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\S 1. Introduction
We are greatly interested in analysis in the space of Gaussian white noise functionals,
which roughly means the study in one of branches for analysis in infinite dimensional
spaces in connection with the problems arising in mathematical physics. This note in-
cludes several versions of the so-called de Rham-Hodge-Kodaira decomposition theorem
(DR-H-K Thm for short) associated with Hida derivative in white noise analysis or Hida
calculus.

For a separable complex Hilbert spaoe $K,$ $1et\wedge^{p}K$ be the space of exterior product of
order $p$ , completed by an equipped proper metric. $\mathcal{E}\subset E_{0}\subset \mathcal{E}^{*}$ is the Gelfand triple,
where $E_{0}$ is a given normal Hilbert space with the usual setting in white noise analysis
(e.g. [17-20], [3], [4], [15]; see also [8-14] for more general setting of Hida calculus).
Consider a nonnegative selfadjoint operator $A$ on $E_{0}$ (e.g. [3], [4], [7], [15]), and we
denote by the symbol $\Theta$ the linear closed operator: $E_{0}arrow K$ , determined regarding
$A$ (cf. [7], [13], [14]). Then the operator $D_{p}\equiv \mathcal{D}_{p}(\Theta)$ from $\mathcal{P}(\wedge^{p}K)$ into $\mathcal{P}(\wedge^{p+1}K)$ ,
depending on $\Theta$ , is able to be realized by making use of Hida’s differential operator (e.g.
[17-21]; see also [11], [12], [13]). The de Rham complex is formed by it, with the result
that the corresponding Laplace operator can be constructed when we take advantage
of the adjoint operator and have resort to functional analytical method. By virtue of
closedness of the sequence of complexes we can obtain the DR-H-K Thm in $L^{2}$-sense
(cf. [14]). Moreover it is easy to see that DR-H-K type theorem holds for the space of
smooth test functionals, induced by the Laplacian: i.e.

$H^{2,\infty}( \bigwedge_{2}^{p}(K))={\rm Im}[L_{p}(\Theta, \partial_{t})rH^{2,\infty}(\bigwedge_{2}^{p}(K))]\oplus Ker[L_{p}(\Theta, \partial_{t})]$ .

On this account we may employ the Arai-Mitoma method $[1,1991]$ to derive a similar
type decomposition theorem even for the category $(S)(\wedge^{P}K)$ , just corresponding to the
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space of Brownian test functionals. It is quite interesting to note that this sort of result
leads to the study of Dirac operator on the BF Fock space, and also that our analysis
could be another key to the supersymmetric quantum field theory. The related topics
may be found in [1], [7], [13], [14], [16] and [25].

\S 2. Notation and Preliminaries
Let $E_{0}$ be a separable Hilbert space with the norm $||\cdot||0$ in the usual setting of white
noise analysis. We denote by $A$ a nonnegative selfadjoint operator in $E_{0}$ such that the
inverse operator $A^{-1}$ is a Hilbert-Schmidt type one. We call such an operator a standard
operator. $C$ is the collection of finite linear combinations of $\zeta_{k}$ , where $\zeta_{k}$ is a complete
orthonormal eigenvector of the operator $A$ . For $\xi\in E_{0}$ , we define the norm

$||\xi\Vert_{p}:=||A^{P}\xi||0$

for every $p\in R$ . $E_{p}$ is a completion of the spaoe $C$ with respect to the above-mentioned
norm. Moreover, $\mathcal{E}\equiv E_{\infty}$ is a projective limit of $E_{p}$ , and $\mathcal{E}^{*}\equiv E_{-\infty}$ is an inductive
limit of $E_{p}$ . Then we have a Gelfand triple

$\mathcal{E}cE_{0}c\mathcal{E}^{*}$

For a positive definite functional $C(\xi)$ on $\mathcal{E}$ , the Bochner-Minlos theorem determines
a probability measure $\mu$ on $\mathcal{E}^{*}$ such that

$C( \xi)=\int_{\mathcal{E}^{\wedge}}\exp[i\langle x, \xi\rangle]\mu(dx)$ .

