oooooooooo
0 8760 19940 29-36

29

A Generalization of Tree Automata and Traversal of Trees
HELTAY () SFEBB (Etsuro MORIYA)

Abstract

Tree automata with memory, a generalization of ordinary tree automata, are
introduced and their relation to context-free grammars with memory is studied.
Relations between computation trees of tree automata with memory and derivation
trees of context-free grammars with memory are established, which is a proper
generalization of well-known Thatcher’s theorem on tree automata. Some types of
traversal of labeled trees are considered to characterize the languages generated by
context-free grammars with memory.

1 Introduction

ARZF—= P M CL > TREIND labeled tree DEA & IREHXEOEH ARDE
& L OB DBIRIZ Thatcher OFEH [7) ELTLLHBNT VWS, TOEEIX Guessarian
[2] & Schimpf-Gallier [6] FICK o TT Y a¥ I AE) 2FORT—b b MY
7 v I ZAXEOBDBRIC £ THIRI hiz BFIZECATINEOXIREBEXEZEZ
BILICEO2TA VT Y IRXERRY v 7 & DXRE HSGEIC L THaR L= 3],
AR TR 7YY ¥ I REI— I P ERI VI AERVFEDRT— P P UICEKT
HIRT 52 LIC K W mEDOMICHERREBERPIRD MO L& TRT. CORBRED, AF Y
7X%UE%O*1—FVb/u7w/1ﬁ¢/X%U%%O*j—b?b/iDEL%
HEENDENC L BEIN D,

E7=. labeled tree IZX T 2EZFED traversal BE X, AEUMNERT—F2 b2 P%
B9 3 labeled tree % traverse L TR HNZEE/EL A€ VN & XREHE L OB DBY
REEZ Do PIZIEX. ATVNERT—P M UDRET S labeled trees & depth-first
order % bottom-up order C traverse LTSNS SREIEA TV EXIREHXEIC K2
THERENB T LERT |

Sections 2 and 3 are taken from [4] for the most part and therefore all the theorems
in those sections are stated without proof. In Section 4 we consider various types of
traversal of labeled trees and show that the language obtained by traversing the trees
accepted by a stack tree automaton in the depth-first (or bottom-up) order is generated
by a context-free grammar with stack.

2 Stack tree automata

Let ¥ be an alphabet. A tree domain is a nonempty set D of strings over the set N
of positive integers satisfying the following two conditions:

(i) For all d in D, every prefix of d is also in D. ,

(i) For all d in D and every integer ¢ in N, if d-i is in D, then for all j in N such that
1<3<14d-jis also in D.

30

A tree domain provides a scheme to identify uniquely each node of a rooted ordered
tree, i.e., the root of the tree is denoted by the empty string A and the ¢th child of a
node d by d-i. The number of children of d is denoted by rank(d). A node d is a leaf if
rank(d) = 0, and an internal node otherwise. Given an alphabet X, a X-tree (or tree for
short) is a function ¢ : D — ¥ for some tree domain D which we denote by Dom(t). By
t/N we denote the tree D/N — X obatined by pruning the entire leaves from ¢. Finally
let DeN=DU{{i]|{is aleaf of D, : € N}. .

Now we define tree automata with various types of worktape as a generalization of
ordinary tree automata. We use the ’root-to-frontier’ model instead of the ’frontier-to-
root’ model [7] and focus on tree automata with stack and their subclasses.

A stack tree automaton (STA for short) is a T-tuple M = (K, X, T, é, s, Zo, F), where
K is the finite set of states, ¥ is the finite set of labels for trees, I is the finite set of stack
symbols including the distinguished symbol Zo, the initial stack symbol, sy € K is the
initial state, F C K is the set of accepting states, and § is a mapping from K X (XU{A}) xT
into the finite subsets of |J,(K x I™)" U U, (K x {-1,0,1})*. M is A-input-free if the
domain of § is restricted to K x ¥ x I'. M is a pushdown tree automaton (PDTA) if
8(p,a,Z) C U,(K x I*)" for every p,a and Z, and M is a finite tree automaton (FTA) if
I' = {Zo} and 8(p,a, Zo) C Un(K x {Zo})" for every p and a.

Given a tree t : D — ¥ as an input to M = (K, %, T, 6, so, Zo, F'), define the binary
relation Fpr on I KT*-trees as follows. We may assume without loss of generality that
'nK =09.

(1) The indtial tree for M is the tree initp : {A} — [*KT™ such that initpr(A) = s0Z0.

