姫路工業大・理 赤堀隆夫 (Takao Akahori)

This paper is a survey of deformation theory of CR-structures, which is studied in (A1),(A2),(A3),(Ku),(Mi). Let (V,o) be an n dimensional normal isolated singularity in (C^N, o) . We set

$$M = V \cap S_{\epsilon}^{2N-1}(o)$$

where $S_{\epsilon}^{2N-1}(o)$ is the ϵ - sphere in \mathbb{C}^N . Then we have a real odd dimensional, compact manifold, which is obviously real analytic. Furthermore, over this M, a CR-structure is naturally induced from V. By Rossi(see (R)), this CR-structure $(M,^0T^n)$ determines the normal isolated singularoty (V, o), uniquely. Kuranishi noted this point, and in order to study deformation theory of isolated singularities, he initiated deformation theory of CR-structures. This method is improved by (A3),(Mi). Namely, in (A3), it is shown that there is a versal family $(M,^{\phi(t)}T^n)$ which satisfies that $\phi(t)$ is a \mathbb{C}^k element of $\overline{^0T^n} \otimes (^0T^n)^*$ valued form, which depends on t, complex analytically, and $\phi(o) = 0$. Later, Miyajima proved that $\phi(t)$ is actually \mathbb{C}^{∞} in (Mi). Now our $\phi(t)$ satisfies the following non-linear partial differential equation.

$$\overline{\partial}_b \phi(t) + \overline{\partial}_b^* R_2(\phi(t)) = \Box_b \mathcal{L}(\sum_{i=1}^q \beta_i t_i)$$

 $t = (t_1, ..., t_q)$, $\{\beta_i\}_{1 \le i \le q}$ is a base of $\mathbf{H}_{T'}^{(1)}$, $\mathbf{q} = \dim_C \mathbf{H}_{T'}^{(1)}$, (for notations, see (A3)). This non linear equations'principal part is sub-elliptic, and we note that in the non liner term, only $X\phi(t)$, $XY\phi(t)$, where X,Y in ${}^{0}T" + {}^{\overline{0}}T"$, terms appear. Of course if there is no non linear term in this equation, the solution must be real analytic (M being real analytic, so real analytic hypo-ellipticity holds)(see (Tar1),(Ko)). In our case, as the non linear term is quite suitable(it doesn't include $XT\phi(t)$ term and $TT\phi(t)$ term, where X in ${}^{0}T" + {}^{\overline{0}}T"$ and T is the missing direction), it is natural to expect the same result as in the elliptic case. Hence it is quite natural to follow the Tartakoff's method, which

Typeset by \mathcal{AMS} -TFX

succeeded in the linear sub-elliptic case. Following the Tartakoff's method in the non linear case, we are forced to control $(XY\phi(t))\phi(t)$ term, where X in ${}^{0}T" + {}^{\overline{0}}\overline{T"}$. However, instead of the standard L^{2} norm, if we use the $\| \|_{(m)}^{"}$ norm(see Sect.1 in this paper), we have

$$\|(XY\phi(t))(\phi(t))\|_{(m)}^{"} \leq C_{m}\|XY\phi(t)\|_{(m)}^{"}\|\phi(t)\|_{(m)}^{"}, (n \leq m)$$

and moreover, our norm dosen't cause so much problem to control $||T^r \phi(t)||_{(m)}^n$ and

 $||W^{I}T^{r}\phi(t)||_{(m)}^{"}$ where W in ${}^{0}T^{"} + \overline{{}^{0}T^{"}}$ (namely, the Tartakoff's method is also valid in our norm). Therefore the real analytic hypo-ellipticity is now trivial.

