
1

Complexity of Finding Alphabet Indexing

Shinichi Shimozono
下薗真一

Department of Control Engineering and Science,

Kyushu Institute of Technology,

Iizuka 820, Japan

Satoru Miyano
宮野悟

Research Institute of Fundamental Information Science, $\varphi^{\backslash }\backslash \tilde{\prime}-\nu^{V}d_{i}^{-}l^{r^{\backslash },}.\overline{l}^{-\not\simeq}\dot{\prec}\sim$

.

Kyushu University 33,

Fukuoka 812, Japan

Abstract

An alphabet indexing is a mapping from an alphabet Σ to a smaller size
alphabet, such that no essential information is lost from original data strings
over Σ by these replacements of symbols. We define an indexing and analyze
the hardness of finding an indexing for coping with strings over an alphabet
of a large size, such as sequences of amino acid residues representing proteins.
We show the P-completeness of a greedy algorithm that reduces the size of
indexing alphabet and the PLS-completeness of finding an indexing by a local
search algorithm applied for a bioinformatical knowledge acquisition.

Key words: Algorithm and Computational Complexity

1 Introduction

Givena pair of sets of strings, an alphabet indexing isamapping from the alphabet

forming the strings to another alphabet for reducing the number of symbols without

confusing any string in one set with those in the other set. Developing efficient

algorithms for finding this mapping is important to knowledge acquisitions from large

amounts of data consisting of the large number of symbols, such as genome sequences.

This work is partly supported by Grant-in-Aid for Scientific Research on Priority Areas,
“Genome Informatics” from the Ministry of Education, Science and Culture, Japan.

数理解析研究所講究録
第 876巻 1994年 1-15

2

Arikawa et $a1^{(1)}$ developed an efficient machine learning method to find a bioinfor-

matical hypothesis for identifying “transmembrane domains” of proteins. Their

algorithm finds a decision tree over regular patterns for a given pair of positive ex-

amples and negative examples, each of which consist of sequences chosen from trans-

membrane domain regions of proteins and those from the other parts. Moreover,

according to the hydropathy index of Kyte and Doolittle, they classified 20 sym-

bols of amino acid residues into three categories, and then transformed the positive

and the negative examples to those consisting of three symbols. The hydropathy

index of an amino acid residue is a number varying from -4.5 to 4.5, and this is

known to play an essential role in transmembrane domain $identification^{\langle 4)}$. They suc-

ceeded to discover a hypothesis recognizing transmembrane domain sequences with

high accuracy by using the sequences in PIR database.

Inspired by this success, we consider the problem for finding an alphabet indexing.

Let P and Q be the disjoint sets of strings over an alphabet Σ , and let Γ be another

alphabet with $|\Gamma|<|\Sigma|$. An alphabet indexing ψ for $P,$ Q by Γ is a mapping from Σ to

Γ for transforming the strings in P and Q by replacing any symbol $\sigma\in\Sigma$ by $\psi(\sigma)$, such

that the transformation does not produce no strings in both two sets. While Arikawa

et al. have used the hydropathy index of Kyte and Doolittle, we can apply some

algorithm to find an alphabet indexing for the transmembrane domain identification

problem. Even for unknown characteristics of other protein identification problems,

we can expect that the algorithm may discover an efficient alphabet indexing.

From this point of view, we define an alphabet indexing and show that the problem

of finding a consistent indexing by an alphabet of fixed size is computationally hard.

Next we consider another problem for minimizing the size of the indexing alphabet

with retaining transformed sets having no same strings. For this problem we propose

a greedy algorithm and show its P-completeness. Coping with the hardness of these

problems, we consider an approximation scheme for finding an alphabet indexing in

3

section 4. First, we define a pseudo-indexing, which allows some overlaps between

the transformed sets of strings, and a combinatorial optimization problem to find a

good “pesudo-indexing” for data and a learning algorithm as follows:

(1) Any pseudo-indexing is a feasible solution.

(2) The performance measure of an indexing is given by the accuracy of a hypothesis

produced by the learning algorithm for the transformed inputs.

Then we show a local search strategy for searching pseudo-indexing, which has

been developed and succeeded for the bioinformatical $experiments^{\langle 7)}$. We analyze

its computational complexity according to the formulation of the class PLS defined

by Johnson et $a1^{\langle 3)}$ and show the PLS-completeness of a local search version of this

problem. We end with some conclusion.