(ii) Let t; be a I'™* KT*-tree with tree domain D; such that D; C DeN. Supposed € D
is a leaf of t; such that ¢(d) = a € ¥ and t:(d) = Z1---pZ;--- Zx, where p is in K and
eachof Zy,...,Z;,...,Z; inI'. We writet : t; ks t, if one of the following four conditions
is satisfied, where t, is a ['*KT*-tree with tree domain D, such that t5(d') = t;(d’) for
every node d' other than those mentioned below.

(ii-1) ¢ =1, 6(p, A, Z1) contains (¢,v) € K x I'*) Dy = Dy, and t3(d) = ¢yZ; - - - Zk.

(ii-2) é(p, A, Z;) contains (g¢,7) € K x {—1,0,1} such that 1 < i+ r <k, D; = Dy,
and t2(d) = Z] o Zi+7’—1qu+'r R Zk

(ii-3) d is an internal node of t with rank(d) = n, i = 1, 6(p, a, Z,) contains (g1, 71;- - -;
Gn,Yn) € (K xT*)", Dy =D U{d-j|1<j<n}, and t5(d-j) = ¢;7jZ2 - - - Zi for each j.
In case d is a leaf of t, ¢, is defined similarly but unrelatedly to rank(d) (in other words,
n is arbitrary).

(ii-4) d is an internal node of t with rank(d) = n, é(p,a, Z;) contains (q1,71;...;qn, ")
€ (K x {-1,0,1})" such that 1 <7 +r; <k forevery j, Dy =D, U{d-j |1 <j < n},
and ty(d-j) = Z;--- Ziyr;—19iZigr; -+~ Zy) for each j. In case d is a leaf of ¢, 25 is defined

“similarly but unrelatedly to rank(d).

In cases (ii-1) and (ii-2) M does not scan the node d to read a label there, i.e., M makes
a A-move at d. M is in pushdown mode if either case (ii-1) or case (ii-3) is applicable, and
in stack-reading mode otherwise.

Let -3, be the reflexive transitive closure of F-ps. A I'* KT™-tree t' is a computation tree
of M on input ¢ if ¢ : initpy F3, t'. ' is acceptable if Dom(t'/N) = Dom(t) and t'(d) is in

31

[*FT* for every leaf d of t'. A Y-tree t is accepted (or recognizable) by M if there exists
an acceptable computation tree of M on t. The set of trees accepted by M is denoted by
T(M), and the set of acceptable computation trees of M by C(M).

3 Context-free grammars with memory

In the preceding paper [3] we introduced context-free grammars (CFGs) with various
types of memory. In this paper we consider CFGs with stack, i.e., CFGs in which every
nonterminal has a stack memory, exclusively among them. Formally, let G = (N, %, P, S)
be a CFG, where N is the set of nonterminals, ¥ the set of terminals, P the set of
context-free productions, and S € N the sentence symbol. Let I' be a finite set disjoint
from NUZX, and let ¢ and $ be special symbols not in NUTUX. Elements of I' are used as
stack symbols. Then a CFG with stack (CFGS for short) is specified by a quintuple G =
(N,I',X, P,S), where P is the finite set of productions that have one of the following
forms: '

(I) A—a,

(II) A — Bf,

(IIT) Af — B,

(IV) Af = fB, Af — Bf or fA - Bf,
where A and B arein N, fin T, and a in (N U X)*. G is A-free if it has no production
whose right side is A\. G is a CFG with pushdown store (CFGP) if it has no production of
the form (IV). A CFGP is nothing other than an indexed grammar of Aho [1].

Intuitively speaking, each nonterminal of G has a stack of its own. An instantaneous
content of the stack attached to nonterminal A is denoted by a string in ¢I'* AT*$, the left-
most symbol of which being the top of stack. The occurence of A denotes the read/write
head’s position on the stack. A sentential form of G is a string in (¢I*NI*$ U X)* and is
derived from the initial sentential form, ¢S$, as follows. Let 3 and « be in (¢[*NT*$UX)*,
dandeinI™ fin[, A,Bin N, and A,,...,A; in NUZX. Define the binary relation =¢
on sentential forms as follows.

(i) Distribution If A — A;A, --- Ax (k> 0) is a production of type (I), then

ﬂ ¢6A€$")’ =a 551141616214262 LR 6kAk5k7,

where §; = ¢6 and &; = €$ if A; isin N, and §; = ¢; = X if A; is in . Note that k = 0
means 6; Aie1- - O Arer=A.

