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Basic Sets and Degree Equations

for Blocks of Finite Groups

JUMBEE E K% #w BH f1 B (Kazuoki Ikeda)

1. Degree Equations

Let G be a finite group and p a prime. Let G° be the set of p-regular
elements of G and {x3, ..., Xn} be the irreducible ordinary characters of
G. For a subset J of the index set {1,...,n}, let {x;}={x;l7 € J}

There are several methods to distibute the irreducible ordinary charac-
ters of G into p-blocks. Most available one is to use the central characters.
Another one is to use Osima’s Theorem.

THEOREM 1. (Osima) For J C {1,...,n}, if Z,esxi(z)x;(y) = 0
whenever z € G° and y € G — G°, then {xs} is a union of p-blocks.

Put p; = Y5 x;(1)x; for J C {1,...,n}. In his paper [8], Harada -
stated the following;

CoNIECTURE A. If p; vanishes on G — G°, then {x;} is a union of
p-blocks of G. ’

As in [8], the proof of Conjecture A is reduced to the case where {x,}
is contained in a single block as follows;

CoNiecTURE A'. Let B be a p-block with the irreducible ordinary
characters x1,...,xx- For J C {1,...,k}, assume that p; vanishes on

G — G°. Then {x;} = B or§.

On the other hand, we prove the following;
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THEOREM 2. Let B be a p-block of G with defect d which contains the
irreductble ordinary characters x1, ..., Xk and the principal indecompos-
able éhar_acters ®,, ..., ®,. Let D= [d;,] denote the decomposition matriz
of B. Then the following assertions hold.

(i) There exist m; €Z (1 =1,...,k) which satisfy [mq---my] D =
[wi - - wy], where ®,(1) = puw, (s =1,...,1) with GCD {®,(1)} = p*u.

(i) If we set x;(1) = p*um; + p*~%ue; (1 = 1,...,k), then all g
are integers which satisfy [e1++-ex] D = O and ng = 5, e;x; vanishes
on G°. In particular, we have a degree equation np(1) = X, &;x:(1) = 0.

Proof. (i) Since D has rank [ and its invariant factors are all 1, there
are integral invertible matrices X and Y such that D = X [ g ] Y, where

E is the [ x [ identity matrix. If we puf here [wy - - w]YE O]X™ =
[my -+ mg), then m; €Z and

as required.
(i) As is well-known, GCD{x;(1)} = p*~“u (see Brauer [1]) and so all
g; are in Z. By (i) we have

p* %uler--rex] D = [a(1) - xx(1)] D = p*u[my-+-my] D = O.

Hence for z € G°,
k ! 1k
ne(z) =) exi(z) =Y &Y disps(z) = Y. (D eidis)ps(z) = 0,
cog=1 =1 s=1 s=1 i=1 :

where {¢,} are the irreducible Brauer characters of B. This completes
the proof of Theorem 2.

We call this {e;} a residue set associated to B.

Tueorem 3. Let B be a p-block of G with the irreducible ordinary
characters xy,...,xx. For J C {1,...,k}, assume that X;c;€;x; van-
ishes on G° for every residue set {&;} associated to B. Then {x;} = B



or 0.

Proof. Let D be the decomposition matrix of B. We consider the vec-
tor space V = ([z1 -+~ z3]|[z1 -+ - 2x]D = [0---0]) over the complex field.
Since D is of rank [, V has a basis with entries in Z. Let d=[6; - - - &)
be an element of V with §; €Z and e=[e; -+ -] be a residue set with
{m;} associated to B. Then €= [61 — 6y ey — pdék] is a residue set
with {m; + §;} and 8= ;}:;(e—e'). Hence V is generated by all [e; - - - &]
such that {{e;}} are residue sets associated to B. For every y € G — G°,
[x1(y) -+ - xx(y)] is evidently contained in V by the orthogonality rela-
tion and so it is expressed by a linear combination of {[e; - - - €x]}. Hence
¥;es X;(¥)x; vanishes on G by our assumption. Thus from Osima’s The-
orem, we obtain {x;} = B or @. The proof is now complete.

Replacing the hypothesis of Theorem 3 with weaker one, we state the

following;

CoNJECTURE B. Let B be a p-block with the irreducible ordinary char-
acters x1,..., Xk For J C{1,...,k}, assume that 3" c;e;x;(1) = 0 for
every residue set {e;} associated to-B. Then {x;} = B or 0.

