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Abstract

In this paper, we study Petri net w-languages
and logical formulas defining w-languages.
We consider some accepting conditions for
Petri nets, and characterize the classes of
Petri net w-languages with these accepting
conditions by logical formulas.

1 Preliminary

The set of integers {0, 1, -1, 2, -2, ...} is
denoted by Z, and the set of nonnegative
integers is denoted by N. For sets X and
Y, Y% denotes the set {f|f: X — Y} of
all functions from X to Y. For a finite set
X = {z;,25,...,2,}, a function f € Z¥
is identified with the n-dimensional vector
(f(z1), f(z2), ..., f(zn)). Then for functions
f,g € ZX and z € Z, the addition f + g, the
scalar product zf, and the partial ordering
f < g are defined componentwise as usual.

Let ¥ be an alphabet. We call a mapping
a € IN an w-word over Y, and write o =
apaiay -+ - - where a, = a(n) for each n. The
~ set of all w-words over ¥ is denoted by £%,
and that of all finite words over ¥ is denoted
by ¥* as usual. ,

If v = a(0)...a(n) for some n, then u is
called a pre fiz of o and we write u < a. For
a € X% we define la = {v € T*|v < e},
a = {ala = afn) for some n}, and o =

{a|a = a(n) for infinitely many n}. For L C

.d(aa ﬂ) = { 2—k:

2% we define |L = Ugey la.

For K C ¥* and L C X%, we define
KL = {ua|u € L and o € K} and K¥ =
{viva... | v1,vq,... € K — {€}}, where ua is
the w-word obtained by concatenating u be-
fore , and v;vs. .. is the w-word obtained by
concatenating v, vs, ... one after another.

We can consider £ a metric space with
the distance d defined by:

0, ifa=p
if o # f and
k= Min{n|a(n) # B(n)}.

Then L C X% is a closed set if and only if
L={a|laC|L}

In this paper, when we mention a net or
a Petri net N, we mean a marked A-free
labelled Petri net N = (P, T,A, e, mg, F),
where P is a finite set of places, T a finite set
of transitions, A : T — NP x NP, ¢ € T
a Mfree labelling function, mg € NF an
initial marking, and F C NF a finite set
of accepting markings.

A marking m of a Petri net N is a func-
tion in N, i.e., an assignment of tokens to
the places. We say that the place p has m(p)
tokens at the marking m. For each transi-
tion ¢, A(t) = ("A(t), A(t)") assigns a pair
of functions *A(¢) and A(t)* called the input
and output vector of t, respectively.

Example 1

Let N = ({p}, {s,t}, 4,¢,(0),{(2)}), where
A(s) = {(0), (1)), A(t) = (1), (0)), e(s) = a



and e(t) = b. Then the Petri net N is illus-
trated as follows.
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A transition t is fireable in a marking m
if m > *A(t), and if so, t may be fired at m
resulting in the marking

m' = m —*A(t) + A(1)".

In this case, we write m[t) or m[t)m'. In-
tuitively, ¢ removes *A(¢)(p) tokens from the
place p, and distributes A(¢)*(p) tokens to p,
when t fires.

The definitions and notations are extended
to finite or infinite sequences of transitions.
That is, m[t;ty...t,) or m[tity...t,)m' if
mlt;)mifte)ms ... m,y [t,)m!, and mla) if
m[a(0))my [a(1))m, .. ..

We define infinite behaviour of a Petri net
N as the homomorphic image of infinite firing
sequences by the A-free labelling function e.
For a Petri net N = (P, T, A, e, mg, F) and
a € T¥, we define N(a) = memyms... if
m[a(0))m;[a(1))ms,. ... Let

1F = {m'|m' > m for some m € F}.

Then we consider the following five types
of w-languages accepted by N:

Lo(N) = {e(a) | mo[x) },
Ly(N) = {e(a) | N(a) N TF # ¢},

Ly(N) = {e(e) | N(a) C TF},
Ls(N) = {e(a) | N(a) N TF # ¢},

Ly(N) = {e(e)| N(e) C TF}.

We define P; = {L;(N)| N is a Petri net over
¥} (i =0,...,4). The accepting conditions

considered in [2, 3] are defined by F instead

of TF.
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Example 2 For the Petri net N in the
previous example, Lo(N) = {a|#.(u) >
#i(u) for anyu < a}, Li(N) = Lo(N) -
(ab), Lo(N) = ¢, Lo(N) = Lo(N)— D(ab)®,
and Ly(N) = {u|#.(v) = #b(u)+2} Lo(N)N
Lo(N), where #,(u) is the number of occur-
rence of the letter a in the string u,and D is
the Dyck set over {a, b}.

