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Derivation property of the Lévy Laplacian
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Introduction

In his book [11] P. Lévy introduced an infinite dimensional analogue of a finite dimensional
Laplacian and developed an infinite dimensional potential theory, see also [12]. (For sub-
sequent developments see e.g., [6], [7], [8], [9], [13], [15], and references cited therein.) The
operator, presently called the Lévy Laplacian, is defined as the Cesaro mean of second order

differential operators:
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where 1, 19, - - constitute a coordinate system of the infinite dimensional vector space un-
der consideration. Although the Lévy Laplacian inherits some typical properties of a finite
dimensional Laplacian such as a natural relation with spherical means, it bears some patho-
logical properties and has been discussed more or less in its own interests. ’

The situation is, however, changing with a recent series of works [1]-[3], [16]. The redis-
covery of somehow unexpected relationship between the Lévy Laplacian and the Yang-Mills
equation is openning a new approach to infinite dimensional stochastic analysis based on
the Lévy Brownian motion and its quantization. (In fact, the relation was first found by
Aref’eva and Volovich (4].)

The purpose of this paper is to clarify the derivation property of the Lévy Laplacian. It
has been observed in a common discussion that the Lévy Laplacian behaves like a first order
differential operator, i.e., a derivation. Moreover, this property is needed to characterize
the Lévy Laplacian in terms of its group invariance [14]. However, as we shall show, this
is typical when the Lévy Laplacian acts on functions on a Hilbert space. In this paper,
employing some ideas in [10] where the Lévy Laplacian is defined as an operator acting
on functions on a nuclear space, we study when the Lévy Laplacian is a derivation. As
application we discuss the heat semigroup constructed in [2].



1 Lévy Laplacian on a nuclear space

Here we do not deal with a fully general nuclear space but a standad countably Hilbert
nuclear space which is also known for the standard framework of white noise calculus.

Let H be a real separable (infinite dimensional) Hilbert space with inner product (-, -)
and norm |- |, = |- | and let A be a positive selfadjoint operator in H with Hilbert-Schmidt
inverse. Then there exist a sequence of positive numbers '

0< A <A<

and a sequence of vectors {e,}°%, C Dom (A) such that

0
Aen = /\nena |en |0 = 1’ E ’\7:2 = “ A_l “%IS < 0.

n=1
Note that {e,}32, forms a complete orthonormal system of H. For every p € R we put

o0

€2 =3 (6 e NP = |A%¢]5, €€ H.

n=1

For p > 0 the space E, of all £ € H with |{|, < oo becomes a Hilbert space with norm |- |,.
Note that H is no longer complete with respect to the norm |- |_ »» P = 0. The completion
E_p is then Hilbert space with norm |-|_ . We have thus constructed a chain of Hilbert
spaces {E,},er with natural inclusion relation. Since A~! is of Hilbert-Schmidt type,

E =projlimE, = () E,

p=eo p>0

becomes a countably Hilbert nuclear space. Such a nuclear space constructed from an oper-
ator A is called standard. For the strong dual space E* we have

F*~indlimE_, = U E_,.
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Thus we come to a Gelfand triple:
ECHCE

Being compatible to the inner product of H, the canonical bilinear form on E* x E is denoted
by (-, -) again.

A function F': E — R is called twice differentiable at £ € F if there exist F'(¢) € E* and
F"(&) € L(E, E*) such that

F(E+n) = F€)+ (F(©), 1) + 3 (F"(©n,0) +o(n),  n€F,

where )
i 200

t—0 §2 =0.

Let C?(E) be the space of everywhere twice differentiable functions F : E — R such that
both £ — F'(§) € E* and € — F"(£) € L(E, E*) are continuous. The topological isomor-
phisms:

(EQ® E) = L(E,E") = B(E, E),
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which follow from the kernel theorem, are often useful. Accordingly, we write

(F"(&n, n) = (F"(€),n®n), neeE.

