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ON THE ESSENTIAL SELF-ADJOINTNESS OF THE
RELATIVISTIC HAMILTONIAN OF A SPINLESS PARTICLE

WATARU ICHINOSE (一ノ瀬 弥)

ABSTRACT. The relativistic quantum hamiltonian $H$ describing a spin-

less particle in an electromagnetic field is considered. $H$ is associated with

the classical hamiltonian $c\sqrt{m^{2}c^{2}+|p-A(x)|^{2}}+V(x)$ via Weyl’s corre-

spondence. In the precedutg papers [12] and [13] the author proved that if

$V(x)$ is bounded from below by a polynomial in $x,$ $H$ with domain $C_{0}^{\infty}(R^{d})$

is essentially self-adjoint. Here we will show that $H$ is essentially self-adjoint

if $V(x)$ is bounded from below by-C $\exp a|x|$ for positive constants $C$ and

$a$ . These results are quite different from those on the non-relativistic oper-

ator, i.e. the Schr\"odinger operator, but much close to those on the Dirac

operator.

1. INTRODUCTION

The result in this note was obtained together with Prof. T. Ichinose at

Kanazawa University. Consider a charged particle with charge one and rest

mass $m$ in an electromagnetic field. Then its relativistic classical hamiltonian

is given by

$h_{A}^{m}(x,p)+V(x)\equiv c\sqrt{m^{2}c^{2}+|p-A(x)|^{2}}+V(x)$ $(x\in R^{d})$ , (1.1)
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where $A(x)=(A_{1}(x), \cdots A_{d}(x))$ and $V(x)$ imply the vector potential and the

scalar one, respectively. $c$ is the velocity of light. The quantum hamiltonian

$H_{A}^{m}f(x)+V(x)f(x)$ via Weyl’s correspondence is formally defined by

$(2 \pi)^{-d}\iint_{R^{2d}}e^{i(x-x’)\cdot p}h_{A}^{m}(\frac{x+x’}{2},p)f(x’)dx’dp+V(x)f(x)$ . (1.2)

For example, if $A_{j}(x)(j=1,2, \cdots d)$ are sufficiently smooth and have the

bounded derivatives of any positive order on $R^{d}$ , this quantum hamiltonian

defines a linear operator in the space $L^{2}(R^{d})$ of all square integrable functions

(e.g. [17]). This quantum hamiltonian can be considered as the hamiltonian

describing a relativistic spinless particle (e.g. [18], [7], [3], and Appendix 2 to

XIII. 12 in [16]).

When $A(x)=0$ and $V(x)$ is the Coulomb potential, a Yukawa-type po-

tential, and their sum, the essential self-adjointness and spectral properties of

$H_{0}^{m}+V(x)$ have been studied in [18], $[7]and[3]$ . As for the general $H_{A}^{m}+V(x)$ ,

T. Ichinose proposed the extension of the quantum hamiltonian defined by

(1.2) to that for non-smooth $A_{j}(x)$ in [8] and [11] and proved its essential self-

adjointness with domain $C_{0^{\infty}}(R^{d})$ in [11] under the assumption that $V(x)\in$

$L_{loc}^{2}(R^{d})$ is bounded from below and $A_{j}(x)\in L_{loc^{(}}^{2+}(R^{d})(j=1,2, \cdots d)$ for

a $\delta>0$ . This extension will be introduced in section 2. $C_{0^{\infty}}(R^{d})$ denotes

the space of all infinitely differentiable functions with compact support and

$L_{loc}^{2}(R^{d})$ the space of all locally square integrable functions. Recently the au-
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thor proved in [12] and [13] that if $V(x)\in L_{l\circ c}^{2}(R^{d})$ is bounded from below by

a polynomial in $x,$ $H_{A}^{m}+V(x)$ with domain $C_{0^{\infty}}(R^{d})$ is essentially self-adjoint

under a suitable assumption on sufficiently smooth $A_{j}(x)$ .

Our aim in the present paper is to show that if $V(x)\in L_{loc}^{2}(R^{d})$ satisfies

$V(x)\geq-Ce^{a|x|}$ (1.3)

for positive constants $C$ and $a$ , then $H_{A}^{m}+V(x)$ with domain $C_{0}^{\infty}(R^{d})$ is es-

sentially self-adjoint under a suitable assumption on non-smooth $A_{j}(x)$ , where

$H_{A}^{m}+V(x)$ is the extension stated above of (1.2). For example, we can obtain

the result below. Let $d\geq 3$ and $V(x)\in L_{loc}^{2}(R^{d})$ be a real valued function

such that (1.3) holds for positive constants $C$ and $a$ . Let $Z$ be a non-negative

constant less than $(d-2)c/2$ and $A_{j}(x)(j=1,2, \cdots d)$ a bounded, locally

H\"older continuous function. Then $H_{A}^{m}-Z/|x|+V(x)$ with domain $C_{0^{\infty}}(R^{d})$

is essentially self-adjoint (Example in the section 2 of the present paper).