Let M = (Q,%,6,s, F) be a nondetermin-
istic finite automaton with the finite set @ of
states, the input alphabet ¥, the transition -
relation § C Q x ¥ x @, the initial state
s, and the set F of accepting states. Any
a = <QO,00,P0)(91,01,P1)(92; az, ps)... € &%
is called a run of M, if ¢o = s and p; = ¢;4;
for any 1. For a run a of M, we define
M(a) = 014295 - - - and E(a) = apayas . . ..

Then we can also define the following five
types of w-languages accepted by M:

Loy(M) = {E(a)] ais arun of M},
Ly(M) = {3(a) | M(a) N F # 6},
Ly(M) = {S(a) | M(a) C F},
Ly(M) = {S(a) | M(a) N F # ¢},

Ly(M) = {S(e) | M(e) C F}.

We define E; = {L;(M)|M is a nonde-
terministic finite automaton over L} (i =
0,...,4).

2 Inclusion relations

In the case of w-languages accepted by nonde-
terministic finite automata, it is known that
EO = E2 C E1 = E4 C E3 [4, 5, 7] We show
the similar results for the classes P; of Petri
net w-languages.

As a tool of the proofs in this section, we
define a new accepting condition for a Petri
net, which is described by a language over
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transitions. Let N = (P, T, A, e, mo,¢) and
R C T%. We define

L(N,R) = {e(a) | mo[e) and « € R}.

In the proof of the following theorems, we
use the following notations to simplify the de-
scription. For f € Z¥X and g € Z¥ f by
denotes the function in ZXYY, defined by

f(z)+g(z), ifzeXnY

fog(z)= { f(z), ifzeX
g(z), ifzeY.

For n € N and a set X, n* denote the con-
stant function in N¥ such that n*(z) = n for
any z € X. If X is a singleton {2}, then we
write n® instead of n{#}. Thus, for example,
for py € P,

1, ifp=po
Fo1™p =<, .

Theorem 1 For any i = 0,...,4, P; =
{L(N,R)|N is a Petri net and R € E;}.

Proof. Let N = (P, T, A,e,mq,¢) and M =
(@,%,86,s, F) be a finite automaton such that
L;(M) = R. We define the Petri net N' =
(PUQ, 8, A" ¢!, med 13 @09, {0P §19007 | ¢ €
F}), where A'({g,t,q")) = (*A(t) & 1 &
0%, A1) @ 17 @ 09), and €'((g,%, ') = e(?)
for any {g,%,q’). Intuitively, N' is a product
of N and M, and simulates N and M, simul-

taneously. Thus it is clear that L(N,R) =

L(N, Li(M)) = Li(N').

- Let N =(P,T,A,e,mp, F)and L = L;(N).
For each ¢ € T and m € F, we add new
transition t,, to N, such that m, [t,,)m, if and
only if m; > m and m,[t,,)ms. Since m; >
m € F means m; € TF, t,, works same as {,
and can check whether the current marking
isin TF or not.

We construct N’ = (P, TUTF, A',e',my, ¢),
where Tp = {t,, |t € T and m € F}, A'(t) =
A(t) and €'(t) = €'(tn) = e(t), for each

t € T and m € F. Moreover, A'(t,) =
(*A'(tm), A'(tnm)°*) with

"Atm)(p) = Maz("A(t)(p), m(p)),

A(tm)"(p) = "A(tm)(p) + A()" (p) — "A(1)(p),
for any p € P.

Then it is clear that Lo(N) = L(N',TY),
Li(N) = L(N,T*TpT%), Lo(N) =
L(N'TF), Ls(N) = L(N',(T"TF)*),
Ly(N) = L(N',T*T¥). O

Corollary 2 P =P, C P, =P, CP;.

Proof. It is clear from the Theorem 1 and
the results for E;’s. O

In the sequel, we only consider the case
1 = 0,1,3. To prove the strict inclusions be-
tween these classes, we prove the following
topological properties of the classes Py and
Pl'

Lemma 3 For any Petri net N, Lo(N) is a
closed set, and L,(N) is a denumerable union
of closed sets.

Proof. Let N = (P, T, A,e,mg, F), and |a C
1Lo(N). We will show that o € Ly(N). Con-
sider the set C' = {w|e(w) < a, and mow)}
of all the fireable finite sequences generating
the prefixes of «. Then C is infinite. By
Konig’s Lemma, there exists 3 € T% such
that | C C. It means that mo[3) and
e(B8) = a. Hence a € L. ’

Let N, = (P,T,A,e,m, F) for m € N?.
Then, Li(N) = U{e(w)Lo(Np) | mo[w)m €
1F}, which is a denumerable union of closed
sets. O

Then the next theorem follows from the
topological characterizations of w-regular lan-
guages [4, 5].

Theorem 4 Py, =P, C P, =P, C Ps.



Theorem 5 The classes P; (1 = 0,1,3) of
Petri net w-languages are closed under union,
intersection, and projection.

