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1 Introduction
In this note we study a Schr\"odinger operator with a magnetic field:

(1.1) $H=(-i\nabla-b(x))^{2}+V(x)$

defined on $C_{o}^{\infty}(R^{3})$ , where $V\in L_{loc}^{2}(R^{3})$ is a scalar potential and $b\in C^{1}(R^{3})^{3}$ is a vector

potential, both of which are real-valued, $andarrow B(x)=\nabla\cross b$ is called the magnetic field.
Letting $T=-i\nabla-b(x)$ , we define the quadratic form $q_{H}$ by

$q_{H}[ \phi, \psi]=\int_{R^{3}}(T\phi\cdot\overline{T\psi}+V\phi\overline{\psi})dx$,

$q_{H}[\phi]=q_{H}[\phi, \phi]$

for $\phi,$ $\psi\in C_{0}^{\infty}(R^{3})$ . We assume that

$(V1)$ $V(x)arrow 0$ as $|x|arrow\infty$ .

Then $H$ admits a unique self-adjoint realization in $L^{2}(R^{3})$ (denoted by the same notation
$H)$ with the domain

$D(H)=\{u\in L^{2}(R^{3});|V|^{\frac{1}{2}}u$ , Tu, $Hu\in L^{2}(R^{3})\}$ ,

which is associated with the closure of $q_{H}$ (denoted by the same notation $q_{H}$ ) with the
form domain

$Q(H)=\{u\in L^{2}(R^{3});|V|^{\frac{1}{2}}u,$ $Tu\in L^{2}(R^{3})\}$ .

This fact can be proved in the same way as in the cases of the constant magnetic fields
([1] and [6]).

It is well known that, $ifarrow B(x)\equiv 0$ , then the finiteness or the infiniteness of the dis-
crete spectrum of $H$ depends on the decay order of the potential $V$, of whicb the border
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is $|x|^{-2}$ ([5]). On the other hand, if $arrow B(x)\equiv(O, 0, B),$ $B$ being a positive constant, then
the number of the discrete spectrum of $H$ is infinite under a suitable negativity assump-
tion of the potential which is independent of the decay order of $V$. More precisely, the
following result was proved by Avron-Herbst-Simon [2].

Theorem $0$ . ([2]) $Letarrow B(x)=\nabla\cross b=(O, 0, B),$ $B$ being a positive constant. Sup-
pose that $V\in L^{2}+L_{\epsilon}^{\infty}$ and that $V$ is non-positive, not identically zero and azimuthally

$i$ymmetric. Then the number of the discrete spectrum of $H$ is infinite.

IIere a function $f(x)$ on $R^{3}$ is called azimuthally symmetric (in z-axis) if $f(x)$ depends
only on $\rho$ and $z$ . Now a question arizes: What occurs for the discrete spectrum when we
perturb slightly the constant magnetic field ? One may well imagine that the infinite-
ness or the finiteness of the discrete spectrum depends on both of the magnetic vector
potential $b(x)$ and the scalar potential $V(x)$ . This is certainly true and the aim of this
paper is to clearify the relation between $b(x)$ and $V(x)$ for $H$ to have an infinite or a
finite discrete spectrum.

To state the main theorem we make some preparations. Let $x=(x_{1}, x_{2}, z)\in R^{3},\vec{\rho}=$

$(x_{1}, x_{2}),$ $r=|x|,$ $\rho=|\rho\neg$ , and $\nabla_{2}=(\partial/\partial x_{1}, \partial/\partial x_{2})$ . We assume that

$(V2)$ $\{R_{0}>0suchthatVisazimuthallysymmet\dot{n}c,boundedaboveandthereeV\in C^{0}(|x|\geq R_{0}),V<0for|x|\geq R_{O}$

.

xists

Let $B$ be a positive constant and

$b_{c}(x)=B/2(-x_{2}, x_{1},0)$ ,

which satisfies $\nabla\cross b_{c}=(0,0, B)$ . For given $b\in C^{1}(R^{3})^{3}$ , we put

$b_{p}(x)=b(x)-b_{c}(x)=(a_{1}(x), a_{2}(x),$ $a_{3}(x))$ .

By introducing the polar coordinate $(\rho, \theta)$ in $R^{2}$ , we define the set $X$ by

$X=\{a\in C^{1}(R^{3})$ ; there exists $N(a)\in N$ such that

$\int_{0}^{2\pi}a(x)e^{ik\theta}d\theta=0$ for $|k|\geq N(a),$ $k\in Z\}$ .