Especially when $C(\xi)=\exp[-\Vert\xi\Vert_{0}^{2}/2]$ , the corresponding measure $\mu$ is called a Gaussian
white noise (WN for short) measure.

Next we consider an operator $D_{p}\equiv D_{p}(\Theta)$ on the space of polynomials. $\mathcal{P}$ is the
collection of complex-valued $polyl\propto nials$ on $\epsilon*$ (with complex coefficients) of the form:

$P(x)= \sum_{n=0}^{k}\langle:x^{\otimes n}:,$ $f_{n}$ ), $x\in \mathcal{E}^{*}$ , $f_{n}\in \mathcal{E}_{\mathbb{C}}^{\otimes n}\wedge$ .

Then $\mathcal{P}$ is dense in $(L^{2})=L^{2}(\mathcal{E}^{*}, \mu)$ . Let $K$ be a complex Hilbert space. For $p\in N_{+}$ ,
$\wedge^{p}K$ is the exterior product space of order $p$ . We can define a metric $in\wedge^{p}K$ as follows:
namely, for every $\omega,\gamma\in\wedge^{p}K$ ,

$\langle\omega, \gamma)^{\wedge^{p}K}=\sum_{\sigma\in S_{p}}sgn(\sigma)\cdot\prod_{k=1}^{p}\{f_{k}, g_{\sigma(k)}\rangle_{K}$,
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where $\omega=fi\wedge\cdots\wedge f_{p},$ $\gamma=g_{1}$ A. . $.\wedge g_{p}(f_{k},g_{k}\in K)$ . By the symbol $\wedge^{p}K^{c}$ we denote a
completion $of\wedge^{p}K$ with respect to the aforementioned metric, $with\wedge^{0}K^{c}=C$ . $P(\wedge^{p}K^{c})$

is the collection $of\wedge^{p}$K-valued polynomials on $\mathcal{E}^{*}$ of the form

$\omega(x)=\sum_{n=1}^{k}\tilde{P}_{n}(x)\cdot\xi_{n}$ , $(x\in \mathcal{E}^{*})$

where $P_{n}\in \mathcal{P},$ $\xi_{n}\in A_{p}(\otimes^{p}D^{\infty}(T))$. $A_{p}$ is an alternating operator $from\otimes^{p}Karrow\wedge^{p}K$ ,
and $T=\Theta\Theta^{*}$ , where $\Theta$ : $(E_{0})_{C}arrow K$ is a densely defined, closed linear operator. We
define

$D^{\infty}(T):= \bigcap_{m\in N}Dom(T^{m})$
.

Note that $A$ is then expressed by the product operator $\Theta^{*}\Theta$ . Then it follows that
$P(\wedge^{p}K^{C})$ is dense in the space $\bigwedge_{2}^{p}(K)$ $:=(L^{2})\otimes\wedge^{p}K^{c}$ . Now we are in a position to
state an operator $D_{p}\equiv \mathcal{D}_{p}(\Theta)$ . Actually $D_{p}$ is a linear operator from $\mathcal{P}(\wedge^{p}K^{c})$ into
$\mathcal{P}(\wedge^{p+1}K^{c})$ defined by

$\mathcal{D}_{p}\omega(x)\equiv \mathcal{D}_{p}(\Theta)\omega(x)\equiv D_{p}(\Theta, \partial_{t})\omega(x)$

$:=(p+1) \sum_{n=1}^{k}A_{p+1}(\Theta\cdot\partial_{t}\tilde{P}_{n}(x)\otimes\xi_{n})$

for any $\omega$ $\in$ $P(\wedge^{p}K^{c})$ , especially when the polynomial has the form $\omega(x)$

$= \sum_{n=1}^{k}\tilde{P}_{n}(x)\cdot\xi_{n}$ , and $\partial_{t}$ is the Hida differential in white noise analysis (cf. [17-21];
see also [11], [12], [13], [16]).