Sect.1. CR - structures and E_i structures

We consider an n dimensional isolated singularity (V, o) in (C^N, o) , and study this singularity from the point of view of CR-geometry. For this, we set a real analytic function on C^N ,

$$r(z) = \sum_{i=1}^{N} |z_i|^2 - \epsilon,$$

where $\epsilon > 0$ is chosen sufficiently small. Set

$$M = \{ x ; x in M, r(x) = 0 \}.$$

On M, a CR structure is naturally induced from C^N . That is to say,

 $S = \{ X ; X \text{ in } C \otimes TM \cap T'C^N |_M \}.$

In this paper, instead of $\overline{{}^{0}T^{"}}$, we use the notation S. Then, our S satisfie

1)
$$S \cap \overline{S} = 0, f - \dim_C(C \otimes TM/(S + \overline{S})) = 1$$

2) $[\Gamma(M, \overline{S}), \Gamma(M, \overline{S})] \subseteq \Gamma(M, \overline{S})$

The pair (M,S) satisfies 1) and 2) is called a CR structure. Now in our case, obviously, M is real analytic and also the induced CR structure is also real analytic. Next we set a supplement real vector field ζ by;

$$\zeta$$
 = the dual vector of the real 1 form $\sqrt{-1}\partial r$

So

$$(1.1) C \otimes TM = S + \overline{S} + C\zeta$$

Next we recall E_j structures, introduced in (A3). For this, we set $T' = S + C\zeta$. And set a first order differential opeator $\overline{\partial}_{T'}$ from $\Gamma(M, T')$ to $\Gamma(M, T' \otimes (\overline{S})^*)$ by; for u in $\Gamma(M, T')$,

$$\overline{\partial}_{T'}u(X) = [X,u]_{T'}$$

for X in $\Gamma(M, \overline{S})$, where $[X, u]_{T'}$ means the T'-part of [X, u] according to (1,1). And like the case for scalar valued forms, we have

$$\overline{\partial}_{T'}^{(p)} ; \ \Gamma(M,T' \otimes \wedge^p(\overline{S})*) \longrightarrow \ \Gamma(M,T' \otimes \wedge^{(p+1)}(\overline{S})*), \ p = 1,2, \dots$$

Now we set

$$\Gamma_p = Ker \ \overline{\partial}_{T'}^{(p)} \cap \Gamma(M, S \otimes \wedge^{(p)}(\overline{S})*) .$$

Then there is a subbundle E_p of $S \otimes \wedge^p(\overline{S})$ * satisfying;

$$E_0 = 0 ,$$

$$\Gamma_p = \Gamma(M, E_p)$$

And

$$\overline{\partial}_{p}^{(p)}\Gamma(M, E_{p}) \subset \Gamma(M, E_{(p+1)})$$

$$Ker \ \partial_{b}^{(1)} \longrightarrow H^{(1)}(M, T') \longrightarrow 0$$

$$\frac{Ker \ \overline{\partial}_{b}^{(p)}}{Im \ \overline{\partial}_{a}^{(p-1)}} \simeq H^{(p)}(M, T') , \ 2 \le p \le n-1$$

where $\overline{\partial}_{b}^{(p)} = \overline{\partial}_{T'}^{(p)}|_{\Gamma(M,E_{i})}, \dim_{R}M = 2n-1, \dim_{C}^{0}T^{"} = n-1.$ (In (A1),(A2) and (A3), we used different notations. However, in this paper, for the reader's convenience, we dare to use $\overline{\partial}_{b}^{(p)}$). And if $n \geq 4$,

$$\Gamma(M, E_i) \xrightarrow{\overline{\partial}_1} \Gamma(M, E_2) \xrightarrow{\overline{\partial}_2} \Gamma(M, E_3)$$

is a subelliptic complex and several important estimates are proved in (A3). We recall this. For this, we set a real 1 form θ by

$$\theta|_{S+\overline{S}} = 0 \\ \theta(\zeta) = 1$$

And we set $\omega = -d\theta$, and then we have the Levi metric. From this metric, we define the volume element dv, and we set the L^2 norm on $\Gamma(M, E_p)$ by

$$(u,v) = \int_M \langle u,v \rangle dv \text{ for } u,v \text{ in } \Gamma(M,E_p)$$

where \langle , \rangle means the hermitian inner product induced from $\Gamma(M, S \otimes \wedge^p(\overline{S})^*)$. We denote $\overline{\partial}_b^*$ by the adjoint operator of $\overline{\partial}_b$ on $\Gamma(M, E_p)$ with respect to the above metric. And we set the Laplacian

$$\Box_b = \overline{\partial}_b^* \overline{\partial}_b^* + \overline{\partial}_b \overline{\partial}_b^*.$$