2 Indexing is intractable

First, we define an alphabet indexing, and show that the problem of deciding whether

the disjoint sets of strings have a consistent indexing or not is computationally hard,

even for by two symbols.

Let Σ and Γ be finite alphabets, and let ψ be a mapping from Σ to F. The

homomorphism $\tilde{\psi}(s)$ for $s\in\Sigma^{*}$ and $\tilde{\psi}(S)$ for $S\subseteq\Sigma^{*}$ are defined by $\tilde{\psi}(s_{1}\cdots s_{n})=$

$\psi(s_{1})\cdots\psi(s_{n})$ and $\tilde{\psi}(S)=\{\tilde{\psi}(s)|s\in S\}$. We denote $\tilde{\psi}(S)$ for $S\subseteq\Sigma^{*}$ by \tilde{S} if

there is no ambiguity. Let $P,$ Q be the disjoint sets of strings over Σ , and let Γ be

an alphabet with $|\Gamma|<|\Sigma|$. Then we say a mapping ψ from Σ to Γ is an alphabet

indexing of Σ by Γ for P and Q if ψ satisfies $\tilde{P}\cap\tilde{Q}=\emptyset$.

Definition 1. Alphabet Indexing Problem.

Instance: A finite alphabet Σ , two disjoint finite sets of strings $P,$ Q over Σ , and an

indexing alphabet Γ with $|\Sigma|>|\Gamma|$.

Question: Is there an indexing of Σ by Γ for P and Q?

4

This condition preserves examples in the positive set and the negative set being

consistent by the transformations. However, unfortunately, the following theorem

holds.

Theorem 1. The alphabet indexing problem is NP-complete, even if the size of the

indexing alphabet is two and the length of strings are bounded to four.

Proof. We give a reduction from 3-SAT to this problem. Given a 3-CNF formula

F with variables $x_{1},$ $\cdots,$ x_{n} and clauses $c_{1},$ \cdots , c_{m} , we build an instance of consistent

alphabet indexing problem $\Pi=(\Sigma, \Gamma, P, N)$ as follows.

(i) $\Sigma=\{x_{i},\overline{x}_{i}|1\leq i\leq n\}\cup\{t, f\},$ $\Gamma=\{0,1\}$.

(ii) Let $c_{j}=(l_{1}^{j}\vee l_{2}^{j}\vee l_{3}^{j})$ be a clause in F . Then $P=\{x_{i}\overline{x}_{i}x;\overline{x}_{i}|1\leq i\leq n\}\cup$

{tftf} $\cup\{l_{1}^{j}l_{2}^{j}l_{3}^{j}f|1\leq j\leq m\},$ $Q=\{x_{i}x;x_{i}x_{i}|1\leq i\leq n\}U$ {ffff}.

Then F is satisfiable if and only if Π has a strictly consistent indexing.

(\Rightarrow) If F is satisfiable, there exists an assignment $b=(b_{1}, \ldots, b_{n})\in\{0,1\}^{n}$ satisfying

F . Then we have an indexing ψ computed as follows: (i) Let $\psi(t)=1,$ $\psi(f)=0$, and

(ii) Let $\psi(x_{i})=b_{i},$ $\psi(\overline{x};)=1-b_{i}$ for all $1\leq i\leq n$.

Since the assignment b satisfies F , we have at least one literal with value 1 for

all clauses. Thus, for any string corresponding to the clause $c_{i},$
ψ maps at least one

of three literal symbols to 1. So the all string $\tilde{\psi}(l_{1}^{:}l_{2}^{i}l_{3}^{i}f)$ in P is not identical to

$\tilde{\psi}(ffff)=0000$ in Q .

(\Leftarrow) If Π has an indexing ψ , we compute an assignment b satisfying F as follows.