It is verified that two conjectures A" and B are equivalent.

THEOREM 4. Conjecture A" holds if and only if Conjecture B holds.

Proof. First, assume that Conjecture A" holds and Yies€ixi(1) =0
for every residue set {¢;}. Then the same argument as in the proof of

Theorem 3 implies that p;(y) = ¥es x;(1)x;(y) = 0for every y € G—G°.
Hence {x;} = B or 0.

Conversely, suppose that Conjecture B holds and p; vanishes on G—G°.

Since ng = Y%, €;x; vanishes on G° by Theorem 2, we have

0= (n8,p7) = (D eixi, 3 xs(D)x;) = 2 &5x5(1).

=1 JE€J J€J

Hence {x;} = B or # which satisfies to complete the proof.

21
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By Theorem 4, in order to prove Harada’s conjecture, it suffices to
show that Conjecture B holds for every block of G. Many examples show
that the following hypothesis makes sense.

HypoTHESIS 5. A basic set for a block can be chosen from the set of
irreducible ordinary characters.

Let B be a p-block with the irreducible ordinary characters x4, .. ., X&.
Under Hypothesis 5, let {x1,---,xi} be a basic set for B and the other
characters are expressed as Z-linear combinations of the basic set on G°
as follows;

xa=atxat-c+ax A=10+1,...,k). (1)

Hence the decomposition matrix of B is of the form

dn Tee dy X1
D= dn Pee d X
- 1 1+1 1 1+1
r=1 a"r d‘l’l tt r=1 aT dTl Xl+1
1 k l k
L 21—:1 a"rdTl T Z‘l‘:l a'rd‘fl i Xk

Then
ng, =[ —a*' - =d™ 100 0 ]
ny, =[ —a? .. —a*? 010 0 ]
ngy =[ —-a&@ -+ —af 000 --- 1]

are linearly independent solutions of the equation
[z1-+-2x)D =[0---0].

As in Theorem 2, let my = [m3 - --m?] be a Z-solution of the equation
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Then
[my--mi]=mo+ z1my + -+ zxmp (21,...,2-1 € Z)

are all of Z-solutions of (2). We define, for a residue set {e;} with {m;},

x(1) =[ xi(1) -+ x(1) ]

e =[ &g - & |.

Since x;(1) = p*um; + p*~?ue;, we have

a

p*"%ue = x(1) — p*u(my + 21y + -+ 2 Npy). (3)

Let - denote the scalar product of vectors. For J C {1,...,k} and
a vector v= [vy---v;], let v’/ denote the vector of size k whose i-th

component is v; if 1 € J and 0 otherwise. Then by (3)

(x(1)” = p*um{ — p*uzini — -+ — puz_mi_) - x(1)’

=" T e 6% (1). (4)

If 3,es€5x;(1) = 0 for every residue set {e;}, then by (4) we have

ni-x(1)) =---=ni;-x(1)) =0. ()

Since hB(l) = 5% L €ixi(1) = 0 by Theorem 2, similarly we have
ni -x(1)" =--=nl,-x(1)" =0, (6)

where J' = {1,...,k} — J. Hence the next is proved.
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LeMMA 6. Under Hypothesis 5, if there is no non-empty proper subset
Jof {1,...,k} for which (5) or (6) holds, then Conjecture B holds.

LeMMA 7. Under Hypothesis 5, if a basic set {x1,...,xi} is contained
in {xs} or {xr} and T;c;e;x;(1) = 0 for every residue set {e;} associ-
ated to B, then {x;} = B or 0.

LemMa 8. Under Hypothesis 5, if the coefficients a) in the equation
(1) are all non-negative, then Conjecture B holds.

In particula,r, we deduce

CoROLLARY 9. Under Hypothesis 5, if [ =1 or 2, then Conjecture B
holds.

CoroLLARY 10. If the irreducible Brauer characters of B are all
liftable, then Conjecture B holds.

Using these Lemmas and Corollaries, we can prove

TueEOREM 11. If G = PSL(2,q) such that q is a power of a prime,
then Conjecture A holds.

TaEOREM 12. If G is the symplectic group Sp(4,q), where q is a
power of an odd prime e, then Conjecture A holds for every p different
from e.