(ii) Pushdown If A — Bf is a production of type (II), then 3 ¢Ae$y =¢ B ¢Bfe$y.

(iii) Pop Up If Af — B is a production of type (III), then B ¢AfeSy =¢ B¢Be$y.

(iv) Stack Reading If z — y is a production of type (IV), then B¢bze$y =¢
B ¢oye$y.

Note that pushdown and pop up may be made only at the top of the stack. Let =¢
be the reflexive transitive closure of =g. The language generated by G is denoted by
L(G), i.e.,

L(G) = {w € ¥* | ¢S =7 w}.

32

We denote by Lx the class of languages generated by grammars of type X. It is known
[3] that Lore G Lorer G LoFas-

For our purpose in this paper, we slightly modify the definitions of CFGSs and STAs.
A CFGS is specified by a sextuple G = (N,T',X, P, S, Z,), where N, I', ¥ and S are
as before, Z;, is a distinguished symbol of I" called the initial stack symbol, and P may
contain productions of the forms (II), (III) or (IV), as well as productions of the form

(IV') fAg — Bfg
and

(V) Af — B9,
where A and B are in N, f and g in I, and 6 in I'*. However, productions of the form
(I) are restricted such that a € N* U X. The initial sentential form of G is ¢5Z,8.
Production (IV’) has exactly the same effect as applying two productions Ag — Cg and
fC — Bf in this order, while production (V) has the composite effect of applying a type
(III) production first and then a sequence of type (II) productions, i.e., it can be applied
only in the pushdown mode to drive 8 ¢B6e$y from B¢Afe$y. Particularly production
Af — Bf may be used not only as a type (V) production but also as a type (IV)
production.

A STA (K,X,T,8, s0, Zo, F) is restricted such that §(p,a, Z) C Un>2((K —F)x{0})"U
K x (T* U {-1,0,1}) and such that é§(p,\,Z) C K x (I'* U {-1,0,1}) for every p € K,
ac€¥Yand Z el

It can be shown that the above mentioned modifications neither increase nor decrease
the power of the devices, and do not change essentially the structure of them, either.

Derivation trees for G = (N,T,X, P, S, Z;) are those I'*(N U X U {A})I'™*-trees which
are defined recursively as follows.

(i) A single-node tree initg : {A\} — {SZ,} is a derivation tree called the initial
derivation tree for G .

(ii) Suppose t : D — I'*(N U X U {A})I'* is a derivation tree with a leaf £. Then the
tree ¢’ 1 D' — I'*(N UX U {A})I'* defined below is a derivation tree, where t'(d) = t(d) for
every d in D. In this case, we write t =¢gt'.

(ii-1) If t(£) = 6Ac and A — A;---Ax (k > 1, each A; € N UZY) is a production of
type (I), then D' =D U {£-i | 1 < ¢ < k} and t/(£-1) = 6 Ase.

(i-2) If t(£) = 6Aec and A —) is a production, then D’ = D U {¢-1} and t'({-1) = ée.

(ii-3) If t(£) = z¢ and z — y is a production of type (II), (III) or (V), then D' =
DU {{-1} and t'(£-1) = ye. '

(ii-4) If ¢(€) = éze and z — y is a production of type (IV) or (IV’), then D' = DU {£1}
and t'(£-1) = dye.

An acceptable derivation tree is a derivation tree whose leaves each is labeled with
an element of I'*(X U {A})I™*. The set of acceptable derivation trees for G is denoted by
T(G). Let t : D - I'*(NUX U {A})T™* be a derivation tree with the leaves ¢4,. .., £, from
left to right. Then the string t(¢;)---t({,) is denoted by yeeld(t). If T is a set of trees,
then let yield(T) = {yteld(t) |t € T}. ‘

Throughout the paper, let 7 be the homomorphism from (I'U N U £)* into (N U X)*
which maps each element of I' into A and each element of N U X into itself. Then

33

L(G) = n(yield(T(G))).

Let ¢ : ¥ — A be a mapping and ¢ : D — X a tree. Then by o(t) we denote the tree
¢ : D — A defined by t'(d) = ¢(t(d)) for each d in D. ¢ is called a relabeling of t. For a
set T of X-trees, let p(T) = {¢(¢) | ¢t in T}. The following theorems are proved in [4].

