
161

Efficient Parallel Shortest Path Algorithms for Banded Matrices

Yijie Han* Yoshihide Igarashi\dagger

韓以捷 五十嵐善英

Abstract. We present efficient parallel shortest path algorithms for an $n\cross n$

banded matrix of bandwidth b . Our algorithm computes all pair shortest distances
within the band in time $O(nb^{2}/p+I(b)\log b\log(n/b))$ on the PRAM using p

processors, where $I(b)$ is $\log b$ on the EREW PRAM, loglog b on the CRCW
PRAM and a constant on the randomized CRCW PRAM. It computes all pair
shortest distances in time $O(n^{2}b/p+I(b)\log b\log(n/b))$ using p processors.

1 Introduction

The best known sequential algorithm for the shortest path problem has time complexity
slightly less than $O(n^{3})$ [Fr]. It is known that $al1$ pair shortest paths in n-vertex directed-
graph can be computed in $O(n^{3}/p+I(n)\log n)$ time using p processors on PRAM [HPR],
where $I(n)$ is the time for finding the minimum of n elements using n processors. $I(n)$ is $\log n$

on the EREW PRAM [FW][KR], log log n on the CRCW PRAM [V] and a constant on the
randamized CRCW PRAM. Seidel recently gave an algorithm for all pair shortest paths in
unweighted graphs [S]. His algorithm can be implemented on a PRAM with time complexity
$O(M(n)1ogn/p+\log^{2}n)$ using p processors, where $M(n)$ is the number of operations needed
to multiply two $n\cross n$ matrices (currently it is $n^{2.376}$ [CW]). Lingas studied path problems
in planar graphs [L]. When a family of separators is available, the all shortest distances can
be computed with substantial savings [PR].

In this paper we consider the problem of computing shortest paths for graphs whose
underlying matrix is a banded matrix. The input is an $n\cross r\iota$ matrix A with bandwidth b ,
$\lfloor b/2\rfloor$ diagonals on either side of the main diagonal. Each a_{ij} within the band of A is the
weight of the arc from vertex i to vertex j . Entries outside the band are ∞s . We consider
two problems. One is the problem of computing all pair shortest distances within the band.
The output is also a banded matrix B with bandwidth b , where each b_{ij} within the band of B

represents the shortest distance from i to j . The other problem is the problem of computing
all pair shortest distances. The output is a matrix giving all pair shortest distances.

*Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA.
\dagger Department of Computer Science, Gunma University, Kiryu, 376 Japan.

数理解析研究所講究録
第 871巻 1994年 161-167

162

Recently Allison et al. showed a fast sequential shortest path algorithm for banded matri-
ces of bandwidth b [ADY]. Their algorithm computes all shortest distances within the band
in $O(nb^{2})$ time and computes all pair shortest distances in $O(n^{2}b)$ time. Unfortunately, the
algorithm given by Allison et al. is highly sequential. Their algorithm is an incremental
one which adds one vertex at a time to the graph. Therefore their algorithm requires $O(n)$

time when implemented on a PRAM even if the number of available processor is unlimited.
Some of the known techniques for parallel shortest path algorithms $[L][PR][S]$ cannot apply
to our problem, while others [HPR][PK] do not yield savings in the number of operations
when they are applied to a banded matrix.

In this paper we use a new technique to design shortest path algorithms for banded
matrices. The technique allows us to smooth shortest paths in the process of contracting
them. Our algorithms have time complexity $O(nb^{2}/p+I(b)\log b\log(n/b))$ for computing all
pair shortest distances within the band, and time complexity $O(n^{2}b/p+I(b)\log b\log(n/b))$

for computing all pair shortest distances.

2 Path Contraction and Smoothing

The rows and columns of input matrix A are numbered from 1 to n . Let $k=\lceil b/2\rceil$.
Assume that n is a multiple of k . Let $A_{i,j},$ $1\leq i,j\leq n/k$, be a $k\cross k$ submatrix containing
elements in rows $(i-1)k+1,$ $\cdots,$

ik and columns $(j-1)k+1,$ \cdots,jk of A . We use $[i]$ to
denote any vertex u such that $(i-1)k+1\leq u\leq ik$. A path is a sequence of vertices, and
it can be denoted by $[i_{1}][i_{2}]\cdots[i_{j}]$. A path $[i_{1}][i_{2}]\cdots[i_{j}]$ is a loop if $i_{1}=i_{j}$. It is a simple
loop anchored at i_{1} if $i_{t}\neq i_{1},2\leq t<j$. The transitive closure of a matrix M is denoted
by M^{*} . The transitive closure gives all pair shortest distances. For an $n\cross n$ matrix M , the
transitive closure gives all pair shortest distances. For an $n\cross n$ matrix M , the transitive
closure can be computed in time $O(n^{3}/p+I(n)\log n)$ using p processors [HPR].

