set variables X, Y, \ldots ranging over the power set of N. K also has set constants P_a for each $a \in \Sigma$.

The terms of K are expressions of form n or x+n, where x is a number variable and n is a constant in N. The atomic formulas of K are expressions of form $u \leq t$, $t \in W$ or $V \leq W$, where u, t are terms and V, W are set variables or P_a for some $a \in \Sigma$. Here, \leq and \in are usual 'less than or equal to' and 'belong to' relations, and $V \leq W$ is true if and only if there exists a one to one function $f: W \to V$ such that $f(x) \leq x$ for any $x \in W$.

The formulas of K, called K-formulas, are defined as usual. That is, $\varphi \wedge \psi, \varphi \vee \psi, \neg \varphi, \forall x \varphi, \exists x \varphi, \forall X \varphi, \exists X \varphi$ are formulas for any formula or atomic formula φ, ψ , number variable x and set variable X. We use bold-face quantifier symbols \forall and \exists for set variables to distinguish from those for number variables.

Note that the K-formulas not containing the symbol \leq is the S1S-formulas considered in Büchi [1].

We say that an ω -word $\alpha \in \Sigma^{\omega}$ satisfies K-sentence (i.e., formulas without free variables) ψ , if ψ is true under the interpretation $P_a = \{n \mid \alpha(n) = a\}$. Then, K-sentence

 ψ define the set $L(\psi)$ of all ω -words satisfying ψ . For a set of K-formulas Δ , we define that $\mathbf{L}(\Delta) = \{L(\psi) \mid \psi \in \Delta\}$, the class of ω -languages defined by the sentences in Δ .

For a language R over quantifier symbols $\{\forall, \exists, \forall, \exists\}$, [R] denotes the set of S1S-formulas of the prenex normal form

$$\Xi_1\xi_1\Xi_2\xi_2\cdots\Xi_n\xi_n \ \psi(\xi_1,\xi_2,\cdots,\xi_n),$$

where $\Xi_1\Xi_2\cdots\Xi_n$ is a string in R, and ψ is a quantifier-free formula.

On the relation between S1S-formulas and ω -regular languages, we have shown the following theorem [6].

Theorem 7
$$\mathbf{E}_0 = \mathbf{L}([\exists^* \forall]),$$

 $\mathbf{E}_1 = \mathbf{L}([\exists^* \exists \forall]), \mathbf{E}_3 = \mathbf{L}([\exists^* \forall \exists]).$

For any $\alpha \in (\Sigma_1 \times \Sigma_2 \times \ldots \times \Sigma_n)^{\omega}$, α_i is defined to be the ω -words obtained by concatenating the *i*-th elements of $\alpha(j)$ for $j = 0, 1, 2, \ldots$ We say that $\alpha \in (\{0, 1\}^{n+k} \times \Sigma)^{\omega}$ satisfies the formula $\psi(X_1, \ldots, X_n, x_1, \ldots, x_k)$, if $\alpha_{n+1} \in \Sigma^{\omega}$ satisfies $\psi(C_1, \ldots, C_n, d_1, \ldots, d_k)$, where $C_i = \{j \mid \alpha_i(j) = 1\}$ for $i = 1, \ldots, n$ and $\alpha_{n+i}(j) = 1$ if and only if $j = d_i$ for $i = 1, \ldots, k$. We write $L(\psi) = \{\alpha \mid \alpha \text{ satisfies } \psi\}$.

Now, we show the main theorem. Let Δ be a set of formulas and $\overline{\Delta}$ be the smallest set of formulas constructed from the atomic formulas $V \leq W$ and formulas in Δ using \wedge , \vee , \exists and \exists .

Theorem 8 If $L(\Delta) = E_i$ then $L(\overline{\Delta}) = P_i$ for i = 0, 1, 3.

Proof. $\mathbf{E}_i \subseteq \mathbf{P}_i$ from Theorem 1. Moreover the ω -language $L(X_1 \preceq X_2) \subseteq (\{0,1\}^2)^{\omega}$ is accepted by the following Petri net without the accepting condition.

$$\langle 0,0\rangle$$
 $\langle 1,1\rangle$ $\langle 1,0\rangle$ $\langle 0,1\rangle$

Since each class of Petri net ω -languages is closed under union, intersection and projection, we have shown that the half part of the theorem.

