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1 Introduction

In this note we study a Schrodinger operator with a magnetic field :
(1.1) H = (—iV — b(z))* + V()

defined on CP(R3), where V € L} (R3) is a scalar potential and b € C'(R?®)? is a vector

loc

potential, both of which are real-valued, and ?(m) = V X b is called the magnetic field.
Letting T' = —iV — b(z), we define the quadratic form gy by

anlg,¥) = [ (T¢-Th+V4p)de,

n (4] = qul$, 4]
for ¢,% € CP(R?). We assume that

(V1) V(z) — 0 as lz| — oo.

Then H admits a unique self-adjoint realization in L?*(R3) (denoted by the same notation
H) with the domain

D(H) = {u € L*(R*); |V|7y, Tu, Hu € L*(R®)},

which is associated with the closure of ¢y (denoted by the same notation qy) with the
form domain

Q(H) = {u € LA(R®); |V|2u, Tu € [2(R%)}.
This fact can be proved in the same way as in the cases of the constant magnetic fields
([1] and [6]).
—) N
It is well known that, if B(z) = 0, then the finiteness or the infiniteness of the dis-
crete spectrum of H depends on the decay order of the potential V, of which the border
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is |z|~2 ([5]). On the other hand, if ﬁ(m) = (0,0, B), B being a positive constant, then
the number of the discrete spectrum of H is infinite under a suitable negativity assump-
tion of the potential which is independent of the decay order of V. More precisely, the
following result was proved by Avron-Herbst-Simon [2]. :

Theorem 0. ([2]) Let —ﬁ(x) =V xb= (0,0, B), B being a positive constant. Sup-
pose that V € L? + L2 and that V is non-positive, not identically zero and azimuthally
symmetric. Then the number of the discrete spectrum of H is infinite.

Here a function f(z) on R® is called azimuthally symmetric (in z-axis) if f(z) depends
only on p and z. Now a question arizes : What occurs for the discrete spectrum when we
perturb slightly the constant magnetic field ? One may well imagine that the infinite-
ness or the finiteness of the discrete spectrum depends on both of the magnetic vector
potential b(z) and the scalar potential V(z). This is certainly true and the aim of this
paper is to clearify the relation between b(z) and V(z) for H to have an infinite or a
finite discrete spectrum.

To state the main theorem we make some preparations. Let z = (z,7,,2) € R3?, 0=

(z1,22),7 = |z],p = |p], and V, = (8/0z1,0/dz,). We assume that

V is azimuthally symmetric, bounded above and there exists
(V2)

Ry > 0 such that V € C°(|z| > Ry), V <0 for |z| > Rs.

Let B be a positive constant and
b.(z) = B/2(—z2,11,0),
which satisfies V x b. = (0,0, B). For given b € C'(R?)3, we put
bp(z) = b(z) — be(z) = (a1(2), a2(), aa(z)).
By introducing the polar coordinate (p,#) in R?, we define the set X by

X = {a € C'(R?); there exists N(a) € N such that

27 .
/ a(z)e*df = 0 for |k| > N(a), k € Z}.
0

We denote by o(H) the spectrum of H, by o4(H) the discrete spectrum of H, by o.(H)
the essential spectrum of H and by §Y the cardinal number of a set Y. For two vector
potentials by, b, € C'(R?)3, we denote b; ~ b, when b; is equivalent to b, under a gauge
transformation, namely, b; — b = VA for some A € C?(R?). Then our main result is the
following theorem.

Theorem 1. Assume (V1),(V2) and that aj(z) € X (j = 1,2,3). Suppose
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that there exist Ry > 0 and positive constants ¢;(j = 1,2,3) such that
4@ < exmin (V@2 V()le} (G =1,2),

(1.2) [Vaa(2)] < e|V(z)| (1 =1,2),
laa(2)] < eV (2)[/?

for |z| 2 Ry,

(1.3) 2+ )+ A+ V2 <1,

and also suppose that

(1.4) Oa3[/0z — 0 as |z| — oo.

Then o.(H) = [B,00) and

(1.5) foi(H) = +o0.