Proof. By Theorem 4, it suffices to show that Conjecture B holds for
every block. Basic sets of Sp(4,¢q) are determined by White in [23-25].
We use the notation of those papers for the characters and the blocks.
The order of G = Sp(4,q) is ¢*(¢> + 1)(g+ 1)?(g — 1)?, soif p (£ ¢) is a
prime dividing |G|, then p = 2 or p divides exactly one of ¢°+ 1, ¢+ 1 or
g — 1. If pis odd and divides g® + 1, then the defect group of each block
is cyclic. If p is odd and divides one of ¢ + 1 or ¢ — 1, then blocks with
non-maximal defect have cyclic defect groups. In these cases, the result



is clear by Harada [8].

(1) p = 2. For the blocks by(r), ba(r), bs(r,s), ba(r, s), bs(r,s), ber(r)
and bgg(r), we have [ = 1 or 2 and for the blocks b;(r), the irreducible
Brauer characters are all liftable. Hence the result follows by Corollaries
9 and 10. For the other blocks, basic sets and the expressions of the other
characters as linear combinations of the basic sets are shown in the Tables
below. The first row in each Table is a basic set and missing entries are 0.

bm(r)
BS| & § éa
| 1 1 -1
€a 1 -1
€ | -1 1
xs| 1 1 (¢ =1 (mod 4))
xs | —1 1 (g =3 (mod 4))

bo (the principal block)

BS|1¢ 61 0; 05 010 612 013
P, 1 1 1 1 1

Dy | 1 11 1 1

85 -1 1

For the blocks bii(r) and by, assume that a subset J satisfies (5) of Sec-
tion 2 and some character in the basic set is contained in {x;}. Then the
above each Table shows that the other characters are also contained in
{xs}. Hence the result follows by Lemma 7.
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(i) p#2, plg—1. For the blocks bs(s, 1), bui(s), bs1(s) and bgs(s), we
have [ = 1 or 2 and for the other blocks, the irreducible Brauer characters
are all liftable. Thus Conjecture B holds by Corollaries 9 and 10.

(i) p # 2, plg+ 1. For the blocks bs(s,t), bi(s), b21(s) and ber(s),
we have [ = 1 or 2 and for the blocks b; and b,, the irreducible Brauer
characters are all liftable. Hence the result follows by Corollaries 9 and
10. For the principal block by, a basic set and the expressions of the other
characters as linear combinations of the basic set are as follows;

bo (the principal block)

BS|1g 610 0 61z O3
xe| 1 —2 -1 -1 1
xe | —1 1 1
X7 -1 -1 1
fl-1 1 1
& -1 -1 1

Evidently, the equation (5) or (6) does not occur for any non-empty
proper subset J and the result is clear by Lemma 6. This completes the
proof of Theorem 12.

THaEOREM 13. If G is the finite Chevalley group Gi(q), where q is a
power of a prime e, then Conjecture A holds for every p different from e.

2. Basic Sets of Brauer Characters

First, a simple method to distribute irreducible ordinary characters of
G into m-blocks is described, where 7 is a set of primes.

THEOREM 14. Let {x1,...,Xn} be the irreducible ordinary charac-
ters of G and {z1,...,z,} the complete set of representatives of m-reqular



conjugate classes of G. Let X = [xi(z;)] be the submatriz of the character
table of G. Then by making elementary column operations and interchang-
ing rows, X can be changed of the form

where each A; is of the form A; = [ f, } with the identity matriz E and

0
" } . Furthermore, each A; forms

2

can not be arranged of the form [ O‘
a single w-block of G.

We can calculate basic sets consisting of the irreducible ordinary char-
acters for the blocks of 21 sporadic groups and their extensions.

THEOREM 15. For every block of the sporadic simple groups My,
M2, Ji, M, Ja, Mas, HS, Js, My, ML, He, Ru, Suz, O'N, Cos,
Coy, Fisy, HN, Ly, Th, Jy, their associated covering and automorphism
groups, a basic set of Brauer characters can be chosen from among the

irreducible ordinary characters.

This is proved by displaying basic sets and the expressions of the other
characters as Z-linear combinations in the Tables of Appendix. We use
the character tables and the notation in the form of ATLAS-style (see
Conway et al [3] for details).