We set
1N
D= {F € C2(E);A}im N ST (F"(€)en, €x) exists for all ¢ € E}
- n=1
and
ALF(£) hm—z F"(&)e, €,), E€E, FeD.

The operator Ay, is called the Lévy Laplacian on E (with respect to {e,}). Note that the
definition depends also on the arrangement of the complete orthonormal sequence {e,}.
A polynomial on FE is by definition a finite linear combination of functions of the form:

F(¢) = <a, €®">, ac (E®), ¢cE.

The coeflicient a is uniquely determined after symmetrization. Obviously, every polynomial
belongs to C%(E). In fact,

(F'€),n) = v(a, " V@n) =v(a®,, N, n),
(F'(€),n@n) = v(v-1)(a, & V@nan) =v(v-1){a®,2¢ ne7),

where ®, denotes the contraction of the tensor products. Hence,
Fl(&)=va®,1 E8¢7Y,  F'(6) =v(v —1)a®,, 8072,

Not every polynomial belongs to D. In §5 we shall introduce particular classes of polynomials.

2 Derivation property
We begin with an immediate but important remark.

Lemma 2.1 Let Fy, F; € D. Then F1F; € D if and only if the limit

N
lim — 3" {F{(©), ea) (FA(6), )

ezxists for all £ € E. Moreover,
AL F) = (ALR)F + FL(ALF,)
if and only if |
lim 5 32 (F©), e (F9) en) =0, €€ L.
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PROOF. By definition for any £, € E,

(F1E2)'(€), m) = (F1(€), m) F2(&) + Fu(&) (F5(€), ) (1)
and
(FiB)" (), n®n) =
= (FY(€), n @) Fa(&) + 2 (F{(&), n) (F5(8), n) + Fi(€) (F'(§), n @ m) .
Then the assertion is immediate. qed

In particular, note that D is not an algebra, i.e., not closed under pointwise multiplication.
Now we put

N
Dy = {F € D; limsup%ZHF'(.ﬁ), e > = 0}.

N—oo j=1

Theorem 2.2 The space Dy is closed under pointwise multiplication, i.e., is an algebra, on
which the Lévy Laplacian acts as derivation.

PROOF. Suppose that Fy, F; € Dy. We first prove that FyFy € D. Obserce that

N
Z (F1(5), en) (F3(£), €n)

(e )1/2 (Z1trsce. e |2)1/2

‘é e |2)1/2 EIMILTENS |"’)1/2

n=1

1
N

M=

I/\

(

It then follows from Lemma 2.1 that F} F; € D. We next show that

as N — oo.

limsup N}:; (RE)(6), en) [ = 0.

N—oo

In fact, since
(F1F2)'(8), €n) = (F1(£), €n) F2(€) + F1(£) (F3(§), €n)

by Minkowskii’s inequality we obtain
N 1/2
(z HRFY(E), ) |2)
N 1/2 N 1/2
< (Z FUE), ) Fz(é)!2> + (z IR(E) (FY(E), ea) P)

n=1
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and therefore

(L3 1mnre.er)
p

( SR, e P) 11+ (5 Zl (Fi(e), en)l2)1/2lFl(€)l

n=1
—0 as N — o0,

as desired. We have thus proved that F1 Fy € Dy. Finally it follows immediately from Lemma
2.1 that AL(F\Fy) = ALFy - Fo + Fy - AL F,, namely that the Lévy Laplacian acts on Dy as
derivation. ged

Here is an immediate consequence.
Corollary 2.3 Forp > 0 we put
' A, ={FeD; F({) € E,,E € E}.
Then A, is a subalgebra of Dy. In particular, AL acts on A, as derivation.

PrROOF. We first prove that A, C Dy. Supposé Fe A, Then,since0 < A <X <

1 Y 1 Y
ZI (F'(§), e) |” = NZI(F'(O, en) PAZPALPP
n=1
S ____Z| F/ 2/\2p/\—2p
,\12"

!F'({)I — 0 as N — oo.