If $\psi(t)=1$, then $b=\psi(x_{1}),$
$\ldots,$

$\psi(x_{n})$; otherwise, $b=\psi(\overline{x}_{1}),$
$\ldots,$

$\psi(\overline{x}_{n})$. Since ψ

satisfies $\tilde{\psi}(x_{i}\overline{x}_{i})\neq\tilde{\psi}(x_{i}x_{i}),\tilde{\psi}(tf)\neq\tilde{\psi}(tt)$, the boolean value of x_{i} and \overline{x}_{i} for all

$1\leq i\leq n$ (also t and f) assigned by ψ satisfies $\neg x_{i}=\overline{x}_{i}$ (and $\neg t=f$). Next, since

$\tilde{\psi}(l_{1}^{i}l_{2}^{i}l_{3}^{i}f)\neq\tilde{\psi}(ffff)$ for any clause c_{i} with $1\leq i\leq m$, at least one of the three literals

5

is not same with $\psi(f)$. Thus any clause in F has at least one liteal with value 1 for

the assignment b , so it satisfies F. \square

This theorem states that the problem considering whether the transformed strings

are identical or not is NP-complete. In such case, only the strings having the same

length have to be considered for finding an alphabet indexing. But the above result

can be easily extended to the hardness of more general problem that considers the

identity of substrings as follows.

Let $P,$ Q be the sets of string over Σ , and let Γ be an alphabet with $2\leq|\Gamma|<|\Sigma|$.

Let $P’$ and $Q’$ be the sets of strings defined as follows.

$P’=$ { $s’|s’$ is a substring of $s\in P$ with $|s’|>3$ }

$Q’=$ { $s’|s’$ is a substring of $s\in Q$ with $|s’|>3$}

Then, by applying theorem 1, finding an alphabet indexing of Σ by Γ for $P’-Q’$ and

$Q’-P’$ is NP-complete.

Collorary 1. Finding an alphabet indexing that allows to distinguish the pair of

sets of strings by their containments of substrings is NP-hard if the substrings for

classification are restricted to have length longer than 3.

3 Reducing the size of an indexing alphabet

In the section 2, we discussed the problem for finding an indexing by an alphabet

of fixed size and showed intractability of the problem. In this section, we consider

another problem for finding the minimum size of alphabets that can have an alphabet

indexing, and for coping with this problem, we design a greedy algorithm that reduces

the size of the alphabet forming the strings.

Definition 2. Let Σ be an alphabet and let $P,$ Q be disjoint sets of strings over Σ .

6

Find the smallest indexing alphabet $\Gamma\subseteq\Sigma$ and an alphabet indexing ψ : $\Sigmaarrow\Gamma$

satisfying $\tilde{\psi}(P)\cap\tilde{\psi}(Q)=\emptyset$.

Since this problem is NP-hard by the theorem 1, we ought to consider an approxima-

tion scheme for minimizing the size of the indexing alphabet. The following greedy

heuristic algorithm may cope with this situation.

From now on, we assume an order on Σ .

Algorithm Greedy-Reducing

Let $\Gamma=\Sigma$ and $\psi(\gamma_{i})=\gamma_{i}$ for all $\gamma_{i}\in\Sigma$.

repeat

for each $(a, b)\in\Gamma\cross\Gamma$ with $a\neq b$:

Let $Darrow\{\sigma_{i}|\psi(\sigma_{i})=a\}$, and let $\varphi_{(a,b)}$ be a mapping obtained by

letting $\psi(\sigma_{i})=b$ for all $\sigma_{i}\in D$.

end.

Choose $\varphi_{(a,b)}$ satisfying $\tilde{\varphi}_{(a,b)}(P)\cap\tilde{\varphi}_{(a,b)}(Q)=\emptyset$ and minimizing $|\tilde{\varphi}_{(a,b)}(P)\cup$

$\tilde{\varphi}_{\{a,b)}(Q)|$. $/*break$ ties arbitrary. $*/$

$\psiarrow\varphi_{(a,b)}$.

$\Gammaarrow\Gamma-\{a\}$.

until no more replacements can not be found.

Definition 3. Greedy Alphabet Reducing Problem

Given a finite alphabets Σ with $|\Sigma|>2$, two finite disjoint sets $P,$ $Q\subseteq\Sigma^{*}$ and a

positive integer $K\leq|\Sigma|$, is the size of Γ obtained by Greedy-Reducing smaller than

K ?

For this problem, we obtained the following result that asserts that the algorithm

cannot be efficiently parallelizable unless NC $=P$.

7

Theorem 2. The greedy alphabet reducing problem is P-complete.

