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Introduction

Over the last decade quantum stochastic calculus on Fock space has been developed
considerably into a new field of mathematics as is highlighted in the recent books of
Meyer [11] and of Parthasarathy [16]. Therein have been so far discussed two ways of
realizing the (Boson) Fock space: one is the straightforward realization by means of the
direct sum of symmetric Hilbert spaces; the other is Guichardet’s realization which was
first adopted by Maassen [9] to study quantum stochastic integrals in terms of integral-
sum kernel operators. Maassen’s approach has been developed by Belavkin [1], Lindsay
[7], Lindsay-Maassen (8], and Meyer [10]. ‘

As is well known, there is a third realization of Fock space, i.e., as the L?-space over
a Gaussian space through the celebrated Wiener-It6-Segal isomorphism. This approach
enables us to use a strong toolbox of distribution theory. In the recent works [12]-[14] we
have established a systemtic theory of operators on Fock space on the basis of white noise
calculus, i.e., a Schwartz type distribution theory on Gaussian space. We now believe it
very interesting to discuss quantum stochastic integrals within our operator theory using
a distribution theory to the full. Moreover, our approach allows taking a quite arbitrary
space T as the “time” parameter space. Meanwhile, a white noise approach to quantum
stochastic calculus has been proposed also by Huang [4] who reformulated the quantum
Itd formula due to Hudson-Parthasarathy [5].

The purpose of this note is to outline the basic idea of how quantum stochastic integrals
are generalized by means of white noise calculus. In our operator theory on Fock space
a principal role has been played by an integral kernel operator [3]. Developing the idea,
we introduce a generalization of an integral kernel operator and derive representation
of an arbitrary operator on Fock space. This representation bears a similarity with a
quantum stochastic integral against creation and annihilation processes. As a particular
case we construct a quantum Hitsuda-Skorokhod integral which generalizes a quantum
stochastic integral of It0 type to cover non-adapted case. On the other hand, it generalizes -
a classical Hitsuda-Skorokhod integral (see e.g., [2]) as well. In fact, a classical Hitsuda-
Skorokhod integral is recovered as a quantum Hitsuda-Skorokhod integral with values in
multiplication operators as the quantum Brownian motion corresponds to the classical
one. The full details will be discussed in the forthcoming paper [15].
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1 Operator theory on Gaussian space

We adopt exactly the same notations and assumptions used under the name of standard
setup of white noise calculus, see e.g., [3], [12]-[14].

Let T be a topological space with a Borel measure v(dt) = dt which is thought of as a
time parameter space when it is an interval, or more generally as a field parameter space
when it is a general manifold (note also that T can be a discrete space as well). Let A
be a positive selfadjoint operator on H = L%(T,v;R) with Hilbert-Schmidt inverse and
inf Spec (A) > 1. Then one obtains a Gelfand triple:

EcC H=IL¥T,v;R) C E*

in the standard manner, where F and E* are considered as spaces of test and general-
ized functions on T. To keep the delta functions §; in E* we need to assume the usual
hypotheses (H1)-(H3), see e.g., [3].

Let 1 be the Gaussian measure on E*. Then the complex Hilbert space

(L*) = L*(E",1;C)

is canonically isomorphic to the Boson Fock space over Hc through the celebrated Wiener-
1t6-Segal isomorphism. In fact, each ¢ € (L?) admits a Wiener-Ité expansion:

¢(z) = f: (:2®":, fa), w€E, f.€HE, (1)
n=0
with N
1815 = [ 16N u(d) = S atl ful. )
With each £ € E¢ we associate the exponential vector by
w@) =3 (0 ) men (00 -360), seEn O

In particular, ¢q is called the Fock vacuum.

Let I'(A) be the second quantized operator of A, i.e., the unique positive selfadjoint
operator on (L?) such that I'(A)¢de = da¢. Since I'(A) admits a Hilbert-Schmidt inverse
under our assumptions, we obtain a complex Gelfand triple again in the standard manner:

(E) C (L*) = L*(E",;C) C (E)",

where elements in (E) and (E)* are called a test (white noise) functional and a generalized
(white noise) functional, respectively.
For any y € E* and ¢ € (F) we put

Dyia) = Jig LM =2 e g ®
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It is known that the limit always exists and that D, € L((E),(E)). Recall that the delta
functions &, belong to E* by hypotheses. Then Hida’s differential operator is defined by

8t=D5¢’ tET.