Therefore F' € Dy. It is then straightforwald to verify that A, is a subalgebra of Dy. qed

In particular, A is an algebra of functions on E on which the Lévy Laplacian acts as
derivation. This is the reason why the Lévy Laplacian acting on functions on a Hilbert
space is a derivation (note that Ey = H), see e.g., [10], [13], [14], [15].

The derivation property is also observed in a slightly different manner.

Proposition 2.4 Let Fy,F, € D and fix € € E. If there exists p > 0 such that
| F1(6)], <00, | F3(8)]_, < oo,

then
AL(FF2)(&) = ALF(€) - Fa (&) + Fi(§) - ALFa(€).

PROOF. We see that

1 X, .
3 3 (). ) (RL6) e

12 , § 1/2
<3 (SrE©@ ) (S e )

ﬂ._’

_NIF'( OL &1, — 0, as N — o0.

Then we need only to apply Lemma 2.1. qed
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3 Lévy Laplacian on positive definite functions

There is an interesting class of functions on E which are related to finite measures on E*.
Let B be the o-field on E* generated by linear functions:

g (z,€), T€EE,

where £ runs over E. It is easily seen that B coincides with the topological o-field induced
from the strong dual topology of E*.

Let M, (E™) be the space of finite measures on E* and let M (E*) be the space of all signed
measures on (E* B) with finite variation. Every element in M(E*) is written as u; — po,
p1, 2 € My (E*). If p € M(E™*), then its Fourier transform f is a function on E defined by

#O) = [ e Ouldn),  tek. 2)
We here recall a fundamental result.

Theorem 3.1 (BOCHNER-MINLOS) There is a one-to-one correspondence between M, (E™)
and the space B+(E) of all continuous positive definite functions on E through the Fourier
transform (2).

Let B(E) be the space of the Fourier transform of 4 € M(E*). Note that M(E*) is an
algebra with convolution product:

[ ¢l@)nxvidz) = / .. (@ +p)u(dn)v(dy).

Through the Fourier transform B(E) becomes an algebra with pointwise multiplication.
Thus, B(E) becomes a closed subalgebra of L>(E) and therefore it is an abelian C*-algebra
for itself.

The support of p is related to the continuity of ji.

Theorem 3.2 If a positive definite function C : E — C admits a continuous extension to
E,, p > 0, the corresponding measure p is concentrated on E_(,4q) for any ¢ > 0 such that
the canonical injection E,y, — E, is of Hilbert-Schmidt type.

Lemma 3.3 Let F' be the Fourier transform of u € M, (E*). If

[ Izl u(dz) < oo 3)
for some p € R, then F'(§) € E, for any £ € E.

PROOF. Since , ‘
i ¢, n) =9 < |z, 1n1_,,

it follows from Lebesgue’s convergence theorem that

(F©) ) = [ i@ neOulds),  neb.
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Moreover,
(F© < [ lal, 1l ,u(dz) = 01, [ 121, nde),
which implies that F'(¢) € F,. qed

Remark. It follows from (3) that y(E,) = 1. In fact, there exists a null set N such that
|z|, < oo for any z € E* — N. Hence E* — N C E, and therefore 1 = u(E* — N) < u(E,).
Note also that p in (3) can be replaced with an arbitrary smaller one.

Example. Let p, be the Gaussian measure with variance o®. Then

. o?
R =i =ew (-S16B),  een
By a direct calculation we obtain
F/(§) = —a?e™"1¢h/2% = —a?F(¢)e,.

and therefore F'(§) € E = (59 E,. Consequently, F' = fi, € A, for any p > 0.

4 Cauchy problem and semigroup

We recapitulate some results obtained in [2]. For the fixed complete orthonormal basis
{e.}2, of H, which are in fact contained in E, let S denote the shift with respect to the
basis {e,}, i.e., the unique linear continuous (in fact isometric) map from H to H such that

Sen = eny1, n=12---.
We note the following

Lemma 4.1 S € L(E,E) if and only if

A
sup =2t < o0

1
n>0 /\n-i-r

for somer > 0.