As in the proof of Theorem 14, let

1 o X1
0 1 X1
A; =
alfH aﬁ“ Xi+1
L af A | e

27



If we can choose {x1,...,x:} such that all a} are rational integers, then
{x1,-..,x:} is a basic set of Brauer characters for this block and

xo=atxa+-+tax A=1+1,...,k)

on G°. Then the Table in Appendix is displayed as

BS | xa -+ x

Xi+1 al oo al

Xk al e a

Missing entries in the Tables are 0.

Appendix (Examples)

Group: Jo [ Z.g ggg ] Prime: 2 Defect: '87 g

BS [ x1 x2 x3 x¢& Xxs5. X6 X1u
xr: | =1 =2 =2 2 2 1

s | -1 - 2 1 1

xo- | =1 =2 1 2 1
x10: | =2 -1 -1 2 2 1
xi3: | -1 -1 =1 1 1 1 1
xie- | =1 -1 1 1 1 1
xis* | =1 -1 1 1 1 1
x18: | -1 =2 =2 2 2 2 1
x20: -2 -1 -1 1 1 1 2
X21 -2 =1 -1 1 1 2 2
x22- | —1 -1 1
x23° | -1 -1 1
X24 -1 -1 1 1
X25 ° -1 =1 1 1 1
X26 - -1 -1 1 1 1
x27° | -1 -1 =2 2 1 1
x| -1 -2 =1 1 2 1
X31 -1 -1 1
X32 " -1 1 1
X33 1 -1 1
xs4:| -2 -1 -1 2 2 1 1
x35: )] -2 =1 -1 2 2 2 1
x3: | =2 -1 =1 1 1 2 2
X37 : -2 =2 =2 2 2 2 2




w0 ~3
0 3

Group: Suz [ zg ggg ] Prime: 3 Defect:
BS | x44 x49 x84  X65 X66 X67 X638 X69 X72  XT4

X45 ° -1 1 -2 1 -3 1 -1 2
X46-* -1 1 -2 1 -3 1 -1 2
X47 ~1 ~1 1
X438 " ; -1 -1 1
X50 ° -1 -1 2 1 =1 —4 -1 -2 4.
X51 ° -1 -1 2 1 -1 —4 -1 -2 4
X52 : 2 1! 1° -2 -1"1 -2 2
X53 : 32 10 -2 =17t -2 2
X54 ° 1 -2 -2 -1 4 -1 4 -3
X55 1 -2 -2 -1 4 -1 4 -3
X56 - 1 -2 -2 -1 4 -1 4 -3
X587 1 -2 =2 -1 4 -1 4 -3
X58 -1 -1 -1 1 1
X59 ° -1 -1 -1 1 1
xe2 - | —1 1 1 -1 1 -3 -2 3
X63 -1 1 1 -1 1 -3 -2 3
xro: | -1 =1 2 1 -1 -3 -1 -2 4
X171 ° -1 -1 2 1 -1 -3 -1 -2 4
xr3: | —1° 1! 11 -1t -2 -1"1 -2 4
X785 : —1° -10 -1-1 2
X716 : | 2 1! -2 =2 2 6 32 -4