Obviously, 9, € L((E), (F)) is a rigorously defined annihilation operator at a point ¢ € T,
i.e., 0y is not an operator-valued distribution but a continuous operator for itself. The
creation operator is by definition the adjoint 87 € L((E)*,(E)*), where (E)* is always
equipped with the strong dual topology. The so-called canonical commutation relation is
written as:

[0s,0:) = 0, (07,071 =0, (05, 0] = 65(8)1, s,teT, (5)

where the last relation is understood in a generalized sense.
For any « € (E®(l+m )* there exists a unique operator =i, (k) € L((E), (E)*) such that

(Zim(K)d, ¥ = (k, (35 -+ 000 - 00 W)Y, &9 € (E).

This operator is called the integral kernel operator with kernel distribution £ and is de-
noted descriptively by

5,,m(,§):/Tl+m K81y Sttty oyt )0 - OBty - Dydsy - - dsydty - i,

Let (E§“*™)z, ¢.m) De the space of all & € (ES'*™)" which is symmetric with respect to

the first / and the last m variables independently. Then the kernel distribution is uniquely

determmed in (E®(I+m))sym(1,7R)

Proposmon 1.1 [3] Let & € (EE™)*. Then 5,.(k) € L((E),(E)) if and only if
€ (E&) ® (EE™)*. In particular, 59, (k) € L((E),(E)) for any x € (EE™)*.

For = € L((F),(E)*) a function on E¢ x E¢ defined by
9(6377) = «5¢€7 ¢7I»’ 6777 € Ec, (6)

is called the symbol of =. Since the exponential vectors {@¢; £ € Ec} spans a dense sub-
space of (E), the symbol recovers the operator uniquely. For an integral kernel operator,
we have

(Ztm(K)Bes S = ({5, 1% ® E8™)ge, @n)) = (K, n® ® £8™)eleom), (7)
where {,7 € Ec and k € Eg(”m).
Theorem 1.2 [12] Let © be a C-valued function on E¢c x Ec. Then, it is the symbol of
an operator in L((E),(E)*) if and only if
(O1) For any &,&,mn,m € Ec, the function
z’wHQ(‘z§+§17wn+nl)) Z,UJGC,

is entire holomorphic;
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(O2) There exist constant numbers C > 0, K > 0 and p € R such that

O <CexpK (€L +1n12),  &ne Ec

Theorem 1.3 [12] For any = € L((E),(E)*) there is a unique family of kernel distribu-
tions ki m € (ES I+m))sym(1 m) Such that
E¢= 3 Eim(kim)d, ¢ €(E) (8)

l,m=0
converges in (E)*.
The expression as in (8) is called the Fock erpansion of =. There are pararell results
for L((E),(E)) C L((E),(E)*), see [13] for complete discussion.
2 Generalization of integral kernel operators
Let {e;}%2, be the normalized eigenfunctions of the operator A. For simplicity, we put

C(i) =€ - ‘®€i, fori= (’ila" * 7i1) and e(j) = €j5, &-- '®ejm fOI‘j = (jl,' "ajm)' Thena
for a linear map L : Eg(“m) — L((E),(E)*) and p,q,7r,s € R we put

o Gved) 2
” L.”l,m;p,q;rs sup ZI J))¢’ »I Ie( )I ] ( )|q I “ ¢“—s — y
Nl < 1
For brevity we put || L ||, = || L ||, .. ppp- The next result will be useful.

Proposition 2.1 [14] For a linear map L : Eg’(“m) — L((E),(E)*) the following four
conditions are equivalent:
(i) L € L(EE™™, L((E), (E)));
(14+m)
. n € Eg’ Al <1
i) sup { | (L(n)¢, ¥)) |; P
oo {110, 013 ]S ) 18, < Llvl, <1
(iii) || L ||, < oo for some p > 0;
(V) | L ||y pmip girs < 00 for some p,gq,r,s € R.

} < o0 for some p > 0

In that case, for any p,q,r,s € R we have
l ((L(ﬂ)¢, w» I S ” L Hl,m;—p,—q;—r,—s ]77 |l,m;p,q ” ¢ “s ” w ”r ’ (9)
where 11 € Eg’“*’"’, é,% € (E).