PROOF. Suppose first that S € L(E, E). Take an arbitrary p > 0. Then there exist
¢ > 0 and C > 0 such that

1561, < Cll,, EE€EE
In particular, putting £ = e, we have

I6n+1 Ipzlsen!psclen'p-{-q'

Hence :
AP S CAPte, n=12---,
and

. /\n+1
—_— < 1/p
igl? /\}z afp C =%
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as desired. Conversely, we assume that there exists r > 0 with

An+l )
]W=ili% Mo < 0.

Consider an element ¢ € E which admits an expansion:

I
= Z Crn€n,
n=1

where ¢, = 0 except finitely many n. Then by definition,

o0 o0
SE=3"caSen = Cnnsr-
n=1 n=1

For any p > 0 we have
2~ 2 r 2
| S¢ |p = Z_:l lenl® | ensr Ip = Z_Ill n|2/\n+1 < M? 2_:1 |Cn|2/\721p(1+ )= Mg |p(1+r)‘
This implies that S is a continuous operator on E. qed

From now on we assume that S € £(E, E). Then the adjoint S* € L(E*, E*) becomes a
measurable map from E* into E*. Let Mg(E") C M(E*) be the space of measures on E*
which are invariant under S*. We put

M2(E*) = {N € Ms(E™) ; /;3 | (z, n) Pu(dz) < oo for all n € E}

Let H be the subspace of all z € E* such that the limit

N
2
Jm 5 21, e < o0

exists. Then,

becomes a seminorm of H.

Lemma 4.2 Let p € M%. Then x € H for pi-a.e. T € E*. In other words, the limit

2
21 = Jim 5 2 (o, en) ! < 0

exists for p-a.e. £ € E*. Moreover, the limit converges in L'(E*, ).

PROOF. For simplicity we put

F(z) = |{z, e1) |”
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Then, clearly F € L'(E*, u). Since S* is a y-preserving measurable map from E* into itself,
it follows from the ergodic theorem (e.g., [5, Chap.VIII}) that

converges pu-a.e. T € E* as well as in the L'-sense. In that case F* € L'(E*,u). On the
other hand, since

we see that F*(z) = ||z ||*>. The assertion then follows immediately. qed

In a similar manner,

Lemma 4.3 Let p,v € M%(E*). Then the limit

N
Z (z, en) (y, €n)

n=1

ezrists for u x v-a.e. (z,y) € E* x E*.

Proposition 4.4 If u € M2(E*), then F =i € D and

AF(§) = = [ Nz &= On(da).

PROOF. It is easily verified from definition that

(F'(€)y en@en) = = [ (z, )" = Iuda),
Eo
Then we need only to apply Lemma 4.2. qed
Consider the Cauchy problem for the Laplace equation:
d

where Fj is a certain function on £. For some particular initial condition the Cauchy problem
is solved satisfactorily in Accardi-Roselli-Smolyanov [2].

Theorem 4.5 Let u € MZ(E*) and put Fy = i. Then the solution of the Cauchy problem
(4) is given as

Fe,0) =m(6),  mldz) = e MW y(dr), t>0.

PrROOF. By Lemma 4.2 g, is well defined and belongs to M, (E*). Moreover, obviously
iy 18 S*-invariant and

/E‘ <$, 7]>2 /Jt(dlf) < /E' (I, 77)2“((11‘) < 00
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namely, u, € MZ(E*). It then follows from Proposition 4.4 that &; € D and
AF(E 1) = - [ Iz | e=I et uay),

On the other hand, since ||z ||* belongs to L!'(E*, 1) by Lemma 4.2, we see by Lebesgue’s
theorem that

oF ~t||z|? iz
=" ) |z ||? e~t1=Iei= &)y (dg).
Therefore F(£,t) = f;(€) is a solution of the Cauchy problem under consideration. qed

We put
(P'p)(dz) = e M= p(dz),  pe MYE"), t>0.