Theorem 3.1 For each A-free CFGS (CFGP, CFG, respectively) G, there exists a A-
input-free STA (PDTA, FTA, respectively) M and a relabeling ¢ such that T(G) =

p(C(M)).

Corollary 3.1 For each A-free CFGS (CFGP, CFG, respectively) G, ©(T(G)) is recog-
nizable by a A-input-free STA (PDTA, FTA, respectively).

Corollary 3.2 For each A-free CFGS (CFGP, CFG, respectively) G, there exists a A-
input-free STA (PDTA, FTA, respectively) M such that L(G) = yield(T(M)).

Theorem 3.2 For each A-input-free STA (PDTA, FTA, respectively) M, there exists
a A-free CFGS (CFGP, CFG, respectively) G and a relabeling ¢ such that C(M) =

¢(T(G)/N).

Corollary 3.3 For each A-input-free STA (PDTA, FTA, respectively) M, there exists a
A-free CFGS (CFGP, CFG, respectively) G such that yield(T(M)) = L(G).

From Corollaries 3.2 and 3.3, we have the following theorem which is a generalization
of the corresponding results for context-free languages [7] and for indexed languages [2]

[6].

Theorem 3.3 The following two statements are equivalent.
(1) L is generated by a A-free CFGS (CFGP, CFG, respectively).
(2) L = yield(T(M)) for some A-input-free STA (PDTA, FTA, respectively).

Since it is known [3] that Lorg CLcrep G LA free cFas, the next theorem follows from
Theorem 3.3, where 7 x denote the class of the sets of trees accepted by tree automata
of type X.

Theorem 3.4 TFTA g TPDTA ; TSTA-

4 'Traversing trees

In this section we consider traversal of trees according to the depth-first and the
bottom-up orders. Let ¢ : D — X be a tree. We identify the sequence d,...,d, of
nodes constituting a traversal with the string t(dy)---t(d,) of labels. Let <p be the
lexicographic order of D, i.e., @ <p P if and only if either a = A and 8 # A, or a = i/
and B = v;jf for some o/, 3 € N* and 4, j € N such that i < j. The depth-first traversal
(pre-order traversal) of ¢, denoted by depth-first(t), is the traversal according to the
order <p. The bottom-up traversal (post-order traversal), bottom-up(t), is the traversal
according to the reverse order of <p. For a set T of trees, let trav(T) = {trav(t) |t € T},
where trav is one of the traversals defined above.

34

Theorem 4.1 Let M be a A-free STA (PDTA, FTA, respectively). Then there ezists a
A-free CFGS (CFGP, CFQG, respectively) G such that L(G) = depth-first(T(M)).

Proof. Let M = (K,%,T,é,s0,Z0o, F). Let p,a,[a,p] and [a,q1,- -, qx] be nonterminals
of G for each p,q;,--,qx € K and a € X, where k¥ < max{k | (¢:,0;---;¢,0) €
é(p,a,Z), p€ K, a € £, Z € T}, and let Z and Z be stack symbols of G for each
Z € 1. Let s5 and Zg be the sentence symbol and the initial stack symbol of G, respec-
tively. _ '

Before definig the set P of productions for G, it would be helpful for understanding to
know the basic idea of the proof. Suppose t : inity 3, t' with ¢’ € C(M). Let s’ be the
tree obtainded from # by performing the following sequence of operations on every node

d of ¢'/N. Note that Dom(t) = Dom(t'/N).

1. Create a new node d; to be the unique child of d.
2. if d is an internal node of ¢/N then begin
2.1. Make the children of d in #' be the children of d; in s, preserving their order.
2.2. Add a new node d; as the leftmost child of d;.
2.3. Create another new node ds as the unique child of d,.
2.4. Suppose t'(d) = appB for some p € K and a, beta € T
2.4.1. Label d3 with at(d)g.
2.4.2. Label d; with aap.
2.4.3. Label the remaining children of d; with the labels of the corresponding
children : :
of din t.
end
3. else if d is a leaf of /N then begin
3.1. Create a new node d; to be the unique child of d;.
3.2. Label d3 with aaf if t'(d) = app for some p € F.
end

It is important to observe that depth-first(t) = h(yield(s')), where h is the homomor-
phism which erases every stack symbol and maps each terminal symbol to itself. This is
the case because the order of nodes obtained by traversing ¢ in the depth-first order is
equivalent to the order of the nodes obtained by traversing ¢'/IN in the depth-first order,
and because each node, say d, of ¢’ has the unique ds for which h(s'(d3)) = t(d), as its
leftmost descendant leaf in s'.

