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Abstract In computational geometry, a lot of knowledge in combinatorial ge-
ometry is required in order to analyze the combinatorial structure of geometric
problems and algorithms presented to solve the geometric problems. Conversely,
some recent problems posed in computational geometry give a new direction to
the study of discrete and combinatorial geometry. One of such subjects is the
Davenport-Schinzel sequence. Although the Davenport-Schinzel sequence is a
combinatorial concept, it is important in computational geometry because theres
are many algorithms in computational geometry which can be analyzed by the the-
ory of Davenport-Schinzel sequences. Davenport-Schinzel sequences are strongly
connected with the lower envelope of a set of functions. In this paper we sur-
vey the theory of Davenport-Schinzel sequences and how to apply the theory to
geometric problems.

1. Introduction

The lower envelope of a set of $n$ functions is an important concept in computational

geometry, and particularly, there are its many applications to motion planning, visibility,

ray shooting and geometric optimization problems. For example, consider the nearest

neighbor problem of moving points $p_{1}(t),$ $\cdots,$ $p_{n}(t)$ with parameter $t$ in the plane.

The problem is to compute the sequence of points that are nearest to some certain point,

say $p_{1}$ . The sequence is called the nearest neighbor sequence. The problem of computing
the nearest neighbor sequence can be formulated as the following lower envelope problem:

$f(t)= \min_{i\neq 1}d(p_{1}(t),p_{i}(t))$ ,

where $d(p_{1}(t),p_{i}(t))$ is the Euclidean distance between $p_{1}(t)$ and $p_{i}(t)$ . Note that the
graph $y=f(t)$ is the lower envelope of graphs of $n$ functions $y=d(p_{1}(t),p_{i}(t))$ . For
functions of a single variable, the combinatorial and algorithmic analysis of the lower
envelope has been studied as a Davenport-Shinzel sequence.

For positive integers $n$ and $s$ , a sequence of integers $U=(u_{1}, u_{2}, \cdots, u_{m})$ is an
$(n, s)$ Davenport-Schinzel sequence (an $(n,$ $s)$ DS sequence for short), if it satisfies the

following conditions:

(1) $1\leq u_{i}\leq n$ $(i=1, \cdots, m)$
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(2) $u_{i}\neq u_{i+1}$ $(i=1, \cdots, m-1)$

(3) There do not exist $s+2$ indices 1 $\leq i_{1}<i_{2}<$ . . . $i_{s+2}\leq m$ such that

$u_{i_{1}}=u_{i_{3}}=u_{i_{S}}=\cdots=a,$ $u_{i_{2}}=u_{i_{4}}=u_{i_{6}}=\cdots=b$ and $a\neq b$ .
We refer to $s$ as the order of the sequence $U$ and $|U|=m$ is called the length of

the sequence $U$ . For example, for $n=5,$ $(1,2,3,4,5)$ is $(5, 1)$ DS sequence of length

5 and (1, 2, 3, 4, 5, 4, 3, 2, 1) is $(5, 2)$ DS sequence of length 9. $\lambda_{s}(n)$ is the maximal

length of $(n, s)$ Davenport-Schinzel sequence:

$\lambda_{s}(n)=\max$ { $|U|$ : $U$ is an $(n,$ $s)$ DS sequence}.

At a first glance, it seems that this definition of the DS sequence is artfficial in a sense.

However, the DS sequences provide a combinatorial characterization of the lower envelope

of the set of continuous functions. Therefore DS sequences have been studied as an im-

portant concept in aspects of applications in computational and combinatorial geometry,

and have produced satisfactory results in computational geometry.

This paper surveys the theory of DS sequences and its applications in computational

geometry. In the next section, the strong connection between the DS sequence and the

lower envelope is reviewed and we summarize the known facts of the DS sequence and

the lower envelope. Sections 3 and 4 deal with some applications of DS sequence. In

the section 3, dynamic Voronoi diagram and generalized dynamic Voronoi diagrams can
be analyzed by using the DS sequence and applications of these dynamic diagrams to

geometric fitting problems are also presented. In the section 4, some other applications

to motion planning and geometric optimization problem are touched upon.