For u in $\Gamma(M, E_p)$, we set

$$\| u \|_{(m)}^{2} = \sum_{i=0}^{m} \| \Box_{b} u \|^{2},$$
$$(u,v)_{(m)}^{n} = \sum_{i=0}^{m} (\Box_{b}^{i} u , \Box_{b}^{i} v) foru, v in \Gamma(M, E_{p}).$$

Then, we easily have Lemma 1.1

$$(\overline{\partial}_b u, v)_{(m)}^{"} = (u, \overline{\partial}_b^* v)_{(m)}^{"}$$
 for u, v in $\Gamma(M, E_p)$

Namly, $\overline{\partial}_b^*$ is also the adjoint operator of $\overline{\partial}_b$ with respect to $\| \|_{(m)}^{"}$. Furthermore by the result(see Proposition 3.3 in (A2)) with the standard argument, we have **Lemma 1.2** For u in $\Gamma(M, E_p)$,

$$|| WWu ||_{(m)}^{"} \leq C_{m} || u ||_{(m+1)}^{"}$$

We must explain notations. Let $\{U_i, h_i\}_{i \in I}$ be a finite set of local coordinate neighborhoods of M. And let $\{\rho\}_{i \in I}$ be a partition of unity subordinate to this covering. Let $\{Y_{j,k}\}_{1 \leq j \leq n-1}$ be an orthonormal frame of \overline{S} over U_k according to the Levi metric defined by (1.1). With this preparation, the above inequality means; for u supported in U_k ,

$$\| W_{\alpha,k} W_{\beta,k} u \|_{(m)}^{"} \leq C_m \| u \|_{(m+1)}^{"},$$

where $W_{\alpha,k}, W_{\beta,k} = Y_{j,k}$ or $\overline{Y}_{(j,k)}, 1 \leq j \leq n-1$. And henceforth, for this $W\alpha, k$, we use the abbreviation W. Assume the $;dim_R M = 2n-1 \geq 7$. Then, **Estimate** (I)

$$|| u || \leq C\{|| \overline{\partial}_b u || + || \overline{\partial}_b^* u || + || u ||\}, \text{ for } u \text{ in } \Gamma(M, E_2)$$

(see Theorem 4.1(new estimate) in (A3)). Then by the standard argument, we have the Neumann operator N_b for the above differential complex $(\Gamma_p, \overline{\partial}_b^{(p)})$. And so, we have the Kodairaodge type decomposition theorem for this complex, namely

 $u = H_b u + \Box_b N_b u$, for u in $\Gamma(M, E_2)$,

where H_b means the projection of u into

 $\{ u ; u \text{ in } \Gamma(M, E_2), \overline{\partial}_b u = 0, \overline{\partial}_b^* u = 0 \}.$

Estimate (II)

 $|| u || \leq C' \{ || \Box_b u || + || u || \}$ for u in $\Gamma(M, E_2)$.

We note that $\| \|^{"}$ norm is the same as $\| \|^{"}_{(o)}$ norm introduced in this section. Estimate (III)

$$\| W_{\alpha,k}(\rho u) \|_{(m)}^{2} + K \| \rho u \|_{(m)}^{2} \leq C_m \{ \| \overline{\partial}_b(\rho u) \|_{(m)}^{2} + \overline{\partial}_b^*(\rho u) \|_{(m)}^{2} \} + C'_m \| \rho u \|_{(m)}^{2},$$

where $W_{\alpha,k} = Y_j$, k or $\overline{Y}_{j,k}$, and $\rho \in C^{\infty}$ is supported in U_k . Finally in this section, we note that there is a real analytic real vector field T on M satisfying;

1)
$$T_p \notin S_p + \overline{S}_p$$
 for every point p of M,
2) $[T, Z] \equiv 0 \mod S + \overline{S}$ for all $Z \in \Gamma(M, S + \overline{S})$,

(see Proposition 1 in (Tar)). So, using this T, we newly introduce a C^{∞} vector bundle decomposition

$$(1.2) C \otimes TM = S + \overline{S} + C \otimes T$$

and also introduce corresponding operators $\overline{\partial}_{T'}, \overline{\partial}_{T'}^{(p)}$. Then, the complete same results hold, and the same estimates hold. From now on, we adopt these. And following (Tar1), we set $W = S + \overline{S}$.

