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81 What is Information Dynamics

Information dynamics was proposed in [0.4] to study several dynamical systems
with complexity. Information dynamics is a syntheis of the dynamics of state change
and the theory of complexity.

1.1 Dynamics

Almost all systems are described by states and their dynamics are considered as
the state change.
Symbolically, almost all systems are divided into three parts such as

(I1) - —(I1I)
Transformation Output
system system
(channel) —

(chart 1)
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(Chart 2)
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In the above chart 2, (I)(= (A) + (B)) corresponds to an input system, (II) (=
(B) + (C) + (D)) does to a transformation (channel) system (III) (= (D) + (E)) to
an output system. More complex systems are constructed from this first structure.

A “naked” state (A) is artificially processed or controlled to a “dressed” state, and
it is suffered to change by a physical (natural) transformation, and it is again artificially

processed and controlled. The fundamental part of the process for this state change is
obviously “A —- C— E”.

1.2 The outline of state change without mathematical details

Let an input dynamical system and an output dynamical system be described by
(A,8,a) and (A, &, @), respectively. Here A is a set of all objects to be observed and &
is a set of all means getting the observed value for each element A in A, and a describes
an inner evolution of the input system. We call & a “state space” here. Same for the
output system (A, S, @). Thus we may say

[Giving a mathematical structure to input and output triples = Having a theory].

For instance, to non-mathematical frame (A, 6, a(G)), a speculation containing classi-
cal system and quantum system is the C*-system.
Let (A, &, «) input system with I € A and (A, S, @) output system with T € A.
A map A* : & — & is called a channel, which gives us a bridge between two
systems. Let us consider a subset S of &, called reference system, in which we can
perform the observation.

A*
S(A) — channel — S(A)

xample

S(A)® S(B) i S(A) ® S(B)

1.3 Examples
(1) Causal system:

(I ... z € R™

(Il) ... & = f(z) or ®, generated f.

(IIT). .. z(t) = ®4(z(0)), P : generated by f.

Remark: If z(¢) can not be obtained directly, then examines the properties of f and find

some proper approximation to obtain ®,.
= Chaotic system

(2) Signal transmission: 3
(I) ... causal signal z(t) = coding z,.
(by e.g., Shannon’s sampling theorem, i.e, Fourier transformation + cut off)
(II) ... some transformation y, = f(z,).
(III)... Interpolation (Inverse Fourier transformation)

Yn — y(1).
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(3) Discrete systems:

(I) ... input probability distribution
p={p1,...,pn} of events X = {z1,...,2,}.

(II) ... transition probability (p(i]7))

(III)... output probability distribution

q = {ai};9i = 2; p(il5)p;-

(4) Continuous systems:

(I) --- probability measure p on measurable space (£, F).
(II) --- Markov kernel

A:QxF—[0,1] s.t.

Mz, ) € P(Q) and M(-, A) € M(Q).
() - 7= fy Me, )

(5) Quantum system 1:

(I) --- z € H (Hilbert space)
(II) --. unitary group U or semigroup V etc.
(III)--- y=Uzor Vz € H.

(6) Quantum system 2:

(I)  --- density operator p € T(H)4 1.
(I) --- A* = AdU or AdV.
(II) --- 7= A*p.

(7) C*-system containing all above.
(I) -+ (A 6,a(G)) input system.
(4,6,a(G)) output system.
(II) --- A*:6(A) - 6(A) a dual map of completely positive map.
(1) .- B = A*p.

1.4 Complexities of a state (or system) ¢
Another speculation of information dynamics is complexity associated with two
systems. The complexities satisfy the following properties:
Let (A, &1, a(G)), (Az, G2, a?(G)) be two systems and (A, S, a(G)) be the com-
pound system such that 4 = A; @ A,, and A* be a channel from &; to &,.
(i) For any state p € S C &;, C5(p) >0
and T(p; A*) > 0.
(ii) For any bijection j from ex&; to ezS,, (or 3 bijection

j:6 —6)

(i (p)) = C5(p)
T (j(p); A%) = TS(g; A).