2. Lower Envelope of $n$ functions and Davenport-Schinzel Sequences

Let $\Gamma=\{f_{1}, f_{2}, \cdot\cdot, f_{n}\}$ be a set of $n$ continuous functions of a single variable $x$ ,

where each $f_{i}$ is defined over the reals. Assume that each pair of the functions in $\Gamma$

intersect in at most $s$ points. For the set of the functions $\Gamma$ , define the lower envelope
$f(x)$ by

$f(x)= \min_{i}f_{i}(x)$ .
The graph of $f(x)$ consists of connected portions of the graphs of the functions $f_{i}$ .
Consider the indices sequence of the lower envelope $f$ , and we call it the lower envelope

sequence. The sequence is nothing but an $(n, s)$ DS sequence, thus the number of

connected components of $f(x)$ is at most $\lambda_{s}(n)$ . Moreover, it is known that, for any
$(n, s)$ DS sequence $U$ , there is a set of functions $\Gamma$ such that its lower envelope sequence
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Fig.1 Lower envelope of $n$ lines: Fig.2 Lower envelope of $n$ segments:
$\lambda_{1}(n)=n$ $\lambda_{3}(n)=\Theta(n\alpha(n))$

is $U$ . Therefore the maximal length of lower envelope sequences is equal to the maximal

length of $(n, s)$ Davenport-Schinzel sequences $\lambda_{s}(n)$ .
Thus, estimating the maximal length of DS sequences is equivalent to computing

the lower envelope sequence of a set of functions which intersect each other in at most

some fixed number of points. We will trace briefly the history of analyzing DS sequences
before giving examples of applications of DS sequences.

The problem of estimating $\lambda_{s}(n)$ has originally been posed by Davenport and

Schinzel [6]. They were interested in a linear differential equation with constant coef-

ficients of order $d$ . Let $f_{1}(x),$ $\cdots,$ $f_{n}(x)$ be $n$ distinct solutions of the equation.

They considered the upper envelope of the solutions and reduced the problem of estimat-

ing the number of connected portions of the upper envelope to the combinatorial problem

of DS sequences.
It is easy to show that $\lambda_{1}(n)=n$ (See Fig.1) and $\lambda_{2}(n)=2n-1$ . For $\lambda_{3}(n)$ ,

Davenport and Schinzel showed that $\lambda_{3}(n)=O(n\log n)$ [6], and it was improved to
$O(n\frac{\log n}{\log\log n})$ by Davenport [5]. For higher order DS sequences, the first non-trivial

upper bound was $\lambda_{s}(n)=O(n\exp\{C\sqrt{\log n}\})$ [6], where $C$ depends on only on $s$ ,

and it was improved to $O(n\log^{*}n)$ by Szemer\’edi [20], where the $\log^{*}n$ is the smallest
$i\geq 1$ for which $k_{i}\geq n$ , where $k_{1}=2$ and $k_{i+1}=2^{k_{i}}$ $(i\geq 1)$ . Attallah raised

the DS sequence again in dynamic computational geometry and generalized the lower

envelope problem for $n$ partially-defined functions [3] as follows: Let $f_{1}$ , , $f_{n}$ be

partially defined functions, such that each function $f_{i}$ is defined and continuous over
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some connected interval $I_{i}$ , and such that each pair of them intersect in at most $s$

points. In this general case, the lower envelope consists of at most $\lambda_{s+2}(n)$ connected

portions [3]. This result shows that the combinatorial complexity of the lower envelope

of $n$ line segments in the plane is $O(\lambda_{3}(n))$ (Fig.2). After the rediscovery, the problem

of estimating $\lambda_{s}(n)$ has been one of the main topics in computational geometry. Hart

and Sharir proved that $\lambda_{3}(n)=\Theta(n\alpha(n))$ [7], where $\alpha(n)$ is the functional inverse of

Ackermann’s function. The function $\alpha(n)$ grows very slowly and tends to infinity with
$n$ , thus it was shown that DS sequences are non-linear for $s\geq 3$ . Their proof was based

on an equivalence between DS sequences with $s=3$ and sequences of certain operations

performed on arbitrary rooted trees, called generalized path compressions. The path

compression has complexity $\Theta(n\alpha(n))$ [21]. Soon after this paper, Sharir proved that
$\lambda_{s}(n)=O(n\alpha(n)^{O(\alpha(n)^{\epsilon-3})})$ for $s\geq 4[16]$ and $\lambda_{2s+1}(n)=\Omega(n(\alpha(n))^{s})$ for $s\geq 2[17]$ .
The facts that are known until now are as follows (See [1]):