Sect.2 The canonical versal family

In this section, we recall the construction of the canonical versal family ((A3)). Namely, we set $\Gamma(M, S \otimes \overline{S}^*)$ valued power series

$$\phi(t) = \sum_{K=(K_1,...,k_q)} \phi_K t_1^{k_1} t_q^{k_q}$$

where $t = (t_1, ..., t_q) \in U \subset C^q$, and U is a neighborhood of the origin, and K is a muli index, $q = \dim_C \mathbf{H}_T^{(1)}$. For brevity, we abbreviate this as follows.

$$\phi(t) = \sum_{K} \phi_{K} t^{K}$$

Now we recall the construction of $\phi(t)$. By the Banach inverse mapping theorem, we solve $\phi(t)$, namely $\phi(t)$ is a unique solution of the following.

$$\phi(t) + \overline{\partial}_b^* N_b R_2(\phi(t)) = \mathcal{L}(\sum_{i=1}^q \beta_i t_i), (t_1, ..., t_q) \in U \subset C^q,$$

where N_b is introduced in (A3), and $\{\beta_i\}_{1 \leq i \leq q}$ is a base of $\mathbf{H}_{T'}^{(1)}$. It is better to explain \mathcal{L} , introduced in (A2). For v in $\Gamma(M, T' \otimes \overline{S}^*)$, we set

$$\mathcal{L}v(X) = v(X) - \overline{\partial}_T \theta_v(X), \text{ for } X \in \Gamma(M, \overline{S}),$$

where θ_v is an element of $\Gamma(M, S)$ defined by;

$$[\theta_v, X]_T = (v(X))_T$$
 for X in $\Gamma(M, \overline{S})$,

where $[\theta_v, X]_T$ (resp. $(v(X))_T$) means the $C \otimes T$ part of $[\theta_v, X]$ (resp. (v(X))) according to (1.2).

Sect.3 The real analyticity

As we recalled in Sect.2, $\phi(t)$ satisfies

$$\phi(t) + \overline{\partial}_b^* N_b R_2(\phi(t)) = \mathcal{L}(\sum_{i=1}^q \beta_i t_i).$$

Hence we have

$$\Box_b \phi(t) + \Box_b \overline{\partial}_b^* N_b R_2(\phi(t)) = \Box_b \mathcal{L}(\sum_{i=1}^q \beta_i t_i),$$

namely

$$\Box_b\phi(t) + \overline{\partial}_b^*R_2(\phi(t)) = \Box_b\mathcal{L}(\sum_{i=1}^q \beta_i t_i).$$

We must show that this $\phi(t)$ is real analytic. We follow the Tartakoff's line in (Tar1) and we adopt his notations. Let p_o be the reference point of M. Let $U_1(p_o)$ be a sufficiently small neighborhood of p_o in M, and $U_2(p_o)$ be a neighborhood of p_o satisfying; $U_1(p_o) \in U_2(p_o)$.

Now we show that there are constants C_1 and C_2 which satisfy; there is a $\epsilon > 0$, and for every q, there is a C^{∞} function ψ_q supported in $U_2(p_o)$ and $\psi_q|_{U_1(p_o)} = 1$ satisfying;

(*)
$$\| \psi_q Op(q)\phi(t) \|_{(m)}^{"} \leq C_1 C_2^q q!$$
, for any t in $(0,\epsilon)$

Here Op(q) denotes the q-th order differential operator formed by T, W_j in W. If this is proved, by the Sobolev lemma, for every q,

$$Sup_{U_1(p_o)} | Op(q)\phi(t) | \leq c || Op(q)\phi(t) ||_{(m),U_1(p_o)}^{"}, \ (m \geq n),$$

where $\| \|_{(m),U_1(p_o)}^{"}$ means the corresponding norm over $U_1(p_o)$. So

$$Sup_{U_1(p_o)} | Op(q)\phi(t) | \leq c || \psi_q Op(q)\phi(t) ||_{(m)}^{"}$$
$$\leq c C_1 C_2^q q!$$

Therefore by Lemma 1 in (Tar1), we have that $\phi(t)$ is real analytic for any t in $(0, \epsilon)$. And by the following lemma, it is shown that $\phi(t)$ is real analytic.