(iii) Forany 2 € S CS,put p =@ [ A, €S
=STAandy=0[ A4, €85 =814,
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C3(®) < CT(p) + C3 ().

Moreover

(iv) 0 < T¥(p; A*) < C¥(o).

(v) T%(p;id) = C5(p), where ”id” is an identity channel from &; to &1; id(p) =
@, V(P € 61.

(Example)

(1) C5(p) = S5(y); entropy of ¢ € S.
T5(p; A*) = I5(p; A*); mutual entropy.

(2) Evolution measure for genes.
(3) Some fractal dimensions for a state ¢.

(4) Chaitin’s complexity of a sequencial state.

The information dymanics is described by

(4,6,a(G);A,6,a(G); A*; C5(), TS (p; A*))

and some other functions (relations) R.

Therefore, for each system of interest, we:
(1) mathematically determine
A, 6,0(G); A, 6,a(G),
(ii) choose A* and R, and
(iii) define C%(¢), TS(p; A%).

Once we set the above (1) ~ (iii) in general quantum system (GQS), then our theory
contains almost all (scientific) systems and we apply this general frames to the following
topics.

(1) Study of optical communication processes.

(2) Formulation of fractal dimensions of states, and study of complexity for some
sequences.

(3) Define genetic matrix and costruction of phylogenetic tree of evolution of species.

(4) Study of recognition processes. '

In the next section, we a bit more explain two of the above fundamental objects in GQS,
channel A* and complexities C, T. In §3, we apply general frameworks to formulate
the fractal dimensions of states.

§2 Channel and Complexities

2.1 Channel and Lifting [A.1]
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Let (4, 6, aj be an input system and (A, &, @) be an output system. Very often
A=A 6=6,a=a0a.

A map A* : & — & is called “a channel”. Furthermore

(1) A* is a “linear channel”if A* is affine.

(2) A* is a “completely positive channel”if A : A — A satisfies
> BIA(AfA;)B; 20
ij=1

for any n € N, any B; € A and any 4; € A A “lifting”from A to A® A is a continuous
map such as

£ :6(A) - B6(AR A)

A lifting £* is said to be “nondemolition”for a state ¢ if
(E*0)(ARI) = p(A) for VA € A.

Given a lifting £*, we can construct channels
A*:6 -6 _ : o
. by A*p(A)=(E*)(IQ@ A),VA € A
A:6—-6
by A p(A) = (E*0)AQT),YA€c A

Given a channel A* : & — G and ¢ € S C G, take a certain decomposition such that
¢=/ww
S

Erp = / w® A*wdp  (compound state)
s

Then

is a nonlinear nondemolition lifting.

Examples of channels and liftings

Let be p = > Appn be a certain decomposition.

(1) Unitary evolution:

p— Ap=UlpUnt ER=Ep=Y Anpn®A"p

where Uy is a unitary operator U; = exp(itH)
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(2) Semigroup evolution:
P Np=VipVe = E9=) Aupn® Apn
where {V;; t€ Rt} is a one parameter semigroup on H.

(3) Measurement: Measure A = 5 a,P, (spectral decomposition) in a state p,

p—Ap= ZPinn =& = Z AnpPn ® A py,.
n

(4) Reduction (Open system dynamics):

interaction
S(H) — &(K)
w w
P o

Efp=06,=U(p® o)V,
p — Afp = trxb,.

For (3) and (4), A: observables of a system, A : observables of a apparatus. Given £*
(interaction between two systems) = A* and A* are obtained = A*¢p; state of the
system; A*p; state of the apparatus.

(5) Isometric lifting

V:H; = Hy @ H, isometry (V*V = Iy,)

E*p=VpV* Vp € 6(H,)

(6) Optical communication channel [0.1, O.2, O.8]:

(Noise) (K ;)(density operators on K;)

!
(‘5(7‘(1) S5p — p = A*p € G(Hz)
!
(Loss) 6(K>)

Let v € 6(K;) be a state representing the noise and a, m, v be the following
maps: (1) a: B(H;) — B(H2 ® K2) given by a(A) = AQI for any A € B(H;), (2) 7 :



186

B(H, ® K2) — B(H; ® K1) completely positive with (1) =1, (3) v : B(H1 ® K1) —
B(H;) by v(Q) = trx,vQ for any Q € B (H; ® Ky).