Because the input matrix is a banded matrix, all entries outside the band are ∞s .
Therefore, a shortest path $[i_{1}][i_{2}]\cdots[i_{j}]$ has the property that $i_{k}-1\leq i_{k+1}\leq i_{k}+1$.

The computation of shortest distances can be done by matrix multiplication over the
semiring $(A, \min, +)$, which may be viewed as a process of path contraction. For example,
the shortest path from vertex $[i]$ to vertex $[i]$ may have the form $[i][i-1]\cdots[1][0][1]\cdots[i-1][i]$,
the distance of this shortest path can be computed by matrix multiplication

$A_{i,i-1}A_{i-1,i-2}\cdots A_{1,0}A_{0,1}\cdots A_{i-2,i-1}A_{i-1,i}$.

This matrix multiplication can be viewed as path contraction. After $A_{i,i-1}A_{i-1,i-2}$ is com-
puted, an arc $[i][i-2]$ labeled with the new weight obtained from the computation can be
added to the input graph. Now the shortest path becomes $[i][i-2]\cdots[1][0][1]\cdots[i-1][i]$.
The path is contracted and its length decremented by 1.

A common approach used in parallel computation is to put these matrices at the leaves
of a binary tree and the matrix multiplications proceed as dictated by the tree. When we
reach the root of the binary tree, the product of the matrices is obtained. The number of

163

steps needed is the height of the tree which is logarithmic in the number of leaves. This
approach does not work for banded matrices because when matrices are multiplied together
we are essentially filling the entries outside the band of the matrix. In order to take care of
all possible shortest paths, we have fill all entries of the matrix, thus resulting in an $\Omega(n^{2})$

time algorithm.
We use the following smoothing technique which is highly parallel. To smooth a loop

of the form $[i]\cdots[i]$ with amplitude $d=2^{a}-1$ we first recursively smooth loops of the
forms $[i-2^{a-1}]\cdots[i-2^{a-1}],$ $[i]\cdots[i],$ $[i+2^{a-1}]\cdots[i+2^{a-1}]$ with amplitude $2^{a-1}-1$, and
then use matrix multiplications to finish smoothing. The next procedure smoothes a loop of
amplitude $d=2^{a}-1$.

Procedure Smooth(i, a)
($*Smooth$ loops of the form $[i][i_{1}\}[i_{2}]\cdots[i]$ with amplitude $2^{a}-1$. $*$)
begin

if $a=0$ then $A_{i,i}$ $:=A_{i,i}^{*}$; ($*Contract[i][i]\cdots[i]$ to $[i][i]$. $*$)
else if $a=1$ then begin

$A_{i,i}$ $:= \min\{A_{i,i}, A_{i,i+1}A_{i+1,i+1}^{*}A_{i+1,i}, A_{i,i-1}A_{i-1,i-1}^{*}A_{i-1,i}\}$;
$A_{i,i}$ $:=A_{i,i}^{*}$

end
else begin

Smooth $(i-2^{a-1}, a-1)$;
Smooth(i, $a-1$);
Smooth $(i+2^{a-1}, a-1);\backslash$

$A_{i,i}$ $:= \min\{A_{i,i}$,
$(\Pi_{j=i}^{i+2^{a-1}-1}(A_{J,J+1}A_{j+1,j+1}^{*}))(\Pi_{j=i+2^{a-1}}^{i+1}(A_{j,j-1}A_{j-1,j-1}^{*}))$,
$(\Pi_{j=i}^{i-2^{a-1}+1}(A_{j)j-1}A_{j-1,j-1}^{*}))(\Pi_{j=i-2^{a-1}}^{i-1}(A_{j,j+1}A_{j+1,j+1}^{*}))\}$;

$A_{i,i}$ $:=A_{i,i}^{*}$

end
end

Theorem 1 Procedure Smooth smooths a loop $[i][i_{1}]\cdots[i]$ with amplitude $2^{a}-1$.