$\lambda_{1}(n)=n$ ,

$\lambda_{2}(n)=2n-1$ ,

$\lambda_{3}(n)=\Theta(n\alpha(n))$ ,

$\lambda_{4}(n)=\Theta(n2^{\alpha(n)})$ ,

$\lambda_{2s}(n)=O(n2^{(\alpha(n))^{8-1}(1+o(1))})$ for $s>2$ ,

$\lambda_{2s+1}(n)=O(n2^{(\alpha(n))^{e-1}(1+o(1))\log\alpha(n)})$ for $s\geq 2$ ,

$\lambda_{2s}(n)=\Omega(n2\frac{1}{(\epsilon-1)!}(\alpha(n))^{\epsilon-1})$ for $s>2$ ,

$\lambda_{2s+1}(n)=\Omega(n(\alpha(n))^{s})$ for $s\geq 2$ .
These results show that $\lambda_{s}(n)$ $(s\geq 3)$ is slightly super-linear in $n$ for any fixed $s$ .

Consider the problem of constructing the lower envelope of $n$ continuous functions
over the reals such that each pair of them intersect in at most $s$ points. The algorithm
is based on a straightforward application of the divide-and-conquer paradigm.

Step 1. Partition the functions into two sets of equal size.
Step 2. Find the lower envelope of each set recursively.

Step 3. Merge the two envelopes.

The algorithm produces the merge of the two envelopes in time proportional to the

number of intervals in which one of the $n$ functions attains the envelope. The algorithm
computes the lower envelope in $O(n\lambda_{s}(n)\log n)$ time, and it is easy to apply to the
case of $n$ partially defined functions. In that case, the lower envelope of $n$ partially
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Fig.3. Voronoi diagram Fig.4. Topological change of Voronoi diagram

defined functions has $O(n\lambda_{s+2}(n))$ connected portions, thus an $O(n\lambda_{s+2}(n)\log n)$ time

algorithm can be obtained. Moreover, Hershberger improved the time complexity to
$O(n\lambda_{s+1}(n)\log n)$ time [8].

Consider the nearest neighbor sequence problem for moving points along lines in

the plane. For $i$ , let $f_{i}(t)$ be $d(p_{1}(t),p_{i}(t))^{2}$ , and each pair of $f_{i}(t)$ intersect at

most twice. The function $f(t) \sim=\min_{i\neq 1}f_{i}(t)$ can be considered instead of $f(t)=$

$\min_{i\neq 1}d(p_{1}(t),p_{i}(t))$ . By using results of the DS sequence, it can be shown that the

maximal length of the nearest neighbor sequence for moving points along lines in the

plane is $O(n)$ and we obtain the sequence in $O(n\log n)$ time.

3. Voronoi Diagrams for Moving Points

In this section, we consider the Voronoi diagram for moving points. The problems

of estimating the combinatorial complexity of dynamic Voronoi diagrams and analyzing

algorithms for constructing them are deeply related to the problem of the lower envelope

problem and DS sequences. We studied this problem in $[9,10]$ .
The most fundamental Voronoi diagram is the Euclidean Voronoi diagram for $n$

points in the plane. For a set of $n$ points $p_{i}$ $(i=1, \cdots, n)$ in the plane, define the

Voronoi region $V(p_{i})$ of $p_{i}$ by

$V(p_{i})= \bigcap_{j}\{p|d(p,p;)<d(p,p_{j})\}$
,

where $d(p,p_{i})$ denotes the Euclidean distance between two points $p$ and $q$ in the

plane. The boundaries of $V(p_{i})$ $(i=1, \cdots, n)$ form a planar skeleton, which is called

the Voronoi diagram for $n$ points (Fig.3).

Recently, the Voronoi diagram for moving objects has been shown to be useful in

motion planning and geometric optimization problems. Figure 4 illustrates how the
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Voronoi diagram for points changes when the points move dynamically. As shown in this

figure, the topology of the Voronoi diagram changes according to the movement. The

dynamic Voronoi diagram represents such topological changes.