We denote by $\sigma(H)$ the spectrum of $H$, by $\sigma_{d}(H)$ the discrete spectrum of $H$ , by $\sigma_{e}(H)$

the essential spectrum of $H$ and by $\# Y$ the cardinal number of a set $Y$. For two vector
potentials $b_{1},$ $b_{2}\in C^{1}(R^{3})^{3}$ , we denote $b_{1}\sim b_{2}$ when $b_{1}$ is equivalent to $b_{2}$ under a gauge
transformation, namely, $b_{1}-b_{2}=\nabla\lambda$ for some $\lambda\in C^{2}(R^{3})$ . Then our main result is the
following theorem.

Theorem 1. Assume $(V1),$ $(V2)$ and that $a_{j}(x)\in X(j=1,2,3)$ . Suppose
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that there exist $R_{1}>0$ and pqsitive constants $c_{j}(j=1,2,3)$ such that

(1.2) $\{\begin{array}{l}|a_{j}(x)|\leq c_{1}\min\{|V(x)|^{1/2},|V(x)|\rho\}(j=1,2)|\nabla_{2}a_{j}(x)|\leq c_{2}|V(x)|(j=l,2)|a_{3}(x)|\leq c_{3}|V(x)|^{1/2}\end{array}$

for $|x|\geq R_{1}$ ,

(1.3) $2(c_{1}^{2}+c_{2})+c_{3}^{2}+\sqrt{2}c_{1}<1$ ,

and also suppose that

(1.4) $\partial a_{3}/\partial zarrow 0$ as $|x|arrow\infty$ .

Then $\sigma_{e}(H)=[B, \infty)$ and

(15) $\#\sigma_{d}(H)=+\infty$ .

Remark 1.1. Let $V$ be as in Theorem 1. If $W\in L_{loc}^{2}(R^{3})$ satisfies (V1) and
$W\leq V$, then $\#\sigma_{d}(T^{2}+W)=+\infty$ by the min-max principle. Thus we can apply the
above theorem to potentials which are not azimuthally symmetric or not continuous on
$|x|\geq R_{O}$ .

Remark 1.2. The above theorem of course holds if we replace the vector po-
tential by an equivalent one.

As an example we consider the perturbation of the constant magnetic field on a com-
pact set.

Proposition 1.3. If there exists $R_{2}>0$ such that

$arrow B(x)=(O, 0, B)$ for $|x|\geq R_{2}$ ,

then one can replace the magnetic vector potential $b(x)$ by an equivalent one satisfying
(1.2), (1.3) and (1.4).

Proof of Proposition 1.3. It is easy to see that

$\nabla\cross(b-b_{c})=0$ $(|x|\geq R_{2})$ .

Hence, there exist $\lambda\in C^{2}(R^{3})$ such that

$b-b_{c}=\nabla\lambda$ $(|x|\geq R_{2})$ .

We put
$\sim b=b-\nabla\lambda$ on $R^{3}$ .
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Then $\sim b\sim b$ and $\sim b-b_{c}=0$ for $|x|\geq R_{2}$ . For this $\sim b,$ $(1.2),(1.3)$ and (1.4) are always
satisfied. $\square$

In \S 2 we explain some examples showing that the above condition in Theorem 1
is almost optimal to guarantee the infiniteness of the discrete spectrum of $H$. These
examples also show that some non-constant magnetic fields decrease the number of bound
states in spite of the fact that the number of the discrete spectrum of $H$ with $V=O(r^{-\alpha})$

$(0<\alpha<2)$ is infinite $ifarrow B(x)\equiv 0$ ([5]).

2 Examples
In this section we illustrate some examples showing that the conditions in Theorem

1 are almost optimal. We first prepare the following proposition without a proof.

Proposition 2.1. If $|b_{p}(x)|arrow 0,$ $|d1v^{r}b_{p}(x)|arrow 0$ as $|x|arrow\infty$ , then $\sigma_{\epsilon}(H)=$

$[B, \infty)$ .

For the sake of convenience, we strengthen slightly the conditions in Theorem 1 as follows.

Theorem 1*. Assume $(V1),$ $(V2)$ and that $a_{j}(x)\in X(j=1,2,3)$ . Suppose
that

(2.1) $\{\begin{array}{l}a_{j}(x)=o(\min\{|V(x)|^{1/2},|V(x)|\rho\})(j=l,2)\nabla_{2}a_{j}(x)=o(|V(x)|)(j=1,2)a_{3}(x)=o(|V(x)|^{1/2})\partial a_{3}/\partial z=o(1)\end{array}$

as $|x|arrow\infty$ . Then $\sigma_{e}(H)=[B, \infty)$ and

$\#\sigma_{d}(H)=+\infty$ .

We give the above mentioned examples in the following form.