A=~omoa.

Then

A*=a*on*oy*

or equivalently,

A*p = ter”r*(p ® I/),Vp € G(Hl)
When Hy = Ho = H, K1 = Ky =K,

E*:pe6(H) - " (p@v) € B(H®K)

is a lifting, and

Ap=tri&*p.

2.2 Examples of Complexities
Let (4,6, a(R)) be a C*-dynamical system and S be a weak* compact and convex
subset of &. Take a decomposition of ¢ such that

¢=/ww
S

and let M5(p) be the set of all decomposition measures u of ¢. Set

Ti(p; A*) = /SS(A*wIA*so)du

where S(-|-) is the relative entropy. Then the examples of two complexities are defined

by

T3 (i 8%) = supd | S(AwIAp)dii 1 € M)}
C(p) = T%(p;1d)
The above id is an identity channel from & to &.
In particular, let A = B(H) and & = T(H)4,1, ¢(-) = trp-, S = & and M5(p)

is the set of all extremal decompsitions of p. Then the entropy S(p) and the mutual
entropy I(p; A*) become two complexities ;

T(p; A™) =1(p; A7)
C(p) = S(p) = —trplogp
The above mutual entropy is defined by
I(p; A")( = I(p; A7)
= sup{lg(p; A*); E = {Ea} of p},
Ig(p; A*) = S(oglog) = trop(logog — log oy),
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where 09 = pQ A*p, 0g =3, AnEn @ A*E, and p= ) A, E, is Schatten decompo-

sition (one dimensional spectral decomposition).

§3 Fractal Dimensions of States [05]

Usual fractal theory mostly treats geometrical sets [M.1]. It is desirable to extend
the fractal theory so as to be applicable to some other objects. For this purpose, we
introduce the fractal dimension for general states. First we recall two fractal dimensions
of geometrical sets.

<Scaling dimension >

We observe a complex set F built from a fundamental pattern. If the number of
the patterns observed is N(1) when the scale is very rough, say 1, and the number is
N(r) when the scale is 7, then we call the dimansion defined by

_ log(N(r)/N(1))
ds(F) = log(1/r)

the scaling dimension of the set F.

<Capacity dimension >

Let try to cover a set F in the n-dimension Euclidian space R™ by a certain convex
set with the diameter €. If the Smallest number of the convex sets needed to conver
the set F'is N(¢), then we call the dimension given by

. log N(e)
1) = S Tog(1/e)

the capacity dimension (or the e-entropy dimension) of the set F.

These two fractal dimensions become equal for almost all sets in which we can
compute these dimensions.

The ¢-entropy is extensively studied by Kolmogorov [K.1] and his e-entropy is for a
probability measure, which gives us an idea to define the e-entropy for a general state.

3.1 e-entropy in GQS

Kolmogorov introduced the notion of ¢-entropy in probability space (£, F, p). His
formulation is as follows: For two random variables f,¢g € M(2), the mutual entropy
I(f,g) is defined by the joint probability measure s, and the direct product measure
pf ® pg such that '

I(f,9) = S(.Uf,y’ pr® Ng)

The e-entropy for a random variable f is given by

S(f,9) =inf{I(f,9); g € Ma(f,€)}

where My(f,e) = {g € M(Q); /[, d(f,9)%du < +oo} with the distance d(f,g) be-

tween f and g.
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Let C be the set of all channels and define two sets;

Ci(A*; ) ={T* € C;T%p = A*p},
Cap;e) ={T" € G|l ¢ —T*p || < e},

Then the e-entropy of a state w.r.t. S is defined by
S5(p5€) = inf{I5(p; A*); A* € Ca( 5 )},
where
I5(p; A*) = sup{T*(p;T*); T* € C1(A*; 9)}-

We denote S®(¢; ) by S(; €) in the sequel for simplicity. When T equals to the mutual
entropy, the e-entropy is called a Kolmogorov type.