As for the Schr\"odinger operator $- \frac{1}{2m}\triangle+V_{S}(x)$ , we know that we need for

its essential self-adjointness the limitation on the decreasing rate at infinity of

the negative part of $V_{S}(x)$ (e.g. Theorem 2 in [4] and page 157 in [1]). On

the other hand as for the Dirac operator, we know from Theorem 2.1 in [2]

that such a limitation is not necessary at all for its essential self-adjointness.

The decreasing rate for the essential self-adjontness obtained by us is quite

different from that on the Schr\"odinger operator, but much close to that on the
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Dirac operator.

Our proof is done by using the commutator theorem in [6] as in [13] and

using the results obtained in [8] - [11].

2. THEOREMS

Through the present paper $A_{j}(x)(j=1,2, \cdots d)$ and $V_{\backslash }(x)$ are assumed to

be real valued. We first introduce the extension of $H_{A}^{m}$ given in (1.2) from [8]

and [11]. This extension is given by

$H_{A}^{m}f(x)=mc^{2}f(x)- \lim_{r\downarrow 0}\int_{r\leq|y|}\{e^{-iy\cdot A(x+y/2)}f(x+y)-f(x)\}n^{m}(y)dy$ ,

(2.1)

where $n^{m}(y)$ is defined by

$n^{m}(y)=\{\begin{array}{l}2c(2\pi)^{-(d+1)/2}(mc)^{(d+1)/2}|y|^{-(d+1)/2}K_{(d+1)/2}(mc|y|),m>0c\pi^{-(d+1)/2}\Gamma((d+1)/2)|y|^{-(d+1)},m=o_{(2.2)}\end{array}$

$K_{\nu}(z)$ is the modified Bessel function of the third kind of order $\nu$ (e.g. pages 5

and 9 in [5]) and $\Gamma(z)$ the gamma function. We note $n^{m}(y)>0$ for any $y\neq 0$ .

Let $m\geq 0$ and $A_{j}(x)\in L_{loc}^{2+5}(R^{d})(j=1,2, \cdots d)$ for a $\delta>0$ . Then

$H_{A}^{m}$ with domain $C_{0}^{\infty}(R^{d})$ defined by (2.1) determines a symmetric operator

in $L^{2}(R^{d})$ (e.g. Lemma 2.2, its remark, and (2.20) in [10]). In more details

this $H_{A}^{m}$ with domain $C_{0^{\infty}}(R^{d})$ is essentially self-adjoint (Theorem 1.1 in [11]).

Assuming that $A_{j}(x)(j=1,2, \cdots d)$ are sufficiently smooth and have the
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bounded derivatives of any positive order on $R^{d},$ $H_{A}^{m}$ defined by (2.1) is equal

to that done in (1.2) (Lemma 2.2 in [8]). Hereafter we always consider $H_{A}^{m}$

defined by (2.1).

We state the assumption $(A)_{m}$ for the main theorem.

$(A)_{m}$ : (i) $\Phi(x)$ is a real valued function in $L_{loc}^{2}(R^{d})$ . (ii) $H_{A}^{m}+\Phi(x)$ with

domain $C_{0}^{\infty}(R^{d})$ is bounded from below as the quadratic form. (iii) $H_{A}^{m}+$

$\Phi(x)+W(x)$ with domain $C_{0}^{\infty}(R^{d})$ is essentially self-adjoint for any $W(x)$

being in $L_{l\circ c}^{2}(R^{d})$ with $W(x)\geq 0$ almost everywhere (a.e.).

(ii) in $(A)_{m}$ means that

$(\{H_{A}^{m}+\Phi(x)\}f(x), f(x))\geq-C(f(x), f(x))$

is valid for all $f(x)\in C_{0^{\infty}}(R^{d})$ , which we denote by $H_{A}^{m}+\Phi(x)\geq-C$ on

$C_{0^{\infty}}(R^{d})$ , where $C$ is a constant and $(\cdot, )$ the inner product of $L^{2}(R^{d})$ .

Remark 2.1. We know from Theorem 2.3 in [9] that $H_{A}^{m}-H_{A}^{m’}$ makes a

bounded operator on $L^{2}(R^{d})$ for arbitrary non-negative constants $m$ and $m’$ ,

when $A_{j}(x)\in L_{loc^{(}}^{2+}(R^{d})(j=1,2, \cdots d)$ for a $\delta>0$ . So we can see by

Kato-Rellich’s theorem (e.g. Theorem X.12 in [15]) that the assumption $(A)_{m}$

is equivalent to $(A)_{0}$ for any $m>0$ .

The following theorem is the main theorem.
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Theorem 2.1. Assume $(A)_{0}$ . Moreover we suppose that $A_{j}(x)(j=1,2, \cdots d)$

and $V(x)$ satisfy (B.1) or (B.2) below. Then $H_{A}^{m}+\Phi(x)+V(x)$ with domain

$C_{0^{\infty}}(R^{d})$ is essentially sef-adjoint for any $m\geq 0$ .