\S 3. De Rham Complex Subordinate to Hida Differential
The previously mentioned operator $\mathcal{D}_{p}(\Theta, \partial_{t})$ is well-defined for all elements $of\wedge^{p}K^{c_{-}}$

valued polynomials. Furthermore it is easy to see that $\mathcal{D}_{p}(\Theta, \partial_{t})$ is densely defined, linear
operator from $\bigwedge_{2}^{p}(K)$ into $\bigwedge_{2^{p+1}}(K)$ . The range Ran$(D_{p})$ of $\mathcal{D}_{p}(\Theta, \partial_{\ell})$ is contained in
$\mathcal{P}(\wedge^{p+1}K^{c})$ . It is interesting to note that

$\mathcal{D}_{p+1}(\Theta, \partial_{t})0\mathcal{D}_{p}(\Theta, \partial_{t})=0$

holds on $P(\wedge^{p}K^{c})$ . Now when we set

$\mathcal{P}(\wedge^{*}K^{c}):=\sum_{p=0}^{\infty}\mathcal{P}(\wedge^{p}K^{c})$,

then a sequenoe $(\mathcal{P}(\wedge^{*}K^{c}), \{\mathcal{D}_{p}(\Theta, \partial_{t})\})$ is the de Rham complex of $\cdot$ $\wedge^{p}K^{c}$-valued poly-
nomials.
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The formal adjoint operator $\mathcal{D}_{p}^{*}(\Theta, \partial_{t})$ is a linear operator from $\bigwedge_{2}^{p+1}(K)$ into $\bigwedge_{2}^{p}(K)$

defined by
$\langle \mathcal{D}_{p}(\Theta, \partial_{t})\omega, \gamma\rangle_{\bigwedge_{2^{p+1}}(K)}=\langle\omega, \mathcal{D}_{p}^{*}(\Theta, \partial_{t})\gamma\rangle_{\bigwedge_{2}^{P}(K)}$

for every $\omega\in\bigwedge_{2}^{p}(K),$ $\gamma\in\bigwedge_{2^{p+1}}(K)$ . It follows immediately that

$\mathcal{D}_{p}^{*}(\Theta, \partial_{t})\circ \mathcal{D}_{p+1}^{*}(\Theta, \partial_{t})=0$

on the domain $Dom(D_{p+1}^{*})$ of $D_{p+1}^{*}(\Theta, \partial_{t})$ . Clearly, $\mathcal{D}_{p}^{*}(\Theta, \partial_{t})$ is well-defined on
$\mathcal{P}(\wedge^{p+1}K^{c})$ , and the domain of $\mathcal{D}_{p}^{*}(\Theta, \partial_{t})$ coincides with it. Hence we may deduce
that $\mathcal{D}_{p}^{*}(\Theta, \partial_{t})$ is a densely defined, closed linear operator from $\bigwedge_{2}^{p+1}(K)$ into $\bigwedge_{2}^{p}(K)$ .
Thus we attain that the operator $\mathcal{D}_{p}(\Theta, \partial_{t})$ is closable. We will denote its extension by
the same symbol $\mathcal{D}_{p}(\Theta, \partial_{t})$ . Set

$\bigwedge_{2}^{*}(K)$ $:= \sum_{p=0}^{\infty}\bigwedge_{2}^{p}(K)$ .

Then we get the de Rham complex $( \bigwedge_{2}^{*}(K), \{D_{p}(\Theta, \partial_{t})\})$ .

\S 4. Laplacian Subordinate to Hida Differential
By taking the above-mentioned results in the section 3 into consideration, we can define
a Laplacian. Set

$D(J_{p}):=Dom(\mathcal{D}_{p})\cap$ Dom $(D_{p-1}^{*})$

as the domain of the form $J_{p}$ , which is dense in $\bigwedge_{2}^{p}(K)$ . We define

$J_{p}[\Theta, \partial_{t}](\omega, \gamma)$
$:=\langle \mathcal{D}_{p}(\Theta)\omega, \mathcal{D}_{p}(\Theta)\gamma\rangle_{\bigwedge_{2}^{p+1}(K)}$