Let $N = (P, T, A, e, 0^P \oplus 1^{p_0}, \{0^P \oplus 1^{p_f}\})$ be a Petri net in normal form. Note that in normal form Petri net, each place p can get or lose at most one token at once. To describe the infinite behaviour of the net N, we use the following set variables,

- X_t to represent the time t fires,
- E_p to represent the time p gets a new token,
- S_p to represent the time p loses one token, for each $t \in T$ and $p \in P$. Let

$$\psi_1(x) = \bigvee_{t \in T} ((x \in X_t) \land (x \in P_{e(t)})$$

$$\land (\bigwedge_{t' \neq t} \neg (x \in X_{t'})))$$

which means that there exists a unique transition t that fires at time x.

$$\psi_{2}(x) = \bigwedge_{p \in P} ((x \in S_{p}))$$

$$\leftrightarrow \bigvee_{\bullet} (x \in X_{t})$$

$$\bullet A(t)(p) = 1$$

which means that a place p loses a token at time x if and only if a transition t with A(t)(p) = 1 fires at the same time x.

$$\psi_{3}(x) = \bigwedge_{p \in P} ((x+1 \in E_{p}))$$

$$\leftrightarrow \bigvee_{A(t)^{\bullet}(p) = 1} (x \in X_{t})$$

which means that a place p gets a token at time x + 1 if and only if a transition t with $A(t)^{\bullet}(p) = 1$ fires at time x.

$$\psi_4 = (0 \in E_{p_0}) \land (\bigwedge_{p \neq p_0} \neg (0 \in E_p))$$

which represents the condition for the initial marking.

$$\varphi_0 = true$$
,

$$\varphi_1(y) = (y \in E_{p_f}),$$

$$\varphi_3(x, y) = (x \le y) \land (y \in E_{p_f}),$$

here φ_i is a formula to represent the accepting condition of type i, (i = 0, 1, 3). Finally,

$$\psi_5 = \bigwedge_{p \in P} (E_p \preceq S_p)$$

which means that each place p can lose only tokens which got previously.

Then, $L_0(N)$ is defined by

$$\exists_{t \in T} X_{t} \exists_{p \in P} E_{p} \exists_{p \in P} S_{p} (\forall x (\psi_{1}(x) \land \psi_{2}(x) \land \psi_{3}(x) \land \psi_{4} \land \varphi_{0}) \land \psi_{5}).$$

 $L_1(N)$ is defined by

$$\exists_{t \in T} X_{t} \exists_{p \in P} E_{p} \exists_{p \in P} S_{p} (\exists y \forall x (\psi_{1}(x) \land \psi_{2}(x) \land \psi_{3}(x) \land \psi_{4} \land \varphi_{1}(y)) \land \psi_{5}).$$

 $L_3(N)$ is defined by

$$\exists_{t \in T} X_{t} \exists_{p \in P} E_{p} \exists_{p \in P} S_{p} (\forall x \exists y (\psi_{1}(x) \land \psi_{2}(x) \land \psi_{3}(x) \land \psi_{4} \land \varphi_{3}(y)) \land \psi_{5}).$$

Note that all ψ_1, \ldots, ψ_4 and φ_i (i = 0, 1, 3) are S1S-formulas with no quantifiers. From Theorem 7, this completes the proof. \square

References

- [1] J.R.Büchi, On a decision method in restricted second-order arithmetic, Logic, Methodology and Philosophy of Science (Stanford Univ. Press, 1960) 1-11.
- [2] M.Parigot and E.Pelz, A logical formalism for the study of the finite behaviour of Petri nets, Advances on Petri nets 1985, LNCS 222, 346-361.
- [3] E.Pelz, ω-languages of Petri nets and logical sentences, Proceedings of Application and Theory of Petri Nets 1986.

- [4] L.Staiger and K.Wagner, Automatentheoritische und Characterisierungen topologischer Klassen regularer Folgenmengen, E.I.K. 10 (1974) 379-302.
- [5] M.Takahashi and H.Yamasaki, A note on ω -regular languages, T.C.S. 23 (1983) 217-225.
- [6] H.Yamasaki, M.Takahashi and K.Kobayashi, Characterization of ω -regular languages by monadic second-order formulas, T.C.S. 46 (1986) 91-99.
- [7] K.Wagner, On ω -regular sets, Inf. and Contr. 43 (1979) 123–177.