Lemma 3.1 Let u(x,t) is a C^k function on $R^m \times C^n$ $(k \ge 1)$, which is real analytic with respect to x, and complex analytic with respect to t, separately. Then, u(x,t) is real analytic on (x,t).

Proof. We consider the partial complexification of $\mathbb{R}^m \times \mathbb{C}^n, \mathbb{C}^m \times \mathbb{C}^n$. And for a fixed t, we can naturally consider u(z,t) on $\mathbb{C}^m \times \mathbb{C}^n$ for u(x,t). By the assumption, our u(z,t) is complex analytically with respect to respectively z and t. So by Osgood's lemma, our u(z,t) is complex analytic with respect to both variables. So u(x,t) must be real analytic. $\mathbf{Q}.E.D$.

For (*), it suffices to show; there are constants C_1 and C_2 which satisfy; there is a $\epsilon > 0$, and for every q, there is a C^{∞} function ψ_q supported in $U_2(po)$ and $\psi_q|_{U_1(p_o)} = 1$ satisfying;

(**)
$$\| \psi_q W^I T^r \phi(t) \|_{(m)}^n \leq C_1 C^{|I|+r} |I|! r!$$
, for any t in $(0, \epsilon)$.

(see Proposition 1 in (Tar2)). We see the sketch of the proof of (**). In order to see this, we recall several lemmas which were shown in (Tar1), and use his useful notations. Following (Tar1), Op(k,q) denotes a q-th order differential operator formed by concatenating k W's and q-k T's.

Lemma 3.2(Lemma 2 in (Tar1)) For $k \ge 1$, any Op(k,q) may be written sybolically

$$Op(k,q) = WOp(k-1,q-1) + \sum_{j=1}^{q} c^{j} {q \choose j} a_{(j)} Oo(k,q-j), i.e.$$

if there is a W, we may commute it to the left modulo the indicated sum of at most $c^{j} \binom{q}{j}$ terms, c some integer depending only on n, of the form $a_{(j)}Op(k, q-j)$. Lemma 3.3(Lemma 3 in (Tar)) Let a denote any of a finite number of real analytic functions and Z any of a finite number of real analytic vector field. Let $\{a_{(q)}\}$ be recursively defined by;

$$a_{(1)} = any \ of \ the \ a's$$

 $a_{(q+1)} = a_{(1)}a_{(q)} \ or \ Za_{(q)},$

i.e., $a_{(1)}a_{(q)}$ stands for one of the a's timers an expression of the form $a_{(q)}$. Then locally there exists K such that for all α and for all q,

$$|D^{\alpha}a_{(q)}| \leq K K^{(|\alpha|+q)}(|\alpha|+q)!$$

Then, as for our norm, we immediately have Lemma 3.4

$$\| D^{\alpha}a_{(q)} \|_{(m)}^{n} \leq K' K'^{(|\alpha|+q+m)}(|\alpha|+q+m)!.$$

So by choosing a proper K, we have

$$\| D^{\alpha} a_{(q)} \|_{(m)}^{"} \leq K K^{(|\alpha|+q)}(|\alpha|+q)!.$$

Lemma 3.5(Lemma 4 in (Tar1))

$$[T^{r}, \Box_{b}] = \sum_{j=1}^{r} c^{j} {r \choose j} \{ Wa_{(j+1)}W + Wa_{(j+2)} + a_{(j+3)} \} T^{r-j}.$$