Each L € L(EET™, L((E), (E)%)) is justifiably called an L((E), (E)*)-valued distribu-
tion on T*t™. In fact,

LEEN™ L((E),(E))) = (EE"™) ® L((E),(E))
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holds by the kernel theorem.
With each L € £(Eg('+m),£((E), (E)*)) we associate an operator = € L((E), (E)*) by

the formula:
(Zde, ¢a) = ((L(n® ® 5™, 8n)), €. € Ec. (10)

We must check that the definition works; namely, conditions (O1) and (O2) in Theorem
1.2 are to be verified for ‘

o(&,n) = (L™ ® ™), 4,)),  &n € Ec. (11)
In fact, (O1) is straightforward. As for (O2), by Proposition 2.1 we obtain

Ol < LI, 11 © 1,1 6l 61l
ILl, Il Ier exp s (1€2+1nE),

and therefore
ol <CexpK (IE3+Inl}),  &ne€ Ec,

for some K > 0 and C > 0, which proves (02). It then follows from the characterization
theorem (Theorem 1.2) that @ is the symbol of an operator = € L((F), (E)*); namely,
there exists a unique operator = € L((F), (E)*) satisfying (10). It is reasonable to write

== /Ta; e BLL(S1, Sty b By - Oy - - dsydty - . (12)

In fact, comparing (7) and (10), we understand that the above = is a generalization of
an integral kernel operator. From definition we see that the adjoint operator of = given
as in (12) is

== '/Ta;l "'a;mL*(sly'”,sl,tly'",tm)asl "'aaldsl"'dsldtl"'dtmy

where L* € L(ES"™ L((E), (E)")) is defined by L*(¢) = L(¢)*, ¢ € ESU™.
Generalized integral kernel operators occur in an integral kernel operator. Consider an
integral kernel operator = (k) with x € (Eg (1+m));‘ym(,’m). For integers 0 < a < [ and

0<B<m,

LO("I,"°7”a’€la" * ’gﬂ) = El—a,m—ﬁ ((’f ®,3 (61 &®--- ®§ﬂ)) ®a (771 Q- ®77cx))

becomes a continuous (« + #)-linear map from E¢ into L((E), (E)*), where ®5 and ®°
denote the right and left contractions with respect to the last # and first a coordinates,
respectively. The proof is straightforward from a norm estimate of an integral kernel
operator. Therefore there exists L € C(Eg(‘”ﬁ ),ﬁ((E), (E)*)) such that

Lim® - ®na®& @ ®&) = Lo(n, - NMas b1, -+, &p)-

In other words,
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Lemma 2.2 Let 0 < a <l and 0 £ 8 < m. For any k € (Eg(“’m))* there ezists
L € L(EEP) L((E),(E)")) such that

Lm® - @106 ® - @ &)
=Sl—a,m—ﬁ ((K' ®,3 (€l®®€ﬁ)) ®a (771 ®®na)) (13)

Theorem 2.3 (FUBINI TYPE) Fiz integers 0 < o <l and 0 < B8 < m. Given k €
(EEH™) let L € L(ESP) L((E),(E)*)) be defined as in (13). Then,

‘—":l,m(n) = / o .. 'B:QL(SI,' - PRE ‘,tﬁ)atl .. 'at,gdsl .. 'dSadtl dtﬂ

Totp 1

The verification is simple. We only need to compute the symbols of both sides according
to the definitions.

3 A stochastic integral-like representation

Given an operator = € L((E),(E)*) let
== Z El,m(h:l,m)v Kim € (Eg(l+m))*7

be the Fock expansion. We now devide the Fock expansion into three parts:

E= 3 Synlfim) + Y Sio(kio) + Soo(ko)- (14)
I>0,m>1 121

Since Zy0(ko0,0) is a scalar operator, say cI, we obtain immediately,
EO,O(KO,O) = CIa c= «E¢07 ¢0» .

In other words, c is the vacuum expectation of =.
For the first term in (14) we have the following

Lemma 3.1 There exists L € L(E¢,L((E),(E)*) such that

/T Lt)ddt= 3 Epm(kim)-

1>0,m>1

PROOF. Forl >0, m >1 we put

Ll,m(é) = El,m-l(K/I,m ®1 é)) é € E(C'

It follows from Lemma 2.2 and Theorem 2.3 that L,,, € L(Ec,L((E),(E)*)) and

Zim(Kim) = /T Lim(1)d.dt. (15)
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With the help of some precise norm estimates established in [12] and [13] we can prove
that

> Lin(6)e, E€Ee, ¢e(E),

1>0,m>1

converges in (E)* and defines a continuous bilinear map from E¢ x (F) into (E)*.
Since B(E¢,(E);(E)*) & L(Ec,L((E),(E)*)) by the kernel theorem, there exists L €
L(Ec,L((E),(E)*)) such that

Li&¢= > Linl)¢, E€Ec, ¢€(E).