Proof. We give a reduction from circuit value problem to greedy alphabet reducing

problem. A boolean circuit is a sequence $\gamma=(\gamma_{1}(0,0),$ $\ldots,\gamma_{m}(k, l))$, where each

$\gamma_{i}(0,0)$ is an input gate assigned a value 1 or 0 and $\gamma_{k}(i,j)$ is a NAND gate $\gamma_{k}=$

$\neg(\gamma_{i}\wedge\gamma_{j})$ for some $0<i\leq j<k\leq m$. The problem is to determin whether the last

gate γ_{m} outputs the value 1 or 0 . It is well known that this problem is P-complete.

Given a circuit $\gamma=(\gamma_{1}(0,0),$ $\ldots,\gamma_{m}(k, l))$, we construct a greedy alphabet reducing

problem as follows.

(i) $\Sigma=\{0,1,\gamma_{1}, \ldots, \gamma_{m}\}$.

(ii) P and Q consist of the following:

(a) For all $1\leq i<m,$ P includes the strings 001 { i), $011\{i\},$ $101\{i\},$ $110\{i\}$,

where $\{i\}$ is the binary string coding i with fixed length $\lceil\log m\rceil$.

(b) For each input gate $\gamma_{k}(0,0)$ assigned $b_{k}\in\{0,1\},$ P includes $\overline{b}_{k}\overline{b}_{k}\gamma_{k}\{1\},$ \cdots ,

$\overline{b}_{k}\overline{b}_{k}\gamma_{k}\{m-k\}$, where \overline{b}_{k} is the complement of b_{k} .

(c) For each NAND gate $\gamma_{k}(i,j)$ of $1<k<m,$ P includes $\gamma_{i}\gamma_{j}\gamma_{k}\{1\},$ \cdots ,

$\gamma_{i}\gamma_{j}\gamma_{k}(m-k\rangle$.

(d) For the last NAND gate $\gamma_{m}(i,j),$ P includes $\gamma_{i}\gamma_{j}\gamma_{m}\langle 0\rangle,$ $001\{0\},$ $011\{0\}$,

$101\langle 0\rangle$ and Q includes 000 $\{0\rangle, 010(0\},$ $100(0\}, 111\{0),$ $110\{0\}$.

(iii) $k=3$.

Notice that the symbols 1 and 0 can not be identified. From now on, we refer all

symbols identified with 1 to i and with 0 to $\hat{0}$.

We show that each γ_{i} for $1\leq i<m$ will be identified with 1 or 0 (i.e. $\psi(\gamma_{i})=\psi(0)$

or $\psi(\gamma_{i})=\psi(1))$ at i-th iteration of Greedy-Reducing algorithm, and if and only if

8

the last gate of γ have a value 1 for the input to $\gamma,$ γ_{m} can be identified with 1 (i.e.

$\psi(\gamma_{m})=\psi(1))$.

Base step: Since the strings having γ_{1} as the third symbol consist of only 1, 0 and

γ_{1} , the algorithm can reduce $m-1$ strings of P by identifying γ_{1} with b_{1} .

In contrast, by identifying γ_{i} with any other symbol for any $i>1$, at most $m-i<$

$m-1$ strings can be reduced, since there are only $m-i$ strings that have γ_{i} as the

third symbol. Notice that any string having γ_{i} as the first or the second symbol can

not be reduced.

Thus γ_{1} will be identified with b_{1} in the first iteration of the algorithm.

Induction step: Assume that only symbols $\gamma_{1},$ \cdots,γ_{j-1} are already identified with

either i or $\hat{0}$ (i.e., there is a symbol $c\in\Gamma$ such that $\psi(\gamma_{i})=\psi(c)$ for $1\leq i<j$).

Since the strings having γ_{j} as the third symbol consist of only 1 and $\hat{0}$ except γ_{j} , the

algorithm can reduce $m-j$ strings of P by identifying γ_{j} with the symbol expressing

the boolean value for γ_{j} . On the other hand, for any $k>j,$ P contains strings having

γ_{k} as the third symbol only $m-k<m-j$, and the strings having γ_{k} as the first or

second symbol must have still not identified symbol γ_{l} with $l>k$ as the third symbol.