Proof. Let Nj = (B,T},Aj,ej,mj,qﬂ) for
j = 1,2. We define a Petri net N which can
simulate N; and N, simultaneously, as fol-
lows. N = (PLUP,, T, A e, m;Pms, ¢), where
T = {{t1,t2) € T1 x Telei(t1) = ealta)},
A((t, 1) = (CAu(ta) @ *Aa(ta), Ai(h)° &
As(t2)®), e({t1,2)) = ea(t1), for any (t1,12) €
T. For any R; C T (j = 1,2), let Ry =
{a € T¥|a; € Ryor oy € Ry}, Ry = {a €
T%| oy € Ry and g € Ry}, where «; is the
w-word over T} obtained by concatenating j-
th elements of a(i) for i = 0,1,.... Then it is
clear that L(Ny, Ry)U L(N,, Re) = L(N, Ry),
L(Ny, Ry) 0 L(Na, Rs) = L(N, Rn).

The closure under projection is clear from
the definition. O

3 Normal form of Petri
nets

We define a normal form of Petri nets and
show that any Petri net can be transformed
into a normal form Petri net.

We say that a Petri net N = (P,T,4,e,my,
F) is in normal form if
1) there exists a place pp € P such that
my = 1P0 @ OP,
2) there exists a place p; such that F =
{17 @07},
3) for any transition ¢ fireable at markings in
TF> .A(t)(p.f) = 1)
4) for any p € P,and t € T, "A(t)(p) < 1
and A(1)*(p) < 1, that is, each place p gets
or lose at most one token at once.

Theorem 6 For any Petr: net N, we can
construct a Petri net N' in normal form such.
that L;(N) = L;(N') for anyi = 0, 1, 3.
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Proof. First we show that any Petri net N =
(P,T,A,e,mg, F') can be transformed into a
Petri net N' = (P',T',A',m}, e, F') which
satisfies the conditions 1), 2) and 3). Let P’ =
P U {po,pc,ps} and
T'=TU{t'|m[t)} U{t"|t € T}U {t,n |t €
T and m € N}. We define
Allt) = ("A(t) @ 0P @ 1Pe g 0P,
A(t)" @ 0P0 @ 1P @ 0P7)
Aty = (0% @ 1P0 @ 0P- @ 0P/,
(mo — °A(t)+ A(1)*) @ 0P0 @ 1P @ 0P1),
A'(t") = (CA(t) ® 0P0 @ 0P @ 177,
A(t)* @ 0Po g 1Pe g OP),
Altn) = (CA(tn) ® 0P0 @ 1P g 0Pf)
A(tn)" & 0P0 @ 0Pe @ 1P1),

e't) =€) =€ (t") =€ (tm) = e(t),
m) =17 & 0F, and F = {177 @ 0% }.

Then the Petri net N’ satisfies 1),2) and
3), and it is clear from the construction that
L(N)=L;N')fori=0, 1, 3.

Next we show that we can decrease
the number of places ¢ € P’ such that
Maz{*A'(t)(q), A(t)*(q) |t € T} = n > L
Repeating the process, we can transform N’
into a Petri net in normal form.

To construct N"'=(P",T" A" e" my,F"), we
replace ¢ by n new places ¢;,¢s,:-,¢,. For
each transition ¢, let D; (1 < ¢ < k) and
E; (1 < j < ;) be the enumerations of the
subsets of {¢1, s, ", ¢.} with *A'(t)(¢) and
A'(t)*(q) elements, respectively. Then we also
replace the transition ¢ by n; x m; transitions
t:; (1 <i<kiyl<j<l)such that,

*A'(t)(p), ifp#q
*A"(t5)(p) = 1, ifpeD;
0: lfp ¢ Di

A(t)>(p), ifp#q
A'(t; ;) (p) = 1, ifpe€E;
0, lfp ¢ Ej

and e”(t;;) = e(t).
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Note that on the Petri net N”, the to-
kens in ¢ on N’ are distributed to the places
q1,92, " **, gn, and the arcs from or to ¢ in N’
are also distributed to these places.

It is easy to see that the L;(N') = L;(N")
fori=0,1,3. O

4 Characterizations by
logical formulas

We define the monadic second-order theory
K over an alphabet ¥ for natural numbers,
which is introduced by Parigot and Pelz [2, 3].
K has two sorts of variables, number vari-
ables z,y,... ranging over N, and set vari-
ables X,Y,... ranging over the power set of
N. K also has set constants P, for each a € X.

The terms of K are expressions of form n

or £ + n, where z is a number variable and-

n is a constant in N. The atomic formulas
of K are expressions of form u < ¢, t € W
or VX W, where u, t are terms and V, W
are set variables or P, for some a € Y. Here,
< and € are usual less than or equal to’ and
belong to’ relations, and V < W is true if
and only if there exists a one to one function
f: W — V such that f(z) < z for any z €
w.