Theorem

(1) If A=C(Q),p = pg with a random variable f and T is a classical mutual entropy,
then S(¢;¢) = S(f;€) of Kolmogorov.

(2) S(p) is a complexity and S(yp;e€) is a transmitted complexity.

3.2 Fractal Dimensions in GQS
The capacity dimension of a state ¢ w.r.t S is defined by

dZ(p) = lim dZ(p;e),

where

d3(p;€) is called the capacity dimension of e-order. The information dimension of a
state ¢ for S of ¢ order is defined by

S$5(p;€)
I(e) ~’

where I(¢) is a certain normalization constant function in the limit ¢ — 0 such as

df (p;e) =

lim I(e) = $°(¢)

Some Applications
In a classical system, we put

P &) = S(P;e¢)
P19 = T
a(P) = 2133) a(P; ¢)
B(P;e) = 2B (5(py=c(P))

S(P)
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for a probability distribution P. Some computations of the fractal dimensions « and 3

are listed below.

We consider the case consisting of four events such as DNA sequences, say P =

{pr; £=1,2,3,4}, in which ¢ is ;i- but can not be 0.

(m=4,n=19)

S(P) =
B(P;2/n) =

(m=4,n=20)

S(P;%: )

1.1476
1.0397
0.9743
0.9003
0.8010
0.7356
0.7270
0.6616
0.5623
0.3768
0.3804

B (P;1)
0.8278
0.7871
0.7760
0.7422
0.7402
0.6852
0.6992
0.6791
0.6246
0.5122
0.5488

State P S(P)
(3 3,1) 1.3863
(3,4,4,3) 1.3200
(%,2,4 1) 1.2555
(3,15,1, 1) 1.2130
(2,3,1,0) 1.0822
(2,3,%4,4) 1.0735
(3,3,3,0) 1.0397
(1,2,1,0) 0.9743
(2,1,10) 0.9003
(2,%,£,0) 0.7356
(3,%,0,0) 0.6931
(£,2,0,0) 0.6616
(2,%2,0,0) 0.5623
(%,%,0,0) 0.3768
6 6 6
P={y% 191 w0
1.2470 S(Q) =

0.8788  B(Q;2/n) =

6 6
P55 5%
1.0889
0.8558
P= (o555 2%
1.1059
0.8530

0.3236 0.4891
0.2035 0.3619

0 0

9 4 4 2

Q=113 19° 179 10’
1.2470
0.8628

12 4 2 2

Q_{Q_O’gﬁ’%’%}

1.0889

0.8381

12 3 3 2

Q‘{%;%)%)%}

1.1059

0.8406



190

(m=4,n=21)
9 8 3 1 12 3 3 3
{21 21’21’ 21} Q= {21 21’21’ 21}
1.1537 1.1537
0.8658 0.8545
(m=4,n=22)
9 8 4 12 4 3 3
P=135%3 22} Q= {22 22722’ 22}
1.1840 1.1840
0.8752 0.8647
(m=4,n=23)
9 8 5 1 12 5 3 3
P= {23 23’23’ 23} Q= {23 23’23’ 23}
1.1537 1.1537
0.8658 0.8545
(m=4,1=24)
109 5 0 15 4 3 2
{24 24’24’ 24} Q= {24 24724’ 24}
1.1537 1.1537
0.8658 0.8545

Finally, we discuss a noncommutative case. For a density operator p and p' = UpU*
transformed by a unitary operator U, then S(p) = S(p') but S(p; ¢) # S(p'; €),
hence the fractal dimensions with ¢-order of p and p’ are different.

For instance, take

_ /075 0.001 , _ {0.75002 0
=\0001 075 ) P~ 0 0.24998

S(p) = S(p") = 0.562323295
S(p; 0.01) = 0.11130193
S(p'; 0.01) = 0.11112695

then

These discussions show that the fractal dimension of a state is a certain expression
of the complexity, different from that of entropy.
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Information dynamics can be applied to quantum communication [0.4, O.6] and

genetics [0.3, 0.9].
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