Consider $n$ points $p_{i}(t)=(x_{i}(t), y_{i}(t))$ parametrized by $t$ in the plane ( $t$ may be

sometimes regarded as time), where $x_{i}(t),$ $y_{i}(t)$ are functions of $t$ , which are polyno-

mials or rational functions of $t$ . The degrees of these polynomials and rational functions

are assumed to be independent of $n$ . To simplify our discussion, it is also assumed that

these functions are different from one another, $p_{i}(t)\neq p_{j}(t)$ for any $t$ and $i\neq j$ and

any four points become cocircular for at most $s$ distince values of $t$ . $s$ is independent

of $n$ . For fixed $t$ , the Voronoi diagram for $n$ points $p_{i}(t)$ is defined as usual, and the

problem is to construct the Voronoi diagrams for some range of $t$ .
As is well known, the Voronoi diagram for $p_{i}(t)$ for fixed $t$ is the orthogonal

projection of the lower envelope of functions $g_{i}(x, y)=((x-x_{i}(t))^{2}+(y-y_{i}(t))^{2}$ of

two variables $x$ , $y$ $(i=1, \cdots , n)$ . In a similar way, the problem of constructing the

dynamic diagram may be regarded as computing the lower envelope of $n$ functions

$f_{i}(x, y,t)=(x-x_{i}(t))^{2}+(y-y_{i}(t))^{2}$

of three variables $x,$ $y,$ $t$ $(i=1, \cdots, n)$ . Define $f(x, y, t)$ by

$f(x, y, t)= \min_{i=1,\cdots,n}f_{i}(x, y,t)$ .

Now the problem is to compute $f(x, y,t)$ .
For this function $f(x, y, t)$ , the minimum diagram is a subdivision of $(x, y, t)-$

space such that, with each region, a function $f_{i}$ attaining the minimum in the definition
of $f$ for any point in the region is associated. This is nothing but the projection of

the pointwise minimum of these functions onto $(x, y, t)$ -space. The intersection of this
diagram with the plane $t=t’$ is the Voronoi diagram for $p_{i}(t’)$ . We call this minimum
diagram the dynamic Voronoi diagram.

3.1. Analysis of the Dynamic Voronoi Diagram
By the assumptions on $p_{i}(t)$ , each region of the minimum diagram of $f$ consists of

a maximal connected 3-dimensional set of points at which the minimum is attained by a
function $f_{i}$ . The faces, edges and vertices of the subdivision consist of points at which
the minimum is attained simultaneously by two, three and four, respectively, functions.

It is easy to see the following properties of the intersections of the trivariate func-

tions $f_{i}(x, y,t)$ by solving the simultaneous equations each of which defines a function
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$f_{i}(x, y, t)$ in 4-dimensional Euclidean space $E^{4}$ . In the sequel, variables $x,$ $y,$ $t$ of $f_{i}$

will be often omitted.

Lemma 1. (1) $f_{i}(x, y, t)=f_{j}(x, y,t)$ is a connected surface in $E^{4}$ for each $i\neq j$ .
(2) For each triple $i,$ $j$ and $k$ of distinct indices, if $p;(t),$ $p_{j}(t)$ and $p_{k}(t)$ are not
collinear for all $t,$ $f_{i}=f_{j}=f_{k}$ is a continuous curve with parameter $t$ . When there
exists a $t$ such that $p_{i}(t),$ $p_{j}(t)$ and $p_{k}(t)$ are collinear, the curve is discontinuous at
this $t$ . The curve may be discontinuous at a constant number of points.

(3) For four distinct indices $i,$ $j$ , $k$ and $l,$ $f_{i}=f_{i}=f_{k}=f_{l}$ consists of at most $s$

points. $\square$

A trivial bound on the number of vertices on this minimum diagram is $O(n^{4})$ , but
this is loose as shown below.

Let $i$ and $j$ be distinct two indices, and fix them. For each $k\neq i,j$ , we define new
functions $g_{k}^{+}(t)$ and $g_{k}^{-}(t)$ as follows. Let $q_{k}$ be the center of the circumscribed circle

of $p_{i}(t),$ $p_{j}(t)$ and $p_{k}(t)$ , and $d_{k}$ the distance between $q_{k}$ and the middle point of
$p_{i}(t)$ and $p_{j}(t)$ . Let $l_{ij}(t)$ be the oriented line passing $p;(t)$ and $p_{j}(t)$ in this order.