1>0,m>1
It is then straightforward to see that the above L has the desired property. qed
In a similar manner we have the following

Lemma 3.2 There ezists M € L(Ec, L((E),(E))) such that
M()¢ =3 Zoi-1(kio®18)¢, ¢ € (E),

I>1

where the righthand side converges in (E). Moreover, [M(£),0;] = 0 for all £ € E¢c and
teT.

The last part of the assertion follows from the next result of which proof is a simple
application of Fock expansion.

Lemma 3.3 = € L((E),(FE)) commutes with all 0,, t € T, if and only if the Fock
expansion of = is of the form:

—
— ——

— = Eo'm(/io'm).
m>0

For any L € L(Ec,L((E),(E)*)), we write L*(§) = L(¢)* for € € Ec. Then L* €
L(Ec,L((E),(E)")) again. If M € L(E¢,L((E),(E))), we have

M* € L(Ec, L((E)", (E)")) C L(Ec, L((E), (E)7)).
Then, a straightforward argument with operator symbols leads us to the following

Lemma 3.4 Notations being the same as in Lemma 3.2, we have

/T O:M*(s)ds = 3" Zro(k10)-

1>1
This corresponds to the second term in (14). In view of Lemmas 3.1 and 3.4, we obtain

Theorem 3.5 Every = € L((F),(E)*) admits a representation of the form:
== /T L(1)ddt + /T arM*(1)dt + I, (16)
, (E)*

wherec € C, L € L(Ec, L((E)
0 for any{ € Ec andt €T.

)*)) and M € L(E¢,L((E),(E))) such that [M(¢),8,] =
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Since M (¢) commutes with 9, for all ¢ € T', expression (16) may be written as.
== /T L()ydt + /T M*(1)3; dt + cl. (17)

Then (17) is regarded as (a sort of) quantum stochastic integral against the creation and
annihilation processes when T is an interval, see e.g., [11], [16].

There is a simple modification of Theorem 3.5. For the proof we need only to consider
the adjoint =™ in the above theorem.

Theorem 3.6 FEvery = € L((E),(E)*) admits a representation of the form:
== /T L(1)dudt + /T ar M= (8)dt + (18)

wherec € C, M € L(E¢,L((E),(E)*)) and L € L(Ec, L((E), (E))) satisfying [L(€),0:) =
0 foranyé € Ec andt e T.

For the uniqueness we only mention the following

Proposition 3.7 Let L € L(Ec,L((E),(E)*)), M € L(Ec,L((E),(E))) and ¢ € C.
Assume that [M(£),0,] =0 forany £ € Ec and t € T. If

/TL(t)atdt +/Tat M*(8)dt + I =0,

then o '
/TL(t)atdt =0, /Ta, M*#)dt =0, c=0.

Remark. Note that
/T Lt)ddt =0, L e L(Ec,L((E),(E)"),

does not imply L = 0. For example, consider L(t) = £(t) D, —n(t)D, with some £, 7 € Ec.

4 Quantum Hitsuda-Skorokhod integrals

In this section we consider a particular case where

2
T =R, A:1+t2-;?, E = S(R).

According to the general theory established in the previous section one obtains a gener-
alized integral kernel operator:

[orLwa,  Le (e, L(B),(E))).
In this section we should like to introduce a “stochastic integral” of the form:

t
/()B:L(s)ds, t>0.
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For that purpose L should possess a stronger property that L is continuously extended
to a linear map from E¢ into L((E),(£)*). Note the natural inclusion relation

L(Ec, L((E),(E)")) C L(Ec, L((E), (E)7))-

For L € L(E¢, L((E),(E)*)) we write L, = L(6,) for simplicity. Then {L,} is regarded
as a quantum stochastic process with values in L((E), (E)*).

Lemma 4.1 Let L € L(E¢, L((E),(E)*)). Then for any f € E¢ there exists an operator
M; € L((E),(E)*) such that

(Msde, dn)) = (L(fM)e, ¢0)),  &m € Ec.
Moreover, f — M; is continuous, i.e., M € L(Eg,L((E),(E)")).
PROOF. First note that, for any p > 0 there exist ¢ > 0 and A,, > 0 such that
|€n|pSAP1QI§Ip+qlnlp+q’ gvneE‘C-
Then, by duality we obtain
]fnl—(p-{-q) S Apyqlf]—pl”lp-]-q’ 77 e EC’ f e Eé' (19)
On the other hand, using the canonical isomorphism
L(E¢, L((E), (E))) = L(EE, ((E) ® (E))),
which comes from the kernel theorem, we find L* € L((E) ® (E), Ec) such that
(L(NS ¥) = {f, L"(6@Y), feEs é9€(E).
By continuity, for any p > 0 there exist ¢ > 0 and B,, > 0 such that
L (6@ Y) |, < Bogll $llpg ¥ llpsgr 659 € (E). (20)
We now consider
O(&m) = (L(fm)de, n)) = (F1, L™(¢¢ ® ¢n)) -