(22) $b=f(r)(-x_{2}, x_{1},0)$

where $f\in C([0, \infty)),$ $f’(O)=0$ and $f$ is real-valued. In this case $a_{1}(x)=-(f(r)-$
$B/2)x_{2},$ $a_{2}(x)=(f(r)-B/2)x_{1},$ $a_{3}(x)=0$ , so the assumption that $a_{j}\in X(j=1,2,3)$ is
satisfied. We assume that $V(x)$ is a function of $r=|x|$ . Then (2.1) is equivalent to the



106

following

(23) $\{\begin{array}{l}|f(r)-B/2|=o(\min\{|V(x)|^{1/2}r^{-1},|V(x)|\})|f’(r)|=o(|V(x)|r^{-1})\end{array}$

Now we put $V=-r^{-\alpha}(\alpha>0)$ for $|x|\geq 2$ , then (2.3) is equivalent to

(2.4) $\{\begin{array}{l}|f(r)-B/2|=o(r^{\min\{-1-\alpha/2,-\alpha\}})|f’(r)|=o(r^{-1-\alpha})\end{array}$

Before showing the examples, we prepare the following proposition.

Proposition 2.2. For $\phi\in C_{0}^{\infty}(R^{3})$ , we have the following inequality.

(2.5) $\int|T\phi|^{2}dx\geq\int(\partial b_{2}/\partial x_{1}-\partial b_{1}/\partial x_{2})|\phi|^{2}dx$ ,

where $b=(b_{1}(x), b_{2}(x),$ $b_{3}(x))$ .

Cororally. In the case of (2.2) we have

$\int|T\phi|^{2}dx\geq\int(f’(r)\rho^{2}r^{-1}+2f(r))|\phi|^{2}dx$ for $\phi\in C_{0}^{\infty}(R^{3})$ .

In particular, if $f’(r)\leq 0$ , then

(2.6) $\int|T\phi|^{2}dx\geq\int F_{f}(r)|\phi|^{2}dx$ for $\phi\in C_{0}^{\infty}(R^{3})$ ,

where $F_{f}(r)=rf’(r)+2f(r)$ .

Proof of Proposition 2.2. We put

$A_{1}=\partial/\partial x_{1}+b_{2},$ $A_{2}=\partial/\partial x_{2}-b_{1},$ $A=A_{1}+iA_{2}$ and $P=\partial/\partial z-ib_{3}$ .

Then by a straightforward calculation,

$A^{*}A=$ $-\partial^{2}/\partial x_{1}^{2}-\partial^{2}/\partial x_{2}^{2}+2i(b_{1}\partial/\partial x_{1}+b_{2}\partial/\partial x_{2})+i(\partial b_{1}/\partial x_{1}+\partial b_{2}/\partial x_{2})$

$+|b_{1}|^{2}+|b_{2}|^{2}-\partial b_{2}/\partial x_{1}+\partial b_{1}/\partial x_{2}$,

$P^{*}P=$ $-\partial^{2}/\partial z^{2}+2ib_{3}\partial z+i\partial b_{3}/\partial z+|b_{3}|^{2}$ .

Therefore we have
$P^{*}P+A^{*}A=T^{2}-(\partial b_{2}/\partial x_{1}-\partial b_{1}/\partial x_{2})$ .

lIence, for $\phi\in C_{0}^{\infty}(R^{3})$ ,

$\int|T\phi|^{2}dx=((P^{*}P+A^{*}A)\phi,$ $\phi)_{L^{2}}+\int(\partial b_{2}/\partial x_{1}-\partial b_{1}/\partial x_{2})|\phi|^{2}dx$
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$\geq\int(\backslash \partial b_{2}/\partial x_{1}-\partial b_{1}/\partial x_{2})|\phi|^{2}dx$ .口

Example 1. We first take $\alpha=2$ , namely, let

$V(x)=\{\begin{array}{l}-r^{-2}(r\geq e^{1/2})0(r<e^{1/2})\end{array}$

If $f(r)-B/2=r^{-\beta}$ for $r\geq e^{1/2}$ $(\beta> 2)$ , the condition (2.4) is fulfilled, hence
$\#\sigma_{d}(H)=+\infty$ . We next see what occurs when this condition is violated. We define $f(r)$

by

$f(r)=\{\begin{array}{l}B/2+r^{-2}logr(r\geq e^{1/2})B/2+l/(2e)(r<e^{1/2})\end{array}$

Then $f\in C^{1}([0, \infty)),$ $f’(O)=0,$ $f’(r)\leq 0$ , and

$F_{f}(r)=\{\begin{array}{l}B+r^{-2}(r\geq e^{1/2})B+e^{-1}(r<e^{1/2})\end{array}$

Hence, by using (2.6),

(2.7) $(H \phi, \phi)_{L^{2}}\geq\int(F(r)+V)|\phi|^{2}dx\geq B||\phi||_{L^{2}}$ for $\phi\in C_{o}^{\infty}(R^{3})$ .