See Fig.5.
Case 1: $p_{k}(t)$ is on the right side of the oriented

line $l_{ij}(t)$ .

$g_{k}^{+}(t)=\{\begin{array}{l}+d_{k}(q_{k}isontherightsideofl_{ij}(t))-d_{k}(q_{k}isontheleftsideofl_{ij}(t))\end{array}$

$g_{k}^{-}(t)=+\infty$

Case 2: $p_{k}(t)$ is on the left side of the oriented line
$l_{ij}(t)$ .
$g_{k}^{+}(t)=+\infty$

$g_{k}^{-}(t)=\{\begin{array}{l}-d_{k}(q_{k}isontherightsideofl_{ij}(t))+d_{k}(q_{k}isontheleftsideofl_{ij}(t))\end{array}$ Fig.5. Definitions of $g_{k}^{+}$ and $g_{k}^{-}$

Case 3: $p_{k}(t)$ is on $l_{ij}(t)$ , where this case occurs for at most a constant number of $t$ . If
$p_{k}(t)$ is on the line segment connecting $p;(t)$ and $p_{j}(t)$ , we define $g_{k}^{+}(t)=g_{k}^{-}(t)=-\infty$ .
Otherwise, $g_{k}^{+}(t)=g_{k}^{-}(t)=+\infty$ .

For $g_{k}^{+}(t),$ $g_{k}^{-}(t)$ , further define functions $g^{+}(t),$ $g^{-}(t)$ and $g’(t)$ as follows:
$g^{+}(t)= \min_{k\neq i,j}g_{k}^{+}(t)$ , $g^{-}(t)= \min_{k\neq i,j}g_{k}^{-}(t)$ ,

$g’(t)= \max\{g^{-}(t)+g^{+}(t), 0\}$ .
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Geometric implications of these definitions are given as follows.

Lemma 2. (1) For $t$ , suppose $g^{+}(t)\neq\pm\infty$ (resp. $g^{-}(t)\neq\pm\infty$ ) is attained by a

function $g_{k}^{+}(t)$ (resp. $g_{k}^{-}(t)$ ). Then, any point $p_{l}(t)$ lying on the right (resp. left) side

of $l_{ij}(t)$ is not contained inside the circumscribed circle of $p_{i}(t),$ $p_{j}(t)$ and $p_{k}(t)$ .
(2) For $t$ , suppose $g’(t)>0$ . If $g^{+}(t)=g_{k}^{+}(t)\neq+\infty$ or $g^{-}(t)=g_{k}^{-}(t)\neq+\infty$ , any

point $p_{l}(t)$ is not contained inside the circumscribed circle of $p_{i}(t),$ $p_{j}(t)$ and $p_{k}(t)$ .
$\square$

Graphs of $g^{+},$ $g^{-}$ and $g’$ are composed of maximal connected portions of graphs

of $g_{k}^{+},$ $g_{k}^{-},$ $g_{k}^{+}+g_{l^{-}}$ and $0$ . As usual, define the combinatorial complexity of these

functions to be the maximum number of such maximal connected portions. Also, call $t’$

an intersectin$g$ value of a function $(g^{+}, g^{-}, g’)$ if the functions $(g_{k}^{+}, g_{k}^{-}, g_{k}^{+}+g_{l^{-}}, 0)$

attaining its minimum or maximum at $t’-t_{\epsilon}$ and $t’+t_{\epsilon}$ are different for sufficiently small
$t_{\epsilon}$ . The number of intersecting values is nearly equal to the combinatorial complexity.

This complexity can be evaluated as follows.

Lemma 3. The combinatorial complexity of $g^{+},$ $g^{-}$ and $g’$ are $O(\lambda_{s+2}(n))$ . These

functions can be computed in $O(\lambda_{s+1}(n)\log n)$ time.

Proof: Each $g_{k}^{+}$ may be discontinuous at most a constant number of times from

Lemma 1(2). Any two functions among $g_{k}^{+}$ intersect at most $s$ points by Lemma 1(3).