Now we begin by estimating $\| \rho W T^p \phi(t) \|_{(m)}^n$ and $\| \rho T^p \phi(t) \|_{(m)}^n$. As for ρ , we use a general partition of unity, and we recall the basic estimate(Estimate (III)). $\| W \rho u \|_{(m)}^{2} + K \| \rho u \|_{(m)}^{2} \leq c_m \{ \| \overline{\partial}_b(\rho u) \|_{(m)}^{2} + \| \overline{\partial}_b^*(\rho u) \|_{(m)}^{2} \} + C_{K,m} \| \rho u \|^2$ namely,

$$\leq c_m \{ \sum_{i=0}^m (\Box_b^i \overline{\partial}_b(\rho u), \Box_b^i \overline{\partial}_b(\rho u)) + \sum_{i=0}^m (\Box_b^i \overline{\partial}_b^*(\rho u), \Box_b^i \overline{\partial}_b^*(\rho u)) \} + C_{K,m} \| \rho u \|^2.$$

So in the place of u in this equality, we put $u = T^p \phi(t)$. Then, we have

$$\| W\rho T^{p}\phi(t) \|_{(m)}^{2} + K \| \rho T^{p}\phi(t) \|_{(m)}^{2}$$

$$(***)$$

$$\leq c_{m} \{ \sum_{i=0}^{m} (\Box_{b}^{i}\overline{\partial}_{b}(\rho\phi(t)), \Box_{b}^{i}\overline{\partial}_{b}(\rho\phi(t)))$$

$$+ \sum_{i=0}^{m} (\Box_{b}^{i}\overline{\partial}_{b}^{*}(\rho\phi(t)), \Box_{b}^{i}\overline{\partial}_{b}^{*}(\rho\phi(t))) \} + C_{K,m} \| \rho T^{p}\phi(t) \|^{2}$$

$$\leq c_{m} \{ \sum_{i=0}^{m} (\Box_{b}^{i}\Box_{b}(\rho T^{p}\phi(t)), \Box_{b}^{i}(\rho T^{p}\phi(t))) \} + C_{K,m} \| \rho T^{p}\phi(t) \|^{2}.$$

The commutator $[\rho, \Box_b]$ does not make troubles so much. In fact, the above can be estimated as follows.

$$\leq c'_{m} \|\rho' T^{p} \phi(t)\|_{(m)}^{2} + \left(\frac{\epsilon}{C}\right) \|\rho W T^{p} \phi(t)\|_{(m)}^{2} + C_{\epsilon} \sum_{j=1}^{p} \tilde{c}^{j} {p \choose j} \{\|\rho a_{(j+1)} W T^{p-j} \phi(t)\|_{(m)}^{2} + \|\rho a_{(j+3)} T^{p-j} \phi(t)\|_{(m)}^{2} \} + \|j^{(1)}(\rho)\|_{(m)}^{n} \|W T^{p} \phi(t)\|_{(m)}^{n} + \|j^{(2)}(\rho)\|_{(m)}^{n} \|T^{p} \phi(t)\|_{(m)}^{n} + \dots + \|j^{(2k+1)}(\rho)\|_{(m)}^{n} \|W T^{p} \phi(t)\|_{(m-k-1)}^{n} + \|j^{(2k+2)}(\rho)\|_{(m)}^{n} \|T^{p} \phi(t)\|_{(m-k-1)}^{n} + \dots + \|j^{(2m-1)}(\rho)\|_{(m)}^{n} \|W T^{p} \phi(t)\|_{(0)}^{n} + \|j^{(2m)}(\rho)\|_{(m)}^{n} \|T^{p} \phi(t)\|_{(0)}^{n}.$$

while these are estimated by

 $(large \ constant) \| j^{(2k+1)}(\rho) \|_{(m)}^{2} + (small \ constant) \| WT^{p} \phi(t) \|_{(m-k-1)}^{2}$ and

$$(large \ constant) \| j^{(2k+2)}(\rho) \|_{(m)}^{2} + (small \ constant) \| T^{p} \phi(t) \|_{(m-k-1)}^{2},$$

(for the notation, see (A2), (A3)). Therefore at most, they are estimated by

$$\left(\frac{C}{\epsilon}\right) \|j^{(2m)}(\rho)\|_{(m)}^{*2} + \epsilon \{ \|WT^{p}\phi(t)\|_{(m)}^{*2} + \|T^{p}\phi(t)\|_{(m)}^{*2} \}.$$