$+\langle \mathcal{D}_{p-1}^{*}(\Theta)\omega,$ $\mathcal{D}_{p-1}^{*}(\Theta)\gamma)_{\bigwedge_{2}^{p-1}(K)}$

for any $\omega,$ $\gamma\in \mathfrak{D}(J_{p})$ . This $J_{p}[\Theta, \partial_{t}]$ turns to be a sesquilinear form on $\bigwedge_{2}^{p}(K)\cross\bigwedge_{2}^{p}(K)$ .
Note that this formalism indicates the Laplacian $L_{p}(\Theta, \partial_{t})$ to be roughly given by
$\{\mathcal{D}_{p}^{*}0\mathcal{D}_{p}+\mathcal{D}_{p-1}0\mathcal{D}_{p-1}^{*}\}(\Theta, \partial_{t})$. As a matter of fact, it is easy to see that the form $J_{p}$ is
a nonnegative, densely defined, closed form on $\mathfrak{D}(J_{p})$ . Consequently, there is a unique
nonnegative selfadjoint operator $L_{p}(\Theta, \partial_{t})$ in $\bigwedge_{2}^{p}(K)$ such that the equality

$\langle L_{p}(\Theta, \partial_{t})^{1/2}\omega,$ $L_{p}(\Theta, \partial_{t})^{1/2}\gamma\}_{\bigwedge_{2}^{p}(K)}=J_{p}[\Theta, \partial_{t}](\omega, \gamma)$

holds for every $\omega,\gamma\in$ Dom $(L_{p}^{1/2})=\mathfrak{D}(J_{p})$ . This operator $L_{p}(\Theta, \partial_{t})$ is a Laplacian
of $\{D_{p}(\Theta, \partial_{\ell})\}$ . We write this operator as $\Delta_{p,t}\equiv\Delta_{p,t}(\Theta)(=L_{p}(\Theta, \partial_{t}))$ , because it
is obviously a $\Theta$-dependent operator. Henoe we can get the following decomposition
theorem of the spaoe $\bigwedge_{2}^{p}(K)$ in $L^{2}$ -sense: that is,
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THEOREM 1 ( $L^{2}$ -Decomposition of DR-H-K Type; [7], [13], [14], [16]). For any $p\in$

$N+$ , we have

$\bigwedge_{2}^{p}(K)={\rm Im}[\mathcal{D}_{p-1}(\Theta, \partial_{t})]\oplus{\rm Im}[\mathcal{D}_{p}^{*}(\Theta, \partial_{t})]\oplus Ker[\Delta_{p)t}(\Theta)]$ .

We shall state a sketch of proof below. The above decomposition assertion is valid for
$p\geq 0$ with $\mathcal{D}_{-1}=0$. In fact, since $D_{p}o\mathcal{D}_{p-1}=0$ holds for any element of $Dom(\mathcal{D}_{p-1})$ ,
it can be said that ${\rm Im}[\mathcal{D}_{p-1}(\Theta, \partial_{t})]$ is orthogonal to ${\rm Im}[\mathcal{D}_{p}^{*}(\Theta, \partial_{t})]$ in $L^{2}$-sense. First of
all we can decompose $\bigwedge_{2}^{p}(K)$ as a direct sum of Ep and $\mathfrak{M}$ , where sp is a direct sum of
${\rm Im}[\mathcal{D}_{p-1}(\Theta, \partial_{t})]$ and ${\rm Im}[\mathcal{D}_{p}^{*}(\Theta, \partial_{t})]$ , and $v\mathfrak{n}$ is an orthogonal complement of $\mathfrak{Y}$ . Next we
have only to say that $\mathfrak{M}$ is equal to $Ker[\Delta_{p,t}(\Theta)]$ . However, it follows immediately from
definitions of the sesquilinear form and kernel of operator. This concludes the assertion.

\S 5. DR-H-K Thm Associated with Hida Derivative

Recall that $\Delta_{p,t}(\Theta)$ is an operator in the Hilbert spaoe $\bigwedge_{2}^{p}(K)$ . Note that the canonical
isometry

$\bigwedge_{2}^{p}(K)\cong L^{2}(\mathcal{E}^{*}arrow\wedge^{p}K^{c};\mu)$ .