Hence, the combinatorial complexity of $g^{+}$ is $O(\lambda_{s+2}(n))$ [3]. For $g^{-}$ , similar. Any

two functions among $g_{k}^{+},$ $g_{k}^{-},$ $g_{k}^{+}+g_{l^{-}}$ and $0$ intersect at most constant times. Then,

the combinatorial complexity of $g’$ is within that of $g^{+}$ and $g^{-}$ by a constant factor.

The time complexity follows from [8]. $\square$

Theorem 1. The dynamic Voronoi diagram has the combinatorial complexity of $O(n^{2}$

$\lambda_{s+2}(n))$ , and can be computed in $O(n^{2}\lambda_{s+1}(n)\log n)$ time and $O(n)$ space.

Proof: Suppose that one of the intersections, whose number is at most $s$ , of $f_{i},$ $f_{j}$ ,
$f_{k}$ and $f_{l}$ in $E^{4}$ corresponds to a vertex on the minimum diagram of $f$ in $E^{3}$ , and

t-coordinate of this point is $t’$ . There exists a circle on which $p_{i}(t’),$ $p_{j}(t’),$ $p_{k}(t’)$ and
$p_{l}(t’)$ he, and, for the other indices $h,$ $p_{h}(t’)$ is not enclosed in the circle. Considering

configurations of four points $p_{i}(t’),$ $p_{j}(t’),$ $p_{k}(t’)$ and $p_{l}(t’)$ , there exist three cases to

consider:

(a) $p_{k}(t’)$ and $p_{l}(t’)$ are on the right side of the oriented line $l_{ij}(t’)$ ;

(b) $p_{k}(t’)$ and $p_{l}(t’)$ are on the left side of the oriented line $l_{ij}(t’)$ ;
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(c) one of $p_{k}(t’)$ and $p_{l}(t’)$ is on the right side of $l_{ij}(t’)$ and the other on the left side.

In the cases (a), (b) and (c), $t’$ is the intersecting value of $g^{+},$ $g^{-}$ and $g’$ (in fact,

in (c), it is a solution of the equation $g^{+}+g^{-}=0$ ), respectively. Therefore, a vertex on
the minimum diagram and the surface defined by $f_{i}=f_{j}$ correspond to an intersecting

value of $g^{+},$ $g^{-}$ or the solution of $g^{+}+g^{-}=0$ . Conversely, each of such intersecting

values corresponds to a unique vertex in the minimum diagram.

Hence, the combinatorial complexity of the dynamic Voronoi diagram is $O(n^{2}$

$\lambda_{s+2}(n))$ . By computing $g^{+},$ $g^{-},$ $g’$ for any pair of $p_{i}(t)$ and $p_{j}(t)$ , all the ver-

tices on the dynamic Voronoi diagram can be listed in $O(n^{2}\lambda_{s+1}(n)\log n)$ time and
$O(n)$ space (Lemma 3). $\square$

The lower envelope of functions of a single variable has been investigated as a DS

sequence, and it is easy to see that the combinatorial complexity of the lower envelope

of general algebraic surfaces in the $d$ dimensional space is $O(n^{d})$ and its lower bound

is $\Omega(n^{d-1})$ . Howerer, it has been conjectured that the combinatorial complexity of the

lower envelope is only shghtly larger than $O(n^{d-1})$ . The dynamic Voronoi diagram

for moving points is regraded as the lower envelope of $n$ functions $f_{i}(x, y, t)$ of three

variables, and our bounds of the dynamic Voronoi diagram are tight within $\log^{*}n$ factor,

which beats bounds $n^{\epsilon}$ for any $\epsilon>0$ . Sharir surveyed the maximum combinatorial

complexity of the lower envelope of general algebraic surfaces in [18], and improved the

upper bound $O(n^{d})$ to an almost tight upper bound for the complexity. More precisely,

the paper presented that the combinatorial complexity of the lower envelope of $n$ low-

degree algebraic surfaces in the $d$ dimensional space is $O(n^{d-1+\epsilon})$ for any $\epsilon>0$ , with

the constant of proportionality depending on $\epsilon$ , on $d$ , on the maximum number $s$ of

intersection points between any d-tuple of surfaces and also on the degree and shape of

these surfaces and of their boundaries.