Suppose p > 0 is given arbitrarily. Take ¢ > 0 with property (19). In view of (20) we
may find r > 0 such that

106, M < 1f1_(p4q) | L7(86 ® b3) |4,
Apgl f I—p |n lp+q Bpygr || 8¢ “p+q+r Il #n “p+q+r

IA

. 1
S ApaBorart | £ 1y 10 lpgrr 50 5 (1€ Bagir + 10 Bgr)
Consequently, for any p > 0 we have found constants C > 0, K > 0 and s > 0 such that

Os&mI <ClfIexpK (160, +1nl2.), feE: &neEe (21)



165

Hence by the characterization theorem (Theorem 3.1), for any f € Eg there exists an
operator My € L((E), (E)*) such that '

(Mg, ¢al) = Os(§,m) = (L(f0)¢e, $a)),  &,m € Ec.

Obviously, f ~— M; is linear. Inequality (21) implies the continuity on the Hilbert space
{f € E¢;1 f|_, < oo}. Since Eg is the inductive limit of such Hilbert spaces, we conclude
that M € L(Eg, L((E),(E)*))- qed

The operator M; constructed above is denoted by

M, = /T F(5)07 Lods.

In particular, for f = 194 we write
t
0, = / arLyds, t>0,
0

which form a one-parameter family of operators in L((E),(E)*). This is called a quan-
tum Hitsuda-Skorokhod integral with values in L((E),(E)*). To be sure we rephrase the
definition:

(20¢, ¢0)) = (L(Lpgm)de, &), &m € Ec. (22)

It is interesting to observe how our operator-valued process {{2;} generalizes the classical
Hitsuda-Skorokhod integral of which definition we shall review after [2] quickly. Let
P, € (E)*, t > 0, be given. Since d; € L((E)*, (E)*) for any t, for any ¢ € (F) one
obtains a function: ¢t > ((0;®,, ¢)). Assume that the function is measurable and

[0, hids <o, 120,

Then there exists ¥, € (E)*, t > 0, uniquely such that

W, ) = [ (@0, 8) ds,  pe (B)

The above obtained ¥, is denoted by
t
U= [ 0P, d
t /0 s S

and is called the Hitsuda-Skorokhod integral. The Hitsuda-Skorokhod integral coincides
with the usual Itd integral when the integrand {®;} is an adapted L?-function with respect
to the filtration generated by the Brownian motion

Bi(z) = <l', 1[0,t]> , ze E*, t>0.

We need one more remark. Each & € (E)* gives rise to a continuous operator in
L((E),(E)*) by multiplication since (¢, ) — ¢ is a continuous bilinear map from (E) x
(E) into (F). This identification extends to a natural inclusion relation:

L(EE, (E)7) C L(EE, L((E), (E)"))-
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Given & € L(Eg,(E)*) let & denote the corresponding element in L(Eg, L((E), (E)*)).
Then one has a quantum Hitsuda-Skorokhod integral:

t
0, = / :d.ds, >0, (23)
0
as well as the classical Hitsuda-Skorokhod integral:
t
v, = / o:d.ds, >0 (24)
0

In fact, since the both maps t — ¢, € E* and t — 0,¢ € (F) are continuous, so is
— ((0;®,, ). Therefore ¥, is well defined.

Theorem 4.2 For any® € L(EE,(E)*) let £2, be the quantum Hitsuda-Skorokhod integral
defined as in (23) and let ¥ be the classical Hitsuda-Skorokhod integral defined as in (24).
Then, it holds that

U = -Qtff)o, t >0,

where ¢g is the Fock vacuum.
PROOF. By definition (22) we have

(2o, ¢n)) = << (1jo,9m) %o, ¢n>> << 10,497)> ¢,,>>.

In terms of the adjoint operator &* € L((E), E¢) the last expression becomes

{(2(1047), ¢0) = (g, 97¢,) = / §)(@°8,)(s)ds

Moreover, note that

1(s)(@7dn)(s) = n(s) (s, D*dy) = n(s) (D(6:), ¢n))
= (8(d:), 0:6n)) = (0;2s, 4n)) -

Consequently,
t
(2uto, &) = [ (5:0., 6. ds = (&, ),
and we come to 2,0y = ¥, as desired. qed
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