Now we are ready to define the set P of productions for G. Let p,q,¢q1,---,qx € K, a €
Yand Z €T. ,

(a) If 8(p, a, Z) contains (q;,0; .. .;qx,0) for some k£ > 2, then P contains pZ — [a, ¢,
-++, q)Z. Note that this production is of type (IV) and thus can be applied in the stack
reading mode. :

Nonterminals of the form [a,qi,- -, gx] or [a,¢] are introduced in order for G to re-
member a label a which M has scanned on the input tree and a(n) (ordered set of) state(s)

35

q (¢1," -+, qx) which M is supposed to enter in the subsequent move. After that, G pro-
duces, on its derivation tree, a (and then its unique child a) and ¢ (g1, - -, ¢x) surrounded
by strings of stack symbols as the labels of child nodes of the node corresponding to the
node M has just scanned on the input tree. These nodes, except for the leftmost one which
has a as its label, have the same label that the corresponding nodes on a computation
tree of M have. ’

_(b-1) If &(p,a,Z) contains (¢,7) with v # Z, then P contains pZ — [a,q]y and
pZ — [a,q].

If ¥ = Z then pZ — [a, ¢]7y can be regarded not only as a type (V) production but also
as a type (IV) production, whereas it should not be treated as a type (IV) production
because the corresponding move in M is to be made in the pushdown mode. The stack
symbols in T are introduced in order for G to be able to recognize this difference. Except
for this point, Z is treated in G as if it were Z.

(b-2) If é(p,a,Z) contains (q,Z), then P contains pZ — [a,q]Z and pZ — [a,q]|Z.
Note that this production is of type (V) and thus can be applied only in the pushdown
mode. '

(c) If 6(p,a,Z) contains (g,—1), then P contains YpZ — [a,q]YZ and YpZ —
[a,q]Y Z for each Y in T UT.

(d) If 8(p,a, Z) contains (g,0), then P contains pZ — [a,q]Z and pZ — [a,q]Z.

(e) If 6(p,a, Z) contains (g,1), then P contains pZ — Z]a, q] and pZ — Z|a, q].

(f) For each ¢,¢1,--,qx € K and a € X, P contains [a,q] — aq and [a, ¢, -, q] —
agy - - - qk. The role of nonterminal @ in (f) and (g) is to adjust the form of productions.
Thus these productions are of type (I). .

(g) For each ¢,¢1, -+, qx € F and a € X, P contains [a,q] — a and [a,q1, -, qk] — a.

Now it is easily seen that L(G) = h(yteld(T(G))) = depth-first(T(M)).

In the above proof, replace (f) by (f) below. Then we have the corresponding result
for the bottom-up traversal.
(f') For each ¢,q1,--,qx € K and a € X, P contains [a,q] — ¢a and [a,q1, ", q) —

9 gka.

Theorem 4.2 Let M be a A-free STS (PDTA, FTA, respectively). Then there esists a
A-free CFGS (CFGP, CFG, respectively) such that L(G) =bottom-up(T(M)).

Acknowledgement

The author (A) is very grateful to Prof. H. Machida (B) for his efforts to organize the
comfortable conference where he was permitted not to give a presentation but to publish
this paper in the proceedings. As A is from Yamanashi prefecture, he wishes to express

his sincere appreciation to B in FFMF dialect, "VWDOHDZAREITFE. ZH5VWIAT H,
bdnhe 7

36

'References

[1] Aho, A. V., Indexed grammars— an extension of context-free grammars, J. Assoc.
Comput. Mach. 15 (1968), 647-671.

[2] Guessarian,l., Pushdown tree automata, Math. Systems Theory 16 (1983), 237-263.

[3]. Moriya, E., Context-free grammars with memory, IEICE Trans. Inf. Syst. E-75-D
(1992), 847-851. '

[4] —, Stack tree automata and their relation to context-free grammars with memory,
submltted for pubhcatlon

[6] —, Generalized tree automata over partially labeled tree, in preparation.

[6] Schimpf, K. M. and J. H. Gallier, Tree pushdown automata, J. Comput. Sys. Sci. 30
(1985), 25-40.

[7] Thatcher, J. W., Tree automata: an informal survey, in: A. V. Aho (ed.), Currents
in the Theory of Computing (Prentice-Hall, Englewood Cliffs, N. J., 1973).