3.2. Generalized Dynamic Voronoi Diagrams

The Euclidean Voronoi diagram for fixed points in the plane is so useful in solv-

ing many geometric problems, for instance, the Delaunay triangulation, the minimum

spanning tree problem, the largest empty circle problem, etc. Therefore, many gener-
alizations have been performed, and the Voronoi diagrams based on the $L_{1}$ distance,
$L_{\infty}$ distance, etc., and further the Voronoi diagram for more complex objects such as
segments, polygons, disks, eta., have been studied.
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We applied the same technique presented in the section 3.1 to the higher-order and

weighted Voronoi diagrams for moving points in the plane, and the dynamic Voronoi

diagram for $n$ circles in the Euclidean geometry and in the Laguerre geometry. The

combinatorial complexity of the dynamic Voronoi diagram for moving circles in Euclidean

and Laguerre geometry is $O(n^{2}\lambda_{s+2}(n))$ [12], and the combinatorial complexity for the

dynamic m-th Voronoi diagram is $O(n^{2}m\lambda_{s+m+3}(n))$ [11]. For constructing dynamic

Voronoi Diagrams, we obtain an $O(n^{2}\lambda_{s+1}(n)\log n)$ time algorithm for moving circles

in Euclidean and Laguerre geometry [12], and an $O(n^{2}m\lambda_{s+m+2}(n)\log n)$ algorithm for

the dynamic m-th Voronoi diagram [11]. Moreover, for the dynamic weighted Voronoi

diagram, the combinatorial complexity is $O(n^{2}\lambda_{s+2}(n))$ , and an $O(n^{2}\lambda_{s+1}(n)\log n)$

time algorithm for constructing it is obtained [13].

For the Voronoi diagram based on $L_{1}$ distance, Chew showed that the number of

topological changes as the points move with constant velocity in the plane is $O(n^{2}\alpha(n))$

[4].

3.3. Related Minimax Geometric Fitting Problems

There are some applications of the non-weighted or weighted dynamic furthest

Voronoi diagram to the geometric fitting problem between two sets of points. Although

the furthest Voronoi diagram is different from the nearest one, the above arguments hold

with a slight modification. The geometric fitting problem is a fundamental problem in

pattern recognition and image processing. For example, it arises in an industrial robot

attaching a pin-grid-array type LSI to a board by using visual sensors [14]. The robot

tries to fit the pins of LSI package to corresponding patterns on the board. The patterns

are a collection of disks or squares of the same size.

The non-weighted problem can be formulated as follows. Given two sets $S=\{s_{j}=$

$(x_{j}, y_{j})|j=1,$ $\cdots,$ $n$} and $T=\{t_{j}=(u_{j}, v_{j})|j=1, \cdots, n\}$ of points in the plane

such that $s_{j}$ is associated with $t_{j}$ , translate, rotate (or transform in a more complicated

way) $and/or$ scale the set $S$ simultaneously so that the maximum of the $L_{2}$ (or $L_{\infty}$ )

distances, according to each pattern, between $t_{j}$ and the transformed $s_{j}$ is minimized.

For example, in the case that the patterns are disks, and translation and rotation are

used as geometric operations, the problem is expressed as follows:

$\min$ $\max\Vert s_{j}e^{i\theta}-t_{j}-z\Vert$ ,
$z,0\leq\theta<2\pi j=1,\cdots,n$
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Fig. 6. Geometric fitting of distorted grid points.with disks with different radii

where $s_{j}$ and $t_{j}$ are identified with complex numbers $x_{i}+iy_{i}$ and $u;+iv_{i}$ , respectively,

and $\theta$ is an angle $(0\leq\theta<2\pi)$ and the $S$ is translated by making the origin to $z=$

$x+iy$ . $\Vert\cdot\Vert$ denotes the Euclidean norm. Using the furthest Voronoi diagram for moving

points in the plane, this geometric fitting problem can be solved in $O(n^{2}\lambda_{7}(n)\log n)$ time

in $L_{2}$ norm.

In a more general setting, the following variants of the fitting problem should be

considered. (a) In the case that there are some points which cannot be put into the

corresponding disks, minimize the number of such points. (b) In the case that the radii

of disk patterns are different from one another, solve this non-uniform geometric fitting

problem (Fig.6). The weighted Voronoi diagram for moving points can be used to solve

the problem (b), since the radii of the disks may be considered as weights of their centers.