So at most $m-k<m-j$ strings can be reduced by identifying γ_{k} with other symbol.

Therefore the algorithm identifies γ_{j} with the symbol expressing the value of the

gate γ_{j} for its inputs. \square

4 A local search strategy for finding an indexing

In this section, we introduce an approximated alphabet indexing, namely, a pseudo-

indexing, which allows the transformed sets having intersection. Then we consider

the problem of combinatorial optimization version and a local search algorithm for

finding a pseudo-indexing.

Let Σ be a finite alphabet. Let A be a polynomial-time algorithm that outputs a

9

polynomial-time computable function h : $\Sigma^{*}arrow\{0,1\}$ for input $P,$ $Q\subseteq\Sigma^{*}$. We say

that A is robust if, for any input P and $Q,$ A produces h satisfying $P-Q\subseteq L_{h}$ and

$Q-P\subseteq\overline{L_{h}}$, where $L_{h}=\{s\in\Sigma^{*}|h(s)=1\}$ and $\overline{L_{h}}=\{s\in\Sigma^{*}|h(s)=0\}$. Then

we can use outputs of A as a classifier that completely separates strings in the input

except those in $P\cap Q$. For a such algorithm, we can define a performance measure of

a pseudo-indexing by evaluating accuracy of hypothesis over $P,$ Q obtained for chosen

and transformed training examples $\tilde{P}’,\tilde{Q}’$. This can be formulated as a combinatorial

optimization problem.

From this point of view, we applied a local search strategy to the knowledge acqui-

sition system. This algorithm starts from any pseudo-indexing and iterates finding

a better indexing from its neighborhoods, until no more improved one can be found,

and then outputs a pseudo-indexing and a decision tree that classifies a string. In-

formally, a decision tree is a rooted tree that consists of nodes with queries and leafs

with classifications. To classify an input, we choose nodes and evaluate their queries,

from the root to the leaves according to the answers. When we reach to a leaf, we

classify the input according to the label on that leaf. To each query nodes, Arikawa et

$a1^{(1)}$ attached simple regular patterns. This learning algorithm is robust and outputs

hypothesis for any training examples.

Now we formulate a local search strategy for the knowledge acquisition system by

the polynomial-time local search problem $(PLS)^{(3)}$. First we review the definitions of

this class PLS.

Definition 4. Let Λ be a finite alphabet. A polynomial-time local search problem L

is either a maximization or minimization problem specified as follows:

(1) $I(L)\subseteq\Lambda^{*}$, a set of instances.

(2) For each instance $\phi\in I(L)$, we associate it with the following:

(i) $S_{L}(\phi)$, a finite subset of Λ^{*} called the set of feasible solutions. An element s

10

in $S_{L}(\phi)$ is called a solution of ϕ .

(ii) $N_{L}(\phi, s)$, a subset of $S_{L}(\phi)$ called the neighbors of s , where s is a solution

in $S_{L}(\phi)$. We call a solution in $N_{L}(\phi, s)$ a neighbor of s .

(iii) C_{L} : $I(L)\cross S_{L}(\phi)arrow Z$, the cost function for $S_{L}(\phi)$, where Z is the set of

nonnegative integers. The value $C_{L}(\phi,s)$ is called the cost of s .

We require that $I(L),$ $S_{L},$ N_{L} and C_{L} are polynomial-time computable with respect

to $|\phi|$. A solution $s\in S_{L}(\phi)$ is called locally optimal if s has no better neighbors,

i.e., $C_{L}(\phi, s’)\leq C_{L}(\phi, s)$ for all s
‘ in $N_{L}(\phi, s)$ when L is a maximization problem. In

addition, the following two polynomial-time algorithms must exist for $L:(i)Initia1_{L}$,

given $\phi\in I(L)$, produces any feasible solution in $S_{L}(\phi)$, and (ii) $Improve_{L}$, given

$\phi\in I(L)$ and $s\in\Lambda^{*}$, produces a better neighbor if s is in $S_{L}(\phi)$ and not locally

optimal, otherwise simply returns s .

The algorithms Initial_{L} and Improve_{L} allow us to apply the local search algorithm.