We set

$D^{\infty}( \Delta_{p,t}):=\bigcap_{m\in N}$
Dom $(\Delta_{p,t}(\Theta)^{m})$ ,

and define

$\Vert\omega\Vert_{k}^{2}=\sum_{j=0}^{k}\int_{\mathcal{E}^{*}}\Vert(I+\Delta_{p,t}(\Theta))^{j}\omega\Vert_{\wedge^{p}K^{c}}^{2}\mu(dx)$

for any $\omega\in D^{\infty}(\Delta_{p,t}),$ $p\in N_{+}$ . Then $H^{2,k}( \bigwedge_{2}^{p}(K))$ denotes the completion of $D^{\infty}(\Delta_{p,t})$

with respect to the above norm $(k\in N_{0})$ , and $H^{2,\infty}( \bigwedge_{2}^{p}(K))$ is given as follows:

$H^{2,\infty}( \bigwedge_{2}^{p}(K))$ $:= \bigcap_{k=0}^{\infty}H^{2,k}(\bigwedge_{2}^{p}(K))$ .

Now we have a complete, countably normed spaoe $(H^{2,\infty}( \bigwedge_{2}^{p}(K)), ||\cdot||_{k})$ . We write
$\Delta_{p,t}(\Theta)(D^{\infty}(\Delta_{p,t}))$ as ${\rm Im}[\Delta_{p,t}(\Theta)\square D^{\infty}(\Delta_{p,t})]$ . Suppose

$\inf\sigma(\Delta_{p,t}(\Theta))\backslash \{0\}>0$ ,

where $\sigma(B)$ is the spectrum of a linear operator $B$ on a Hilbert space. Then we have
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THEOREM 2 (De Rham-Hodge-Kodaira Decomposition Theorem; [7], [13], [16]). Under
the above assumption, the space $H^{2,\infty}( \bigwedge_{2}^{p}(K))$ allows the following decomposition

$H^{2,\infty}( \bigwedge_{2}^{p}(K))={\rm Im}[\Delta_{p,t}(\Theta)rH^{2,\infty}(\bigwedge_{2}^{p}(K))]\oplus Ker[\Delta_{p,\ell}(\Theta)]$

for any $p\in N_{+}$ .
The proof is greatly due to the so-called “Method of heat equation”. As a matter

of fact, a remarkable property of our Laplacian induces existenoe of a corresponding
positive semigroup $T_{s}(p, \Theta)$ on $\bigwedge_{2}^{p}(K)$ (for $s\geq 0$ ). Therefore the spectral representation
theorem permits an integral expression of the semigroup with respect to a spectral
family $\{E(\lambda;p, \Theta)\}$ ;

$\mathcal{T}_{s}(p, \Theta)=\int_{0}^{\infty}\exp(-s\lambda)dE(\lambda;p, \Theta)$.

By virtue of this expression and a convergence result in the general theory of integration,
there exists a limit point $\varphi 0$ of $\{\mathcal{T}_{s}\varphi\}$ in strong topology as $sarrow\infty$ . lfurther it can be
said that $\varphi 0$ belongs to $Ker[\Delta_{p)t}(\Theta)]$ . When we define a bounded operator $Q\equiv Q(p, \Theta)$

in $\bigwedge_{2}^{p}(K)$ as
$\mathcal{Q}(p, \Theta)\varphi=\int_{0}^{\infty}(\mathcal{T}_{t}(p, \Theta)\varphi-\varphi_{0})dt$ ,

then our assumption deduces the fact that the k-norm of $Q$ is estimated majorantly by
some constant, which depends only on the index $k$ and the infimum of spectrum. This
estimate is, however, valid even for any $k$ , implying that $Q(p, \Theta)\varphi$ lies in $D^{\infty}(\Delta_{p,t})$ . So
that, we can operate the Laplacian to it so as to obtain

$\Delta_{p,t}(\Theta)Q(p, \Theta)\varphi(x)=\varphi(x)-\varphi_{0}(x)$ ,

where computation of the integral is essentially due to the heat equation method. Thus
we attain

$D^{\infty}(\Delta_{p,t})={\rm Im}$ [ $\Delta_{p,t}(\Theta)$ I $D^{\infty}(\Delta_{p,t})$] $\oplus Ker[\Delta_{p,\ell}(\Theta)]$ .
Note that $H^{2,\infty}( \bigwedge_{2}^{p}(K))\cong D^{\infty}(\Delta_{p,t})$ as a vector space, which concludes the assertion.