Suppose that point $s_{j}$ should be put into disk with center $t_{j}$ and radius $r_{j}$ in the

pattern. By rotating the set $S$ of points by $\theta$ and further translating it by $z,$ $s_{j}$ is

the corresponding disk iff $\Vert s_{j}e^{i\theta}-t_{j}-z\Vert\leq r_{j}$ . Then, all the points in $S$ can be put

into the corresponding disks iff the following value

$\min_{z,0\leq\theta<2\pi}j=1,\cdots,n\max\frac{1}{r_{i}}\Vert s_{j}e^{i\theta}-t_{j}-z||$

is less than or equal to 1.

4. Other Applications

In this section, we introduce some geometric problems and describe the results an-
alyzed by DS sequences. Three applications to motion Planning are given by Sharir et

al. [19], and Kedem et al. discussed the technical problem arising in such motion plan-

ning algorithms for a convex polygon in the plane [15]. The last one is the geometric

optimization problems, which has application in geographical information processing [2].



76

4.1. Problem of Separating Two Simple Polygons [19]

Let $P$ and $Q$ be two disjoint simple polygons having $m$ and $n$ edges, respectively.

The problem is to determine whether $P$ and $Q$ can be separated from one another by

a sequence of translations, and, if so, to produce such a separating motion. Consider the

Minkowski difference

$K=P-Q=\{x-y|x\in P, y\in Q\}$ .

lt is easy to see that $P$ and $Q$ can be separated by translations if and only if the origin
$O$ hes in the unbounded connected component $C_{\infty}$ of the complement of $K$ . In the

worst case, the boundary of $C_{\infty}$ may consist of $\Omega(mn)$ . Sharir et al. obtained that

their algorithm runs in $O(mn\alpha(mn)\log m\log n)$ time, which is close to a worst case
lower bound on the number of translations needed to separate $Q$ from $P$ .

4.2. Polygon Containment Problem [19]

Let $P$ be a convex polygon with $k$ edges, and let $Q$ be a closed polygonal region

whose boundary consists of $n$ edges. The problem is to determine whether $P$ can be

. translated and rotated to a placement in which it lies inside $Q$ . For the case in which $P$

is convex but $Q$ is an arbitrary polygonal region, Sharir et al. presented that there exist
at most $O(kn\lambda_{6}(kn))$ free placements of $P$ and an $O(kn\lambda_{6}(kn)\log n)$ time algorithm

was given.

4.3. Collision-Free Motion of a Convex Polygon Moving Amidst Polygonal

Obstacles [19]

Let $P$ be a moving convex k-gon and $Q$ a polygonal region in which $P$ is free to

move and whose boundary consists $n$ edges. $F$ is the three dimensional free configura-

tion space, and the problem is to obtain a combinatorial representation of the boundary

of $F$ . Sharir et al. have done this by constructing an edge graph whose nodes are the

one dimensional edges on the boundary of $F$ . They showed that this edge graph has
$O(kn\lambda_{6}(kn))$ vertices and edges, and that it can be computed in $O(kn\lambda_{6}(kn)\log kn)$

time.

4.4. Maximin Placement of Convex Objects in a Polygon [2]

The maximin placement of a convex polygon $P$ inside a polygon $Q$ is to place
$P$ inside $Q$ , using translation and rotation, so that the minimum Euclidean distance

between any point on $P$ and any point on $Q$ is maximized. For a fixed angle of the

rotation, the feasible region of $P$ inside $Q$ is defined to be a set of points $u$ such
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that $P(u)$ is contained in $Q$ . As the angle changes, the boundary of the feasible region

changes. Using the dynamic Voronoi diagram for moving edges of the boundary of the

feasible region, this problem can be solved in $O(m^{4}n\lambda_{16}(mn)\log mn)$ time, where $m$

and $n$ are the numbers of edges of $P$ and $Q$ , respectively.

5. Conclusions

In this paper, we have described the connection between DS sequences and the lower

envelope of a set of functions, illustrated how to apply the DS sequence to analyzing

the geometric algorithms by taking the dynamic Voronoi diagram as an example, and

reviewed some other applications of the DS sequence to motion planning and geometric
optimization problems.

Investigations in computational geometry and in combinatorial geometry have been
inseparable and will progress with interacting each other from now on. The DS sequence
is one of the examples which show the strong connection between two research areas.
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