X115 * 1 -1 1 -2 1 -1 1

X116 * 1 -1 -1 1 -1 1

X117 * -1 -2 B 2

X118 * -2 -1 3 2 -2 1 -7 -4 6

X119 * 1 1 1 -1 1 -1

X120 * 3 1 1 -3 -1 -3 3

X121 - 1 -1 1 2 1 -2

X122 * 1 -1 1 2 1 -2

X123 * -1 -1 1

X124 * -1 -1 1

X125 * -1 -1 1

xiz6 * | 1 -1 -1 2 2 -2

X127 * -1 -1 1 1 -1 -3 -1 -1 3

X128 * 1 1 -1 -1 1 3 2 -3

X129 - 1 -2 -2 -1 4 -1 4 -3

X130 * 1 -2 -2 -1 4 -1 4 -3

X131 * 1 1 -1

X134 * 1 1 1 -1 1 -1

X135 * -1 1 1 -1 -2 -2 3

X136 * 1 -1 -1 1 -1 3 3 -3

X137 * 1 -1 -1 1 -1 4 -1 2 -2

X138 * -1 -1 2 1 -1 -3 -1 -2 4

X139 * 1 1 -3 -2 1 5 1 3 —4

X140 * 1 -1 1

X141 * 1 1 -1 -1 -1 2

X142 * -2 -1 -1 2 2

X143 * -1 1 1 -1 1 -2 -2 4

29
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G G2 . 4 4
. ! . .
Group: O'N [ 3@ 3.G9 ] Prime: 3 Defect: 5 5
BS {x1 x3 xt X5 Xs Xs X9 X110 X6 X17  X18 X20 X29  X30
X7 1 1 1 1 -2 =2 2 2 2 L —
x19: | 11 1 1 2 2 -1 -1 -1 2 2 -2
X23 -2 -2 -1 -1 3 3 -2 - =2 =2 =1 _3-2 2 2
X24 -2 -2 -1 -1 3 3 -2 =2 -2 =" _3-2 2 2
X31 - -1 -1 -1 -1 2 2 -1 -1 =2 -2 1 1
X32 * -1 -1 -1 -1 2 2 -1 -2 -1 -2 1 1
X33 1 1 -2 -1 1 1 1 1 2 -1 -1
X34 % 1 1 -1 =2 1 1 1 1 2 -1 -1
X38 * 1 1 1 1 -1 -1 1 1 1 -1
X39 * 1 1 1 1 -1 -1 1 1 1 -1
xe0 % | 1 1 1 1 1 -1 -1 1 1 ~1
X41 * 1 1 1 -1 1 1 -1
X4 * -1 -1 -1 -1 2 2 -2 =2 -1 1 1
X45 * 1 ' 1
X48 ° -1 - -1 1 1 -1 -1 =1 -1 1 1
X49 * -1 -1 -1 1 1 -1 -1 -t -1 1 1
X54 - -1 1 1 -1 -1 -1 1 1
X55 * -1 1 1 -1 -1 -1 1 1
G G2 . 2 2
. 1 . .
Group: O'N [ 3.6 3.G2 ] Prime: 3 Defect: 3 3
BS X2 X11 X12 X13  X14
x15: | —170 =2 1} 1 1
X35 * -1 1
X36 ° -1 1
X37 * =1 1
X42 * 1 1
X43 * -1 -1 1 1 1
Group: O'N [G G.2] Prime: 7 Defect: 3 3
BS | x1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X11 ¢ 1 1 -1 =1 1 1
x12: | —1° -=3"%2 1 1 -2 =2 2 1 1 =11
xas ¢ | (£1) -2 1 1 -2 =2 2 —272
X29 : 1 1 —1-t
X30 : 1 1 —1-1
X13 X14 X16 xX17 X21 X22 X26 X271 X238
X11 -1 -1 1 1
x1z2 —-1 =1 2 2 -2 -2 11 1t 1!
x25 =1 =1 1 1 -1t —1-1 ! 1! 1!
X29 I | 1° 1!
X30 -1 -1 1° 1!




Group: Fizp [G G.2] Prime: 5
BS | x§  xi xi Xi x§ X5 Xjs x5
x§ 1 -1 -1 1 -1
X&z, -1 -1 -1
x5 -1 -1 -1 1 -1
Xde | -1 1 1 -1 -1
-3 E3 E E3 -
X30 X;F'z X3 X49 Xsg Xs:Fs X; X;Fs
xe0 . —1 1 1 1
X63 -1 1 1 1 -1 1
Xes —1 1 1 1
X65 1 -1 1 1
Group: Figp [2.G 2.G.2] Prime: 5
BS | xe6 x69 x70 X173 X714 XT5 X716 X717
X71° 1 -1 -1 -1 1 1
X72° 1 -1 -1 -1 1 1
X113° -1 -1 1
X114° -1 -1 1
X81 X382  X83 X85  X86 X102 X103 X104
xr1 -1 -1 1
X712 -1 -1 1
X113 -1 -1 -1 1 1 1
X114 -1 -1 -1 1 1 1
Group: Fiyy [3.G 3.G.2] Prime: 5
BS | x115  x1e  x117 X118 X120 X121 X124 X127
* %* . * * * *
X145% -1 1 1 1 -1
X157% -1 -1
X160%* -1 -1 1 1 -1
x1e3% | —1 1 -1 -1 -1 —1
X128 X137 X138 X139 X140 X148 X149 X158
* * * * * * *
X145 -1 1 1
X157 1 -1 -1 1 -1 1 1
X160 1 1 -1 1
X163 2 -2 -1 -1 1 1 1

Defect: 2 2

Defect: 2 2

Defect: 2 2
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