For the class of PLS problems, the PLS-reductions are defined as follows:

Definition 5. Let L and K be problems in PLS. We say that L is PLS-reducible

to K if there are polynomial-time computable functions f and g such that for each

instance ϕ of $L,$ $(i)f(\phi)$ is an instance of K , (ii) $g(f(\phi), s)$ is a solution of ϕ if s is a

solution of $f(\phi)$, and (iii) if $s\in S_{K}(f(\phi))$ is a locally optimal solution of $f(\phi)$, then

$g(f(\phi), s)\in S_{L}(\phi)$ is also a locally optimal solution of ϕ .

Notice that the PLS-reducibility is transitive, and if we can find locally optimal

solutions for a PLS-complete problem in polynomial time then we can also find locally

optimal solutions for any PLS problem in polynomial time.

Definition 6. The problem alphabet indexing by local search is a maximization prob-

lem given by an instance $\Pi=(\Sigma, \Gamma, P, Q, \Omega, P’, Q’, A)$, where Σ and Γ are finite al-

phabets with $|\Sigma|>|\Gamma|,$ P and Q are sets of strings over $\Sigma,$ Ω is a weight function

11

from $P\cup Q$ to nonnegative integers, A is a robust learning algorithm, and $P’$ and $Q’$

are the sets of training examples $P’\subseteq P,$ $Q’\subseteq Q$.

The set of feasible solutions S_{Π} is the set of all mappings from Σ to F. The cost C_{Π}

is defined as follows. Let h be the hypothesis obtained by the algorithm A for the sets

of transformed examples $\tilde{P}’$ and $\tilde{Q}’$. Then $C_{\Pi}(\psi)=f(||\tilde{P}\cap L_{h}||,$ $||\tilde{Q}\cap\overline{L_{h}}||)$, where

$||S||= \sum_{s\in S}\Omega(s),$
L_{h} and $\overline{L_{h}}$ are the language defined by h : $\Sigma^{*}arrow\{0,1\}$ and f is a

function from pairs of nonnegative integers to nonnegative integers, f : $Z\cross Zarrow Z$,

satisfying $f(a, b)=f(b,a)$ and $f(a, b)<f(a, c)$ for any $0\leq a,$ $b<c$.

The neighborhood $N_{\Pi}(\psi)$ for $\psi\in S_{\Pi}$ is $N_{\Pi}(\psi)=\{\phi\in S_{\Pi}|\delta(\phi, \psi)=1\}$, where

$\delta(\phi, \psi)=|\{\sigma\in\Sigma|\phi(\sigma)\neq\psi(\sigma)\}|$.

For this problem, the following theorem holds.

Theorem 3. Alphabet indexing by local search is PLS-complete in the weighted case,

and finding a locally optimal indexing for the unweighted problem is P-complete.

Proof. In either weighted and unweighted case, polynomial-time local search prob-

lem 2-SAT is PLS-reducible to the alphabet indexing by local search. It is known

that k-SAT (WEIGHTED k-CNF SATISFIABILITY) for $k\geq 2$ is PLS-complete in

the weighted case and P-complete in the unweighted case.

An instance of k-SAT is a boolean formula in k-CNF with a nonnegative integer

weight on each clause. A solution is a boolean assignment to the variables, and its cost

is the sum of the weights of all satisfied clauses. The neighborhoods of a solution are

the set of assignments in Humming distance 1. This neighborhood structure is called

FLIP. Here we show a PLS-reduction from 2-SAT to AILSP in both weighted and

unweighted cases. A PLS-reduction from a PLS-problem L to another PLS-problem

M is defined by two polynomial-time computable functions f and g . f is a mapping

from L to M and g is a mapping from the pairs of $f(l)\in M$ and a solution s of $f(l)$

to a solution of l , satisfying that $g(f(l),s)$ is a locally optimal solution of l if s is a

12

locally optimal solution. We first show a reduction in weighted case, then we modify

it for unweighted case.

Weighted case:

Given a 2-CNF formula $F(x_{1}, \cdots , x_{n})$ with n variables and m weighted clauses $c_{1},$ $\ldots,$ c_{m} ,

we transform F to an instance of the as follows.