Remark 1.1. Let V be as in Theorem 1. If W € L} (R?) satisfies (V1) and
W <V, then joy(T?* + W) = +oo by the min-max principle. Thus we can apply the
above theorem to potentials which are not azimuthally symmetric or not continuous on

|z] 2 Ro.

Remark 1.2. The above theorem of course holds if we replace the vector po-
tential by an equivalent one.

As an example we consider the perturbation of the constant magnetic field on a com-
pact set.

Proposition 1.3. If there exists Ry > 0 such that

B(z)=(0,0,B) for |z|> Ry,

then one can replace the magnetic vector potential b(z) by an equivalent one satisfying

(1.2),(1.8) and (1.4).
Proof éf Proposition 1.3. It is easy to see that
Vx(b—b)=0 (|z] 2 R,).
Hence, there exist A € C?*(R?) such that
b—b.=VA (|z] 2 R,).

We put _
b=b- VX on R3
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Then b ~ b and b — b, = 0 for |z| > R,. For this b, (1.2),(1.3) and (1.4) are always
satisfied. O

In §2 we explain some examples showing that the above condition in Theorem 1
is almost optimal to guarantee the infiniteness of the discrete spectrum of H. These
‘examples also show that some non-constant magnetic fields decrease the number of bound
states in spite of the fact that the number of the discrete spectrum of H with V = O(r™¢)

~ (0< & < 2) is infinite if B (z) = 0 ([5]).
2 Examples

In this section we illustrate some examples showing that the conditions in Theorem
1 are almost optimal. We first prepare the following proposition without a proof.

Proposition 2.1. If |by(z)] — 0,|divb,(z)] — 0 as |z| — oo, then o.(H) =
[B, ).

For the sake of convenience, we strengthen slightly the conditions in Theorem 1 as follows.

Theorem 1%*. Assume (V1),(V2) and that aj(z) € X (7 = 1,2,3). Suppose
that '

4

@) = of min (V@I IVIR}) (G =1.2)

(2.1) ) Vaai(2) =o(|V(2)) (i =1,2),
a3(z) = 0(|V(m)|1/2)
( Da3/0z = 0(1)

as |z| = co. Then o.(H) = [B,0) and

foa(H) = +o0.

We give the above mentioned examples in the following form.

(2.2) b= f(r)(—zq,21,0)

where f € C'([0,00)), f/(0) = 0 and f is real-valued. In this case a;(z) = —(f(r) —
B/2)z;,a5(z) = (f(r) — B/2)zy,a3(z) = 0, so the assumption that a; € X (j=1,2,3) is
satisfied. We assume that V(z) is a function of r = |z|. Then (2.1) is equivalent to the
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following

1567) = BJ2| = o min {IV (@)=, V(o) ),
(2.3)

£ = o(IV(@)Ir™).
Now we pﬁt V = —r~*(a>0) for |z| > 2, then (2.3) is equivalent to

() = BJ2| = ormint-1-e/2=e)),
(2.4)

|f(r)l = o(r=17=).

Before showing the examples, we prepare the following proposition.
Proposition 2.2. For ¢ € C2(R?), we have the following inequality.
(2.5) / IT$[2dz > / (85,/02, — b1/ 022) |4z,
where b= (by(z), ba(2), ba()).
Cororally. In the case of (2.2) we have
[ Iropde > [ () 26 (DlgPde For ¢ € C(RY).
In particular, if f'(r) <0, then |
(2.6) [1repds > [ Fyr)igitds for ¢ € C(R?),
where Fy(r) = rf'(r) + 2f(r). |
Proof of Proposition 2.2. We put
Ay = 00z, + by, Ay = 8]0y — by, A= A, +iA; and P = 9/dz — ibs.
Then by a straightforward calculation,
AA= —[02% — )0 + 2i(610/0z1 + b,0/D3) + i(Oby D71 + by Dzs)
+|by|? + |b2]? — Oby/ Oz, + Oby /D,

PP = —8/02 + 2ibydz + i0by [ Dz + |bs2.