3 Computing Shortest Paths

Assume that $n/k=2^{a}-1$ for an integer a . There are a total of $2^{a}-1$ submatrices $A_{i,i}$

$(1\leq i\leq 2^{a}-1)$ on the main diagonal of the input matrix A . The idear of path smoothing can
be used for computing the shortest distance. If the three recursive calls in procedure Smooth
are executed in parallel we obtain a parallel algorithm for computing shortest distances of
vertices $([i], [i])$. For the input matrix A we may execute Smooth $(2^{a-1}, a-1)$, which returns

164

shortest distances for pairs of vertices of the form $([2^{a-1}], [2^{a-1}])$. In order to compute all
shortest distances for all entries within the band, we use two stages.

First stage: For each i , let j be the largest integer such that $i/2^{j}$ is odd. Smooth loops
of the form $[i]\cdots[i]$ with amplitude $2^{j}-1$.

Second stage: Smooth all loops and compute all pair shortest distances within the band.

The first stage can be accomplished by the principal of procedure Smooth. We now a
bottom-up description of the algorithm.

Procedure Band-l.l
for all $i,$ $1\leq i\leq 2^{a}-1$, do in parallel

$A_{i,i}$ $:=A_{i,i}^{*}$

for $t:=1$ to $a-1$ do begin $(*2^{a}-1=n/k. *)$

for all $i,$ $1\leq i\leq 2^{a}-1,$ $imod 2^{t}=0$, do in parallel begin
$A_{i,i}$ $:= \min\{A_{i,i}$,

$(\prod_{j=i}^{i+2^{a-1}-1}(A_{j,j+1}A_{j+1,j+1}))(\Pi_{j=i+2^{a-1}}^{i+I}(A_{j,j-1}A_{J-1,j-1}))$,
$(\Pi_{j=i}^{i-2^{a-1}+1}(A_{j,j-1}A_{j-1,j-1}))(\Pi_{i=i-2^{a-1}}^{i-1}(A_{j,j+1}A_{j+1,j+1}))\}$;

$A_{i,i}$ $:=A_{i,i}^{*}$

end
end

In the h-th iteration of the loop indexed by t in Band-l.l, if 2^{h} divides i , then loops
of the form $[i]\cdots[i]$ with amplitude $2^{h}-1$ are smoothed. Therefore, procedure Band-l.l
accomplished the tasks of the first stage.

Theorem 2 Procedure Band-l.l smoothes loops of the form $[i]\cdots[i]$ with amplitude $2^{h}-1$,
where h is the largest integer such that $i/2^{h}$ is odd.

Proof: By induction on h . Before the execution of the loop indexed by t in procedure Band-
1.1, instruction $A_{i,i}$ $:=A_{i,i}^{*}$ is executed. Therefore, loops of the form $[i]\cdots[i]$ with amplitude
0 have been contracted to a single arc. Assume that after the h-th iteration, loops of the
form $[i]\cdots[i]$ with amplitude $2^{h}-1$, where 2^{h} divides i , have been smoothed. Consider the
case of $h+1$. After the h-th iteration, a simple loop of the form $[i]\cdots[i]$ with amplitude
$2^{h+1}-1$, where 2^{h+1} divides i , has been contracted to a loop of the forms $[i][i+1][\delta_{i+1}][i+$

$2][\delta_{i+2}]\cdots[i+2^{j-1}]\cdots[i+1][\delta_{i+1}][i]$ and $[i][i-1][\delta_{i-1}][i-2][\delta_{i-2}]\cdots[i-2^{j-1}]\cdots[i-1][\delta_{i-1}][i]$

by the principal of path smoothing, where δ_{s} is either s or empty ϵ . Instruction

$A_{i,i}$ $:= \min\{A_{i,i}$,
$(\Pi_{j\pm i}^{i+2^{aarrow 1}-1}(A_{j,j+1}A_{j+1,j+1}^{*}))(\Pi_{j=i+2^{a-1}}^{i+1}(A_{j,j-1}A_{j-1,j-1}^{*}))$,
$(\Pi_{j=i}^{i-2^{a-1}+1}(A_{j,j-1}A_{j-1,j-1}^{*}))(\Pi_{j=i-2^{a-I}}^{i-1}(A_{j,j+1}A_{j+1,j+1}^{*}))\}$

in the $h+1- st$ iteration smoothes such a simple loop. And then instruction $A_{i,i}$ $:=A_{i,i}^{*}$

smoothes non-simple loops. \square

Theorem 3 The time complexity of Band-l.l is

$O(\frac{nb^{2}\log\frac{n}{b}}{p}+I(b)\log n\log\frac{?l}{b})$.