Then P* constitutes a one-parameter semigroup of transformations on M2(E*).

Let B%(E) be the image space of M2(E*) under the Fourier transform. The induced one-
parameter semigroup of transformations on B%(E) is denoted by P. This is called the heat
semigroup of the Lévy Laplacian Aj,.

We note the following

Proposition 4.6 The subspace M3(E*) is closed under convolution. Therefore BL(E) is
closed pointwise multiplication.

However, the Lévy Laplacian is not a derivation on B%(E) and P! is not multiplicative;
namely, ~ ~ _ :

P{(pu*v) = P'ux Py
does not holds in general. In fact, i belongs to D but not to Dy on which the Lévy Laplacian
acts as derivation, see Theorem 2.2.

5 Normal polynomials

In this section we introduce particular classes of polynomials under an additional structure of
E, namely, multiplication. We assume that E is equipped with a multiplication which makes
E a commutative algebra. Furthermore we assume that the multiplication is continuous
(since E is a Fréchet space, there is no difference between joint and separate continuity) and
that

(n, Q) =(&,n¢), &nC€EE.

This situation often occurs when E is a function space (the multiplication above is the usual
pointwise multiplication of functions). By duality multiplication of f € E* and ¢ € E,
denoted by f¢ = £f, is defined as a unique element in £* such that

(f&m=(f,€n), nek.

Obviously, the multiplicatication E* x E — E* is an extension of £ x E — E.

Consider a quadratic function £ — (f, £%), where f € E* is fixed. Since (&,9) = (f, &) is
a continuous bilinear form on E x E, there exists ¢ € (E® E)* such that (f, £7) = (g, £ @ 7).
Thus, (f, £€*) = (g, £%%) and there occurs no new quadratic function in this manner. On the
contrary, using the new product in £ we may introduce a subclass of polynomials. Namely,
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if f € E* is “regular,” the corresponding quadratic functions constitute a certain class of
quadratic functions. This is immediately generalized to polynomials of any degree. Thus, a
normal polynomial on FE is a finite linear combination of functions of the form:

(f,g"l@...@g"n)’ Vi, Uy =0,1,2,--+,

where f € (E®")* is a regular element. Here the tensor product and the multiplication of E
should be carefully distinguished.

We now go into a typical situation. Consider a one dimensional torus T = R/Z. Put H =
L*(T) and consider d/dt. Then E = C*°(T) and {e,} consists of trigonometric functions.
In that case {e,} possesses additional properties: first {e,} is uniformly bounded:

sup sup |e, (¢)] < oo;

n teT
Second, it is equally dense, i.e.,
: 1 ad ! 2 ! 0o
Jim 5 3 [ fOera= [ i, fe 1),

Moreover, the pointwise multiplication gives a continuous bilinear map from £ x E into E.
We say that f € (E®")* is regular if f € L'(T™). This is the usual definition of a regular
distribution. Then we have the space of normal polynomials. In other words, a normal
polynomial on £ is by definition a linear combination of functions of the form:

F(&) = /nk(tl,"' 7tn)§(tl)u1 ﬁ(tn)undtl : dtrn § € E7

where k is an integrable function on T™. If »; = 1 for all ¢, the polynomial is called regular
after Lévy’s original definition.

Lemma 5.1 Consider a normal polynomial of the form:
F)=(f¢), fekE"
Then F € Dy if and only if

1 N
limsup — e ME=0
qupN;l(fﬁ en)|
forany £ € E.
The proof is immediate. Then we come to the following

Proposition 5.2 FEvery normal polynomial belongs to Dy.

The above result generalizes the known fact that the Lévy Laplacian is a derivation on
normal polynomials, see [10, Proposition 3.2].
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