Namely, it does not bother us. Hence we can neglect this. As X is compact, and T is globally defined, for $\rho_i \in C_o^{\infty}$ of small support,

$$\|\rho'T^p\phi(t)\|_{(m)}^{"} \leq \sum_{i=1}^{N} C_{\rho}\|\rho_iT^p\phi(t)\|_{(m)}^{"}.$$

And if $K \ge 2(C_{\rho}C + C^{*})N$ and ρ itself is one of the ρ_i , upon summing this over i, then this error term will be absorbed on the left. Furthermore

$$(\Box_b^m \rho \Box_b T^p \phi(t), \Box_b^m \rho \Box_b T^p \phi(t))$$

$$= (\Box_b^m \rho T^p \Box_b \phi(t), \Box_b^m \rho T^p \Box_b \phi(t)) + (\Box_b^m \rho [\Box_b, T^p] \phi(t), \Box_b^m \rho T^p \phi(t))$$

$$= (\Box_b^m \rho T^p \Box_b \phi(t), \Box_b^m \rho T^p \phi(t))$$

$$+ (\Box_b^m \rho W(\sum_{j=1}^p a_{(j+1)} W T^{p-j} \phi(t)), \Box_b^m \rho T^p \phi(t)) . (by Lemma 3.5)$$

By the same way as in (Tar1), we can handle the second term. So we omit this. We will control the first term.

$$T^{p}\Box_{b}\phi(t) + T^{p}\overline{\partial}_{b}^{*}R_{2}(\phi(t)) = T^{p}\Box_{b}\mathcal{L}(\sum_{i=1}^{q} \beta_{i}t_{i}).$$

And so this term can be estimated by;

$$|(\Box_b^m \rho_i T^p \Box_b \mathcal{L}(\sum_{i=1}^q \beta_i t_i), \Box_b^m \rho_i T^p \phi(t))| + |(\Box_b^m \rho_i T^p \overline{\partial}_b^* R_2(\phi(t)), \Box_b^m \rho_i T^p \phi(t))|.$$

The first term was already handled by (Tar1). We see the second term which didn't appear in (Tar1). The second term becomes

 $\begin{aligned} &|(\Box_b^m \rho_i T^p R_2(\phi(t)), \Box_b^m \rho_i \overline{\partial}_b T^p \phi(t))| + commutator terms \\ &\leq (large \ constant) \|\Box_b^m \rho_i T^p R_2(\phi(t))\|^2 + (small \ constant) \|\Box_b^m \rho_i \overline{\partial}_b T^p \phi(t)\|^2 \\ &+ commutator \ terms. \end{aligned}$

To contro; commutator terms is tedious. But the method is standard. So we omit this. For the non-linear term $T^p R_2(\phi(t))$,

Lemma3.6 If we choose C_1, C_2 sufficiently large, we have

$$||T^{p}R_{2}(\phi(t))||_{(m)}^{"} \leq (\frac{1}{4})C_{1}C_{2}^{p}p!$$
 for every p.

Proof To estimate $T^{p}R_{2}(\phi(t))$, we must estimate $T^{p}\{(W\phi(t))\phi(t)\}$. Namely,

$$T^{p}\{(W\phi(t))\phi(t)\} = (T^{p}(W\phi(t)))\phi(t) + \binom{p}{1}(T^{p-1}(W\phi(t))(T\phi(t)))$$
$$+ \binom{p}{p-1}(T(W\phi(t)))(T^{p-1}\phi(t)) + (W\phi(t))(T^{p}\phi(t)))$$
$$+ \sum_{r=2}^{p-2} \binom{p}{r}(T^{r}(W\phi(t)))(T^{p-r}\phi(t))).$$

Since $\phi(o) = 0$, we can assume that $\|\phi(t)\|_{(m)}^{*}$, $\|W\phi(t)\|_{(m)}^{*}$ are sufficiently small if we choose ϵ sufficiently small. So the first term, the second term, the third term, and the fourth term can be absorbed in the left of (* * *). Now we see how to control the other term. By induction, we see

$$||T^{k}(W\phi(t))||_{(m)}^{"}$$
, $||T^{k}\phi(t)||_{(m)}^{"}$ le $C_{1}C_{2}^{k-2}(k-2)!$ if $k \geq 2$.