165

Proof: $O(\log(n/b))$ iterations of the loop indexed by t in Band-l.l are executed. In the h-th
iteration, $\lfloor n/(2^{h}k)\rfloor$ parallel matrix products and matrix transitive closures are computed,
where each product contains $O(2^{h})$ matrix multiplications. Each matrix multiplication takes
$O(b^{3}/p+I(b))$ time, and each matrix transitive closure takes $O(b^{3}/p+I(b)\log b)$ time.
Therefore, the h-th iteration takes $O((nb^{2})/p+I(b)\log b+I(b)h)$ time. The time complexity
of the algorithm is

$O(\frac{nb^{2}\log\frac{n}{b}}{p}+I(b)\log b1og\frac{n}{b}+I(b)\log^{2}\frac{n}{b})=O(\frac{nb^{2}\log\frac{n}{b}}{p}+I(b)\log n\log\frac{n}{b})$.

\square

The computation of matrix products in procedure Band-l.l can be improved. We note
that after the first iteration of computing the matrix transitive closure is executed, matrices
$A_{i,i},$ $imod2\neq 0,$ $arefixedandwillbenotmodifiedintheremainingexecutionofBand- 1.1$.
After the first iteration of the loop indexed by t , matrices $A_{i,i},$ i mod $4\neq 0$, are fixed and
will not be modified, and so on. The modified procedure Band-1.2 is as follows:

Procedure Band-1.2
for all $i,$ $1\leq i\leq 2^{a}-1$, do in parallel

$A_{i,i}$ $:=A_{i,i}^{*}$;
for $t:=1$ to $a-1$ do begin $(*2^{a}-1=n/k. *)$

for all $i,$ $1\leq i\leq 2^{a}-1,$ $imod 2^{t}=0$, do in parallel begin
if $t\neq 1$ then begin

$A_{i,i+2^{t-1}}$ $:=A_{i,i+2^{t-2}}A_{i+2^{t-2},i+2^{t-2}}A_{i+2^{t-2},i+2^{t-1};}$

$A_{i+2^{t-1},i}$ $:=A_{i+2^{t-1},i+2^{t-2}}A_{i+2^{t-2},i+2^{t-2}}A_{i+2^{t-2},i;}$

$A_{i,i-2^{t-1}}$ $:=A_{i,i-2^{i-2}}A_{i-2^{t-2},i-2^{t-2}}A_{i-2^{t-2},i-2^{t-1}}$;
$A_{i-2^{t-1},i}$ $:=A_{i-2^{t-1},i-2^{t-2}}A_{i-2^{t-2},i-2^{t-2}}A_{i-2^{t-2},i}$

end;
$A_{i,i}$ $:= \min\{A_{i,i}, A_{i,i+2^{t-1}}A_{i+2^{i-1},i+2^{t-1}}A_{i\dagger 2^{t-1},i}, A_{i,i-2^{t-1}}A_{i-2^{\ell-1},i-2^{t-1}}A_{i-2^{t-1},i}\}$;
$A_{i,i}$ $:=A_{i,i}^{*}$

end
end

Theorem 4 The time complexity of Band-1.2 is

$O(\frac{nb^{2}}{p}+I(b)\log b\log\frac{n}{b})$.

The second stage is to smooth loops $[i]\cdots[i]$ with any amplitude and to compute all
pair shortest distances within the band. When the first stage finishes, loops of the form
$[2^{a-1}]\cdots[2^{a-1}]$ with any amplitude are smoothed, where $2^{a}-1=n/k$. This results in two

166

graphs $G_{1},$ G_{2} from the input graph, where G_{1} contains vertices in [1], [2], $\cdots,$
$[2^{a-1}]$ and G_{2}

contains vertices in $[2^{a-1}],$
$\cdots,$ $[2^{a}-1]$. Each original loop of the form $[i]\cdots[i]$ is now a loop

in one of the resulting graphs. Let us consider G_{1} . A simple loop of the form $[2^{a-2}]\cdots[2^{a-2}]$

should have already been smoothed in the first stage if it does not contain a vertex in $[2^{a-1}]$.
If it does, then the loop is now in the form $[i][\delta_{i}][i+1][\delta_{i+1}]\cdots[2^{a-1}]\cdots[i][\delta_{i}]$, where $i=2^{a-2}$

and δ_{j} is either j or ϵ . We can use matrix multiplication to smooth such a loop. After all
loops of the form $[2^{a-2}]\cdots[2^{a-2}]$ are smoothed, G_{1} is divided into two graphs, one contains
vertices in [1], [2], $\cdots[2^{a-2}]$ and the other contains vertices in $[2^{a-2}],$

$\cdots,$
$[2^{a-1}]$. G_{2} can be

processed in a similar way. Thus we can continue the dividing process recursively.
After we smooth all loops, we have to compute shortest distances for all other entries

within the band. The lower left triangle of $A_{i,i+1}$ is updated with $A_{i,i}A_{i,i+1}$ and upper right
triangle of $A_{i,i-1}$ is updated with $A_{i,i}A_{i,i-1}$.