\S 6. $DR- H- K$ Type Decomposition in $(S)(\wedge^{p}K)$-Category
Recall that $\Theta$ is a densely defined, closed linear operator from $(E_{0})c$ into $K$ . We define
the second quantization operator $d\Gamma_{1}(A)$ as

$d \Gamma_{1}(A)(\omega(x))=\sum_{k=1}^{n}\langle:x^{\otimes n}:, A^{\otimes I}[k]f_{n}\rangle$

for $\omega\in \mathcal{P},$ $x\in \mathcal{E}^{*}$ , where

$A^{\otimes I}[k]=I\otimes\cdots\otimes I\otimes\check{A}k\otimes I\otimes\cdots\otimes I$.
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This operator is selfadjoint on $(L^{2})$ . On the other hand a nonnegative selfadjoint oper-
ator $d\Gamma_{2}(T)$ on $\wedge^{p}K^{c}$ is defined by

$d \Gamma_{2}(T)=\sum_{k=1}^{p}T^{\otimes I}[k]$.

It follows that $\mathcal{L}(p, \Theta)$ is essentially selfadjoint if we set

$\mathcal{L}(p, \Theta)=d\Gamma_{1}(A)\otimes I+I\otimes d\Gamma_{2}(T)$

acting on $\bigwedge_{2}^{p}(K)$ . Then we get a very important result, namely, for any positive $p$,
$\Delta_{p,t}(\Theta)$ is equivalent to $\mathcal{L}(p, \Theta)$ .

It is well-known that there is a unique nonnegative selfadjoint operator $\Gamma_{1}(A)$ on $(L^{2})$ ,
which is described by

$S^{-1}( \sum_{n=0}^{\infty}A^{\otimes n})S$

with the S-transform in white noise calculus (cf. [19], [20], [22]). For each $p\geq 0$ ,
$\Gamma_{2}(T):=\otimes^{p}T$ proves to be, too, nonnegative and selfadjoint $in\wedge^{p}K^{c}$ . Let us define

$\Gamma_{p}(\Theta)$ $:=\Gamma_{1}(A)\otimes\Gamma_{2}(T)$ ,

and
$\Vert|\omega||_{k}$ $:=\Vert(I+\Gamma_{p}(\Theta))^{k}\omega\Vert_{\bigwedge_{2}^{p}(K)}$

for any $\omega\in$ Dom $(\Gamma_{p}(\Theta)^{k}),$ $k\geq 1$ . $(S)_{k}(\wedge^{p}K)$ denotes a completion of $Dom(\Gamma_{p}(\Theta)^{k})$

relative to the above norm. Then we define

$(S)( \wedge^{p}K):=\bigcap_{k=1}^{\infty}(S)_{k}(\wedge^{p}K)$ .

Suppose $A\geq I+\epsilon(\epsilon>0)$ , and basically according to the idea of [1] we obtain

THEOREM 3. Under those assumptions stated above, the following decomposition of de
Rham-Hodge-Kodaim type

$(S)(\wedge^{p}K)={\rm Im}[\Delta_{p,t}(\Theta)\square (S)(\wedge^{p}K)]\oplus Ker[\Delta_{p,t}(\Theta)]$

holds for every $p\in N_{+}$ .
Although this is a direct result from Theorem 2, it is partly because our Laplacian is

successfully realized as a smooth operator having a nioe property. That is to say, the
range of $\Delta_{p,t}(\Theta)$ restricted on $(S)(\wedge^{p}K)$ remains even in it.
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\S 7. Concluding Remarks
As we have stated in the section 1 : Introduction, this formalism is possibly regarded as
a key to open a new pass towards analysis of Dirac operators in quantum field theory
through the framework of Hida calculus. Further analysis of Gaussian white noise
functionals related to Dirac operators will be reported by the author in his next article.
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