The formulas of K, called K-formulas,
are defined as usual. That is, ¢ A ¥, V
¥, —p, Vep, e, VX, X ¢ are formulas for
any formula or atomic formula ¢, 1, number
variable z and set variable X. We use bold-
face quantifier symbols ¥V and 3 for set vari-
ables to distinguish from those for number
~ variables.

Note that the K-formulas not containing
the symbol < is the S1S-formulas considered
in Biichi [1].

We say that an w-word o € X% satisfies
K-sentence (i.e., formulas without free vari-
ables) 9, if 9 is true under the interpreta-
tion P, = {n|a(n) = a}. Then, K-sentence

¥ define the set L(%) of all w-words satisfy-
ing 9. For a set of K-formulas A, we define
that L(A) = {L(¥)|¢ € A}, the class of w-
languages defined by the sentences in A.

For a language R over quantifier sym-
bols {V, 3,V, 3}, [R] denotes the set of S1S-
formulas of the prenex normal form

E16iEa&e - Enbn (&1, 8,0 1 6n);

where Z,5,---E, is a string in R, and ¢ is a
quantifier-free formula.

On the relation between S1S-formulas and
w-regular languages, we have shown the fol-
lowing theorem [6].

Theorem 7 E, = L([3"V]),
E, = L([3"3V)), E; = L([3"V3)).

For any o € (Z; x By x ... x B,)¥,
o; is defined to be the w-words ob-
tained by concatenating the i-th elements

of a(j) for j = 0,1,2,.... We say that

o € ({0,1}"** x ¥)¥ satisfies the formula

¢(X1, ceey Xn, Li,... ,Ilk), if Apt1 € Ew sat-
isfies ¥(C,...,C,,dy,...,dy), where C; =
{ilei(j) =1} fori=1,...,n and a,4;(j) =
lifandonly if j = d; fori =1,...,k. We
write L(¥) = {a| a satisfies 9}.

Now, we show the main theorem. Let A
be a set of formulas and A be the smallest
set of formulas constructed from the atomic
formulas V < W and formulas in A using A,
V, 3 and 3. , '

Theorem 8 If L(A) = E; then L(A) = P;
fori=20,1,3.

Proof. E; C P; from Theorem 1. Moreover \
the w-language L(X;, < X3) C ({0,1}?)¥ is
accepted by the following Petri net without
the accepting condition. '

(0,0) (1,1) (1,0) {0,1)



Since each class of Petri net w-languages is
closed under union, intersection and projec-
tion, we have shown that the half part of the
theorem.

Let N = (P,T, A, e,0° @ 17 {0F @ 171})
be a Petri net in normal form. Note that in
normal form Petri net, each place p can get or
lose at most one token at once. To describe
the infinite behaviour of the net N, we use
the following set variables,

- X; to represent the time ¢ fires,

- E, to represent the time p gets a new token,
- S, to represent the time p loses one token,
for eacht € T and p € P. Let

'(,L‘]_(CB) = V ((:B GXt)/\(z € Pe(t))
teT
A (A A(zeXy))
41
which means that there exists a unique tran-
sition ¢ that fires at time z.

pa(z) = A ((z€S)
peEP
€ V (z € X))
"A(t)(p) =1

which means that a place p loses a token
at time z if and only if a transition ¢ with
*A(t)(p) = 1 fires at the same time z.

P3(z) = A (z+1€E)
pEP
o V (z € Xy))
A(t)(p) =1

which means that a vplace p gets a token at
time z + 1 if and only if a transition t with
A(t)*(p) = 1 fires at time z.

pa=(0€Ep)A( A -(0€E))
P # Po

which represents the condition for the initial -

marking.
po = true,

a7

pi1(y) = (v € Ep,),
e3(z,y) = (z < y) A(y € Ep,),

here ¢; is a formula to represent the accepting
condition of type i, (i = 0,1,3). Finally,

Y5 = /\ (Ep ﬁsp)'
peEP

which means that each place p can lose only.
tokens which got previously.
Then, Lo(N) is defined by

3 e7X3, ¢ pEI, ¢ pS, (Ve
(%1(2) Atha(2) A tha(2) Atha A 9o) A ).

L;(N) is defined by

EIt c TXtap c PE,,HP € PSp(EJny
(¥1(z) A a(2) A tps(2) Aba A i (y)) A 9s).

L3(N) is defined by

3 e 7X3p ¢ PEIy ¢ pSy(¥edy
(P1(z) A ha(z) Ahs(z) Aths A ps(y)) A tbs).

Note that all 9y,...,9, and ¢; (i = 0,1,3)
are S1S-formulas with no quantifiers. From
Theorem 7, this completes the proof. O
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