We now give procedure Band-2 for the second stage.

Procedure Band-2
for $t:=a-2$ downto 0 do begin $(*2^{a}-1=n/k. *)$

for all $i,$ $1\leq i\leq 2^{a}-1,$ $imod 2^{t}=0$ and $imod 2^{t+1}\neq 0$, do in parallel
begin

if $i\neq 2^{a}-2^{t}$ then $A_{i,i}$ $:= \min\{A_{i,i}, A_{i,i+2^{t}}A_{i+2^{t},i+2^{t}}A_{i+2^{t},i}\}$;
if $i\neq 2^{t}$ then $A_{i,i}$ $:= \min\{A_{i,i}, A_{i,i-2^{t}}A_{i-2^{t},i-2^{t}}A_{i-2^{t},i}\}$;
$A_{i,i}$ $:=A_{i,i}^{*}$

end
end
for all $i,$ $1\leq i\leq 2^{a}-2$, do in parallel begin ($*fi11$ all entries within the band. $*$)

begin
$A_{i,i+1}$ $:=A_{i,i}A_{i,i+1}$;
$A_{i+1,i}$ $:=A_{i+1,i}A_{i,i}$

end

Theorem 5 Procedure Band-2 computes all pair shortest distances within the band in time

$O(\frac{nb^{2}}{p}+I(b)\log b\log\frac{n}{b})$.

After all pair shortest distances are computed within the band, the all pair shortest
distances outside the band can be computed progressively from the main diagonal toward
the top right corner and the bottom left corner. For convenience we add n/k dummy vertices
and number them from $n+1$ to $n+n/k$. Arcs incident with dummy vertices are labeled
with weight ∞ . There are now 2^{a} submatrices on the main diagonal. The algorithm for
computing all pair shortest distances is given below.

167

Procedure Band-3
for $t:=1$ to $a-1$ do begin $(*2^{a}-1=n/k. *)$

for all $i,$ $1\leq i\leq 2^{a},$ $imod 2^{t}=0$ and $imod 2^{t+1}\neq 0$, do in parallel
begin

for all $j,$ $k,$ $i-2^{t}+1\leq j\leq i,$ $i+1\leq k\leq i+2^{t}$, do in parallel
begin

$A_{j,k}$ $:=A_{j,i}A_{i,i+1}A_{i+1,k;}$

$A_{k,j}$ $:=A_{k,t+1}A_{i+1,i}A_{i,j}$

end
end

end

Theorem 6 Procedure Band-3 computes all pair shortest distances, and its time complexity
is $O(n^{2}b/p+I(b)\log(n/b))$.

References
[ADY] L. Allison, T. I. Dix and C. N. Yee. Shortest path and closure algorithms for banded

matrices. Information Processing Letters 40 (1991), 317-322.

[CW] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
J. of Symbolic Computation 9 (1990), 251-280.

[FW] S. Fortune and J. Wyllie. Parallelism in random access machines. Proc. 10th ACM
Symposium on the Theory of Computing, San Diego, California (1978), 114-118.

[Fr] M. L. Fredman. New bounds on the complexity of the shortest path problem. SIAM
J. Comput. 5 (1976), 83-89.

[HPR] Y. Han, V. Pan and J. Reif. Efficient parallel algorithms for computing all pair shortest
paths in directed graphs. In Proc. 4th ACM Symposium on Parallel Algorithms and
Architectures, San Diego (1992), 353-362.

[KR] R. M. Karp and V. Ramachandran. A survey of parallel algorithms for shared memory
machines. in “ Handbook of Theoretical Computer Science”, Amsterdam (1990), 869-
941.

[L] A. Lingas. Efficient parallel algorithms for path problems in planar directed graphs.
Proc. SIGAL’90, Lecture Notes in Computer Science, 450 (1990), 447-457.

[PR] V. Pan and J. H. Reif. Fast and efficient solution of path algebra problems. J. Com-
puter and System Sciences 38 (1989), 494-510.

[S] R. Seidel. On the all-pair-shortest path problem. Proc. of the 24th ACM Symposium
on the Theory of Computing, Victoria (1992), 745-749.