k=2 case is OK, if we choose C_1 sufficiently large. We assume k=p-1 case. Now we see p case. By $m \ge n$

$$(3.6.1) \qquad \|\sum_{r=2}^{p-2} {p \choose r} (T^{r}(W\phi(t)))(T^{p-r}\phi(t))\|_{(m)}^{"} \\ \leq \sum_{r=2}^{p-2} {p \choose r} \|T^{r}(W\phi(t))\|_{(m)}^{"} \|T^{p-r}\phi(t)\|_{(m)}^{"} \\ \leq \sum_{r=2}^{p-2} {p \choose r} C_{1}C_{2}^{r-2}(r-2)!C_{1}C_{2}^{p-r-2}(p-r-2)! \\ \leq \sum_{r=2}^{p-2} {p \choose r} C_{1}^{2}C_{2}^{p-4}(r-2)!(p-r-2)!$$

And

$$\sum_{r=2}^{p-2} \binom{p}{r} (r-2)! (p-r-2)! = \sum_{r=2}^{p-2} \frac{p(p-1)(p-2)!}{r(r-1)(p-r)(p-r-1)!}$$

While if $r \leq \left[\frac{p}{2}\right]$, $p - r \geq \frac{p}{2}$, $p - r - 1 \geq \frac{p}{2}$. Hence

$$\sum_{r=2}^{p-2} \frac{p(p-1)(p-2)!}{r(r-1)(p-r)(p-r-1)}$$

$$= \sum_{r=2}^{\lfloor \frac{p}{2} \rfloor} \frac{2p(p-1)(p-2)!}{r(r-1)(p-r)(p-r-1)}$$

$$\leq \sum_{r=2}^{\lfloor \frac{p}{2} \rfloor} \frac{8}{r(r-1)p^2} \times p(p-1)(p-2)!$$

$$\leq 8\frac{p-1}{p}(p-2)!$$

$$\leq 8(p-2)!$$

Hence

$$(3.6.1) \leq (\frac{8C_1}{C^2})C_1C_2^{p-2}(p-2)!$$

So if we choose $\frac{8C_1}{C_2^2} \leq 1$, then we have our estimate. So we can control

$$||T^{p}\phi(t)||_{(m)}^{"}, ||WT^{p}\phi(t)||_{(m)}^{"}.$$

For $||W^I T^p \phi(t)||_{(m)}^n$, $|I| \ge 2$, following the Tartakoff's method, namely using Ehrenpreis's localizing function with careful study of the non-linear term as in Lemma 3.6, we have our estimate.

References

- [A1] T. Akahori, Intrinsic formula for Kuranishi's $\overline{\partial}_{b}^{\phi}$, Publ.RIMS 14 (1978), 615-641.
- [A2] T. Akahori, Complex analytic construction of the Kuranishi family on a normal strongly pseudo convex manifold, Publ.RIMS 14 (1978), 789-847.
- [A3] T.Akahori, The new estimate for the subbundles E_j and its application to the deformation of the boundaries of strongly pseudo convex domains, Invent.math. 63 (1981), 311-334.
- [Ku] M.Kuranishi, Deformations of isolated singularities and $\overline{\partial}_b$, preprint.
- [Ko] G.Komatsu, Global analytic hypoellipticity of the $\overline{\partial}$ Neumann problem, Tohoku Math. J. Ser.2 28 (1976), 145–156.
- [Mi] K.Miyajima, Completion of Akahori's construction of the versal family of strongly pseudo convex CR structures, Trans. Amer. Math. Soc. 277 (1980), 162–172.
- [R] H.Rossi, Isolated singularities, Proceedings of KATATA conference, 1966, pp. 96-102.
- [Tar1] D.Tartakoff, On the global real analyticity of the solution to \Box_b on compact manifolds, Comm. in partial differential equations 4 (1976), 283-311.

[Tar2] D.Tartakoff, The local real analytic solutions to \Box_b and the $\overline{\partial}$ - Neumann problem, Acta. math. 145 (1980), 117-204.

SHOSYA 2167, HIMEJI 671-22, JAPAN

E-mail: akahorit@ sci.himeji-tech.ac.jp