According to the variables of F , we define $\Sigma=\{x_{i}|1\leq i\leq n\}\cup\{t, f\}$ and

$\Gamma=\{0,1\}$. The sets of strings $P,$ Q are defined as follows. Let $c_{j}=(l_{1}^{j}\vee l_{2}^{j})$ be a

clause in F . If l_{k}^{j} is a positive literal x_{i} , let $t_{k}^{j}=x_{i}$ and $f_{k}^{j}=t$. Otherwise, let $t_{k}^{j}=f$

and $f_{k}^{j}=x_{i}$. Then we define $P=\{s(c_{j})|1\leq j\leq m\}\cup\{tttt\}$ and $Q=$ {tftf},

where $s(c_{j})=f_{1}^{j}t_{1}^{j}f_{2}^{j}t_{2}^{j}$ for any clause c_{j} with $1\leq j\leq m$. Let $P’=P$ and $Q’=Q$.

Finally, we define the weight function Ω . For each $s(c_{j})$ in P , we give the weight of

the corresponding clause c_{j} , and for tttt, we give the weight $\omega+1$, where ω is the

sum of the weights of all clauses in F . We give the weight $2\omega+2$ to the negative

string.

Next we define g , the mapping from solutions to boolean assignments. For any

solution ψ of this instance, we compute an assignment for F as follows. If $\psi(t)=1$,

we give the boolean value represented by $\psi(x_{i})$ for each variable x_{i} with $1\leq i\leq$

n . Otherwise, we give $x_{i}=\neg\psi(x_{i})$. It is clear that this mapping gives a boolean

assignment for any pseudo-indexing.

The remaining part of the reduction is to show that if an indexing ψ is locally

optimal then g gives a locally optimal assignment of F . To do this, we show that the

following lemma holds.

Lemma 1. Any locally optimal indexing satisfies $\psi(t)\neq\psi(f)$.

Assume that a locally optimal indexing ψ satisfies $\psi(t)=\psi(f)$. This implies that

$\tilde{\psi}(tttt)$ is identical to $\tilde{\psi}(tftf)$, and thus any language must include one of them

if and only if it includes the other. If h classifies both those strings in L_{h} , the cost

13

of ψ is at most $f(\omega+\omega+1,0)$, and otherwise (both not in L_{h}) the cost is at most

$f(\omega, 2\omega+2)$. On the other hand, an indexing $\psi’$ satisfying $\psi’(t)\neq\psi’(f)$ allows to

distinguish $\tilde{\psi}(tttt)$ from $\tilde{\psi}(tftf)$ and has the cost at least $f(\omega+1,2\omega+2)$. Such a

solution can be obtained from ψ by flipping $\psi(t)$ or $\psi(f)$, and the cost of $\psi’$ dominates

the cost of any indexing that atisfies $\psi(t)=\psi(f)$. This contradicts the assumption.

Therefore any locally optimal indexing satisfies $\psi(t)\neq\psi(f)$.

Now, we show that if an indexing is locally optimal then the boolean assignment for

F obtained by g is also locally optimal. Let ψ be a locally optimal indexing, and let

W be the sum of the weights of all strings that have two continuous same symbols in

$\tilde{\psi}(P)$, except tttt. All those strings correspond to clauses and have such substrings

only if they have a variable symbol x_{i} satisfying $\tilde{\psi}(tx_{i})=\tilde{\psi}(tt)$ or $\tilde{\psi}(x_{i}f)=\tilde{\psi}(ff)$,

i.e., the clause has x_{i} satisfying $\psi(x_{i})=\psi(t)$ for a positive literal or $\psi(x_{i})=\psi(f)$

for a negative literal. Since ψ is a locally optimal solution, ψ satisfies $\psi(t)\neq\psi(f)$,

and thus any string that has two continuous same symbols can be distinguished from

tftf. Therefore, W is equal to the sum of the weights of all clauses satisfied by

the assignment ψ , and the cost of ψ is $f(W+\omega+1,2\omega+2)$. Suppose that ψ is

locally optimal and the assignment obtained by ψ is not locally optimal. Then the

assignment must have a flip to make improved solution with cost $W>W$. But this

implies that ψ has also an improved neighbor, since the same flip for ψ improves the

cost to $f(W+\omega+1,2\omega+2)$. This contradicts the assumpition. Thus the theorem

holds in weighted case.

Unweighted case:

Let $F(x_{1}, \cdots, x_{n})$ be a 2-CNF formula with n variables and m unweighted clauses.