By Proposition 2.1, it is easy to see that $\sigma_{e}(H)=[B, \infty)$ . Hence, by (2.7), we have

$\sigma_{d}(H)=\emptyset$ .

Example 2. To $co$nsider the case of $0<\alpha<2$ we use the almost same but slightly
complicated method.

Let

V $(x)=\{\begin{array}{l}-r^{-\alpha}(r\geq 2),0<\alpha<20(r<2)\end{array}$

lf $f(r)-B/2=(constant)\cdot r^{-\beta}$ for $r\geq 2(\beta>1+\alpha/2)$ , the condition (2.4) is fulfilled,
hence $\#\sigma_{d}(H)=+\infty$ . When $\beta=\alpha(<1+\alpha/2),$ $H$ does not always have infinitely many
bound states, although the difference $(1+\alpha/2)-\alphaarrow 0$ as $\alphaarrow 2$ . In fact, We define
$f(r)$ by

$f(r)=\{\begin{array}{l}B/2+r^{-\alpha}/(2-\alpha)(r\geq 2))B/2+\{2^{-\alpha}+2^{-\alpha-2}\alpha r(2-r)\}/(2-\alpha)(1<r<2)B/2+2^{-\alpha-2}(4+\alpha)/(2-\alpha)(r\leq 1)\end{array}$
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Then $f\in C^{1}$ ( $[0$ , oo)), $f’(0)=D,$ $f’(r)\leq 0$ , and

$F_{f}(r)=\{\begin{array}{l}B+r^{-\alpha}(r\geq 2)B+2^{-\alpha-1}\{-2\alpha r^{2}+3\alpha r+4\}/(2-\alpha)(1<r<2)B+2^{-\alpha-1}(4+\alpha)/(2-\alpha)(r\leq 1)\end{array}$

so
$F_{f}(r)+V(x)\geq B(0\leq r<\infty)$ .

Hence, by using (2.6), we have

$(H\phi, \phi)_{L^{2}}\geq B\Vert\phi||_{L^{2}}^{2}$ for $\phi\in C_{0}^{\infty}(It^{3})$ .

So, in the case of $1<\alpha<2$ , by the same reasoning as before, we have $\sigma(H)=\sigma_{e}(H)=$

$[B, \infty)$ , hence
$\sigma_{d}(H)=\emptyset$ .

In the case of $0<\alpha\leq 1$ , we need another proof that $\sigma_{e}(H)=[B, \infty)$ , which is due to
[4] (p117).

We next show that the negativity assumption $(V2)$ is necessary for the infiniteness
of the discrete spectrum under the situation that $V$ is bounded above.

Example 3. Let

$f(r)=\{\begin{array}{l}B/2(r\geq 2)B/2+exp(1/(r-2))(3/2\leq r<2)B/2+2e^{-2}-exp(-1/(r-1))(l\leq r<3/2)B/2+2e^{-2}(0\leq r<l)\end{array}$

Then we have $f\in C^{1}([0, \infty)),f’(O)=0,$ $f’(r)\leq 0$ , and

$F_{f}(r)=\{\begin{array}{l}B(r\geq 2)B+4e^{-2}(0\leq r\leq 1)\end{array}$

Now we define $V(x)$ by

$V(x)=\{\begin{array}{l}0(r\geq 2)\max(0)B-F_{f}(r))(l<r<2),v(r)(0\leq r\leq 1)\end{array}$

where $|v(r)|\leq 4e^{-2}$ . We remark that, in this case, (2.3) is satisfied but $V(x)$ does not
satisfy $(V2)$ . We also have

$(H \phi, \phi)_{L^{2}}\geq\int(F_{f}(r)+V)|\phi|^{2}dx\geq B||\phi||_{L^{2}}^{2}$ ,
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SO

$\sigma_{e}(H)=[B, \infty),$ $\sigma_{d}(H)=\emptyset$ .

Finally we show an example of the magnetic bottle (see [2]) which means a magnetic
Schr\"odinger operator without the static potential term having a non-empty discrete spec-
trum.

Example 4. Let

(2.8) $\beta=\inf\{(-\triangle\phi, \phi)_{L^{2}}$ ; $\phi\in C_{0}^{\infty}(|x|\leq 1),$ $||\phi||_{L^{2}}=1\}$ .

We pick up $f\in C^{1}([0, \infty))$ such that

$f(r)=\{\begin{array}{l}0(0\leq r\leq l)(\beta+l)/2(r\geq 2)\end{array}$

Then, by Proposition 2.1, $\sigma_{e}(T^{2})=[\beta+1, \infty)$ , so, by (2.8), it is easy to see that

$\inf\sigma(T^{2})\leq\beta<\inf\sigma_{e}(T^{2})$ ,

so we have $\sigma_{d}(T^{2})\neq\emptyset$ .
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