Therefore we have

P*P + A*A =T? — (9by/0zy — b, /dzs).
Hence, for ¢ € C°(R3),

/|T¢>|2d:z = ((P*P+ A"A)b,9) , + / (Dby/ 0y — Dby /Das)| ¢ da
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> [ (@ba/02, — b1/022)|dz.0

Example 1. We first take a = 2, namely, let
—r=% (r > €'/?),
V() =
0 (r <e'/?).

If f(r) — B/2 = r7P for r > €2 (B > 2), the condition (2.4) is fulfilled, hence
foa( H) = +00. We next see what occurs when this condition is violated. We define f(r)
by
B/2 4+ r%logr (r > e'/?),
fr)=

B/2+1/(2e) (r < €e/?).
Then f € C'([0,00)), f(0) = 0, f'(r) < 0, and

B+r7? (r2 e,
Fy(r) = {
B+e (r<el?),
Hence, by using (2.6),
(2.7) (H$, )12 2 [(F(r) +V)lgl'dz 2 Blllr» for ¢ € C&(R?).

By Proposition 2.1, it is easy to see that o.(H) = [B, 00). Hence, by (2.7), we have

o4(H) = 0.
Example 2. To consider the case of 0 < a < 2 we use the almost same but slightly
complicated method.
Let

-7 (r>2), 0<a<?2,
V(m):{

0 (r<2).

If f(r) — B/2 = (constant) - 77# for » > 2 (8 > 1 + «/2), the condition (2.4) is fulfilled,
hence fo4(H) = +00. When = a (< 1+ a/2), H does not always have infinitely many
bound states, although the difference (1 + @/2) —a — 0 as @ — 2. In fact, We define

f(r) by
B/2+r7*[(2—a) (r=>2),
f(r)= B2+ {27427 2ar(2-1)}/(2—-0a) (1 <r< 2),

B/2+27° 24+ a)/(2-a) (r<1).
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Then f € C'([0,00)), f'(0) =0, f'(r) < 0, and
B+r= (r 22),

Fi(ry={ B+2 ' —-2ar?+3ar+4}/(2-0a) (1 <r<2),

Bioi(4+a)/(2-a) (r<1),
$0 ‘
Fi(r)+V(z)> B (0 <r < o0).
Hence, by using (2.6), we have

(Ho, )12 > B||¢||2: for ¢ € CL(R?).

So, in the case of 1 < a < 2, by the same reasoning as before, we have o(H) = o.(H) =
[B, 00), hence

Ud(H) = @ .
In the case of 0 < a < 1, we need another proof that o.(H) = [B,00), which is due to
[4] (p117).

We next show that the negativity assumption (V'2) is necessary for the infiniteness
of the discrete spectrum under the situation that V is bounded above.

Example 3. Let
[ B/2 (r>2),
B/2+exp(1/(r—2)) (3/2< 7 <2),

flr) =1
B/2+2e?—exp(—1/(r—1)) (1 <r<3/2),

| B/2+2e7? (0<r<1).
Then we have f € C'([0,00)), f'(0) =0, f'(r) <0, and
{ B (r > 2),

B+4e?2 (0<r<1).

Fy(r) =
Now we define V(z) by
0 (r22),
V(z) = ¢ max(0,B—- Fy(r))(1<r< 2),(

o(r) (0<r <),

where |v(r)| < 4e72. We remark that, in this case, (2.3) is satisfied but V(z) does not
satisfy (V'2). We also have

(Hp,9)z 2 [(Fy(r) + V)|#dz 2 Bll4l3s,
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SO

o.(H) = [B,00),04(H) = 0.

Finally we show an example of the magnetic bottle (see [2]) which means a magnetic
Schrédinger operator without the static potential term having a non-empty discrete spec-
trum.

Example 4. Let
(2:8) B =inf {(~0¢,8)i2 ¢ € CX(Izl < 1), lllis = 1}

We pick up f € C*(]|0,00)) such that

0 (0<r<1y,
e
| (B+1)/2 (r=2).

Then, by Proposition 2.1, o.(T?) = [8 + 1,00), so, by (2.8), it is easy to see that
inf o(T?) < B < inf 0. (T?),

so we have a4(T?) # 0.
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