We transform the unweighted formula to an unweighted alphabet indexing problem

as follows.

Let $\Sigma,$ Γ be the alphabets constructed as in the weighted case. For each clause c_{i} in

14

F , we make $s(c_{i})$ and add it to P . We add all {ttt
$\sim_{i}ttftf\cdots$

tf $|1\leq i\leq m+1$ } to P ,

and add all {tft $\frac{ftftf\cdots tf}{i}|1\leq i\leq 2m+2$} to Q . The mapping of the solutions g

is computed as in the weighted case. Then any localy optimal indexing of this instance

also satisfies lemma 1. If an indexing ψ satisfies $\psi(t)=\psi(f)$, the cost of ψ is at most

$f(m+m+1,m+1)$ (for h satisfying $\tilde{\psi}(tttt),\tilde{\psi}(tftf)\in L_{h}$) or $f(m, 2m+2)$ (for h

satisfying $\tilde{\psi}(tttt),\tilde{\psi}(tftf)\not\in L_{h}.)$ On the other hand, if $\psi(t)\neq\psi(f)$, the cost is at

least $f(m+1,2m+2)$. If an indexing is locally optimal, any string corresponding to

a clause is distinguished from tftf after the transformation if and only if it has two

continuous same symbols. Therefore, as in the weighted case, the boolean assignment

computed by g is locally optimal if the indexing is locally optimal.

Thus the theorem holds for both weighted and unweighted cases. \square

5 Conclusions

We have defined an alphabet indexing which is strictly consistent for positive and

negative data. In such case, we have shown that finding an indexing is NP-complete.

Additionally, we have shown that the greedy algorithm for reducing the alphabet

forming positive and negative data is P-complete. We have also defined the pseudo-

indexing as approximated one, and shown that the problem of finding a locally op-

timal pseudo-indexing by the algorithm in (7) is PLS-complete. Even the strings

are unweighted, the result states that finding a locally optimal pseudo-indexing is

P-complete.

As we have shown in this paper, finding a good indexing is computationally hard.

However, by giving a suitable indexing to sequences of amino acid residues, we can

reduce the computation time and spaces. Moreover, a good indexing may reduce the

learning spaces or class and simplify the hypotheses. The experimental results in (7)

can be considered as its empirical support. However, their theoretical foundations

are left as open problems.

15

References

(1) Arikawa, S., Kuhara, S., Miyano, S., Mukouchi, Y., Shinohara, A. and Shino-

hara, T., “Machine discovery of a negative motif from amino acid sequences

by decision trees over regular patterns”, in Proc. Int. Conf. Fifth Generation

Computer Systems, pp. 618-625, 1992.

(2) Arikawa, S., Kuhara, S., Miyano, S., Shinohara, A. and Shinohara, T., “A learn-

ing algorithm for elementary formal systems and its experiments on identification

of transmembrane domains”, in Proc. 25th Hawaii International Conference on

System Sciences, pp. 675-684, 1992.

(3) Johnson, D. S., Papadimitriou, C. H. and Yannakakis, M., “How easy is local

search?”, J. Comput. Sys. Sci., vol. 37, pp. 79-100, 1988.

(4) Kyte, J. and Doolittle, R. F., “A simple method for displaying the hydropathic

character of protein”, J. Mol. Biol., vol. 157, pp. 105-132, 1982.

(5) “Protein identification resource”, National Biomedical Research Foundation.

(6) Sch\"affer, A. A. and Yannakakis, M., “Simple local search problems that are hard

to solve”, SIAM J. Comput., vol. 20, no. 1, pp. 56-87, 1991.

(7) Shimozono, S., Shinohara, A., Shinohara, T., Miyano, S., Kuhara, S. and Arikawa, S.,

“Finding alphabet indexing for decision trees over regular patterns”, in Pro-

ceedings of the Twenty-Sixth Annud Hawaii International Conference on System

Sciences, pp. 763-772. IEEE COMPUTER SOCIETY, 1993.

(8) Yanagihara, N., Suwa, M. and Mitaku, S., “A theoretical method for distinguish-

ing between soluble and membrane proteins”, Biophysical Chemistry, vol. 34, no.

1, pp. 69-77, 1989.