(B.1): (i) $|A_{j}(x)|(j=1,2, \cdots d)$ is bounded by a polynomial $inx$ . (ii) $V(x)\in$

$L_{loc}^{2}(R^{d})$ is bounded from below by $-C\exp(a|x|^{1-b})$ , where $0<b\leq 1,$ $C\geq 0$ ,

and $a\geq 0$ are constants.

(B.2): (i) $A_{j}(x)(j=1,2, \cdots d)$ is a bounded function on $R^{d}$ . (ii) $V(x)\in$

$L_{loc}^{2}(R^{d})$ is bounded from below by-C $\exp(a|x|)$ , where $C$ and $a$ are positive

constants.

Corollary 2.2. Suppose that $A_{j}(x)(j=1,2, \cdots d)$ and $V(x)$ satisfy (B.1)

or (B.2) in Theorem 2.1. Then $H_{A}^{m}+V(x)$ with domain $C_{0}^{\infty}(R^{d})$ is essentially

self-adjoint for any $m\geq 0$ .

Proof. We have only to prove that the assumption $(A)_{0}$ where $\Phi(x)=0$ is

satisfied. Then Corollary 2.2 follows from Theorem 2.1. We can see from

Theorem 1.1 in [11] that $H_{A}^{0}\geq 0$ on $C_{0}^{\infty}(R^{d})$ holds and that $H_{A}^{0}+W(x)$

with domain $C_{0^{\infty}}(R^{d})$ is essentially self-adjoint for any $W(x)\in L_{l\circ c}^{2}(R^{d})$ with

$W(x)\geq 0$ a.e. Thus the proof is completed. Q.E.D.

Theorem 2.3. Let $\Phi(x)$ be a real valued function in $L_{loc}^{2}(R^{d})$ and a $H_{0}^{0_{-}}$

bounded multiplication operator with relative bound less than one. Suppose
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that $A_{j}(x)(j=1,2, \cdots d)$ and $V(x)$ satisfy (B.1) or (B.2) in Theorem 2.1.

Moreover we assume

$(*)$ $\int_{0<y\leq 1}|y\cdot\{A(x+y/2)-A(x)\}||y|^{-(d+1)}dy\in L_{loc}^{2}(R^{d})$ .

Then $H_{A}^{m}+\Phi(x)+V(x)$ with domain $C_{0^{\infty}}(R^{d})$ is essentially sef-adjoint for
any $m\geq 0$ .

Remark 2.2. Corollary 2.2 and Theorem 2.3 in the present paper give the

generalization of Theorem 2.2 and Theorem 2.3 in [13], respectively.

Example. Let $d\geq 3$ and $\Phi(x)=-Z/|x|$ , where $0\leq Z<(d-2)c/2$ is a

constant. We know Hardy’s inequality

$( \frac{d-2}{2}I^{2}\Vert\frac{\psi(x)}{|x|}\Vert^{2}\leq\sum_{j=1}^{d}\Vert\frac{\partial\psi}{\partial x_{j}}(x)\Vert^{2}$

(e.g. page 169 in [15] or (2.9) in [7]), where $\Vert\cdot\Vert$ denotes the $L^{2}$-norm. We

denote the Fourier transformation $\int e^{-ix\cdot\xi}\psi(x)dx$ of $\psi(x)\in C_{0^{\infty}}(R^{d})$ by $\hat{\psi}(\xi)$ .

Then we have

$( \frac{d-2}{2}I^{2}\Vert\frac{Z}{|x|}\psi(x)\Vert^{2}\leq(2\pi)^{-d}Z^{2}\int|\xi|^{2}|\psi(\xi)|^{2}d\xi=c^{-2}Z^{2}\Vert H_{0}^{0}\psi(x)\Vert^{2}\wedge$

for $\psi(x)\in C_{0}^{\infty}(R^{d})$ by using $H_{0}^{0} \psi(x)=c(2\pi)^{-d}\int e^{ix\cdot\xi}|\xi|\hat{\psi}(\xi)d\xi$ . So it follows

from the assumption on $Zthat-Z/|x|$ is $H_{0}^{0}$-bounded with relative bound less

than one. Let $A_{j}(x)(j=1,2, \cdots d)$ be a locally H\"older continuous function

on $R^{d}$ and assume that $A_{j}(x)$ and $V(x)$ satisfy (B.1) or (B.2). Then $(*)$ in

Theorem 2.3 follows from the local Holder continuity of $A_{j}(x)$ . It is easy to see
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from Theorem 2.3 that $H_{A}^{m}-Z/|x|+V(x)$ with domain $C_{0^{\infty}}(R^{d})$ is essentially

self-adjoint for any $m\geq 0$ .

The proofs of Theorems 2.1 and 2.3 will be published eleswhere.
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